A Novel Method for the Synthesis of Sr$_2$CeO$_4$ Blue Nano-Phosphor and Its Characterization

Fahd Al-Wadaani

Taibah University, College of Science, Chemistry Department, Almadinah 30002 Saudi Arabia.

Abstract

Nanoparticles of the blue phosphor Sr$_2$CeO$_4$ were synthesized using a novel method. An oxido reduction took place between a mixture of nitrate salts of strontium and cerium with oxalic acid giving place to the formation of a precursor that will be heat treated at 850 °C to lead to the formation of the desired strontium cerate. The precursor was characterized by differential scanning calorimetry (DSC), the as prepared blue phosphor powder was characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller technique (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and its luminescent properties were investigated. The nanosized nature of the particles was confirmed. The nano-phosphor exhibits an intense blue emission at 466 nm when excited with a 325 nm radiation.

1. Introduction

Oxide-based photoluminescent materials activated by rare-earth ions are implicated in lighting, solar cells, optical applications and field emission displays (FEDs). The syntheses of stable and efficiently luminescent materials which emit in the blue region are of particular interest. Consequently, Sr$_2$CeO$_4$, which has orthorhombic symmetry and exhibits blue luminescence as a result of charge transfer (CT) transitions has received growing attention since its discovery through combinatorial chemistry by Danielson et al in 1998 [1]. In addition to the combinatorial method, there are numerous established methods for the preparation of Sr$_2$CeO$_4$, including solid-state reaction, sol–gel, microwave-assisted solvothermal, sol–gel auto combustion, co-precipitation method and pulsed laser deposition [1-4]. For instance, a comparison of Sr$_2$CeO$_4$ blue phosphors prepared via two methods; a solid-state reaction and a microwave-assisted solvothermal process showed that a desirable particle size and enhanced luminescence properties are obtained via the latter method [3]. Similarly, it has been reported that the synthesis of Sr$_2$CeO$_4$ via the sol–gel PVA route produces higher luminescence intensity than the solid state reaction method [5]. Additionally, Sr$_2$CeO$_4$ prepared from the heat treatment of Ce(III)-doped strontium oxalate shows photoluminescence emission. However, this method also produced some undesirable phases, such as SrCeO$_3$ and SrCO$_3$ [6]. Ferrari et al observed that 25 mol% cerium-doped strontium oxalate contained the optimal composition for preparing Sr$_2$CeO$_4$ blue phosphors with desirable luminescent property [7]. However, even at this optimal composition the SrCeO$_3$ and SrCO$_3$ phases were still detected [7]. Moreover, nanocrystalline Sr$_2$CeO$_4$ thin films grown on silicon substrates by laser ablation show the same photoluminescence as that of powder samples [4]. The presence of unwanted species such as SrCO$_3$, CeO$_2$ and SrCeO$_3$ has been an enduring problem in the synthesis of Sr$_2$CeO$_4$. Thus, the development of efficient and inexpensive methods for the preparation of pure Sr$_2$CeO$_4$ remains a challenge.

In the present study, pure Sr$_2$CeO$_4$ nanoparticles were prepared via the thermal decomposition of an oxalate precursor prepared in the solid state using a new method [8-13]. The resulting powder was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), fluorescence spectroscopy and the BET method.

2. Materials and Methods

2.1. Synthesis of the strontium cerate \(\text{Sr}_2\text{CeO}_4 \)

The strontium cerate was prepared as follows. A well ground mixture of strontium nitrate tetrahydrate \(\text{Sr(NO}_3\text{)}_2\cdot 4\text{H}_2\text{O} \), cerium (III) nitrate hexahydrate \(\text{Ce(NO}_3\text{)}_3\cdot 6\text{H}_2\text{O} \) and oxalic acid dihydrate \(\text{H}_2\text{C}_2\text{O}_4\cdot 2\text{H}_2\text{O} \) in the molar ratio 2/1/8 respectively, was heated on a hotplate at 160°C. An evolved orange red gas is observed when heating. The reduction of the nitrate anions by the oxalate leads to the formation of NO gas (Equations 1 and 2) which is oxidized in air to give \(\text{NO}_2 \) (Equation 3). The strontium and cerium cations are then complexed to the oxalic acid [8-13]. Monometallic or bimetallic complexes can be formed. The most important fact is that the two metals are intimately mixed and when the formed oxalate precursor is decomposed at higher temperature, a mixed oxide is formed respecting the molecular ratio taken at the beginning.

\[
\begin{align*}
\text{C}_2\text{O}_4^{2-} + 4 \text{H}^+ & \rightarrow 2\text{CO}_2 + 2\text{e}^- \quad (1) \\
\text{NO}_3^- + 1.5 \text{O}_2 & \rightarrow \text{NO} + 2\text{H}_2\text{O} \quad (2) \\
\text{NO} + \frac{1}{2} \text{O}_2 & \rightarrow \text{NO}_2 \quad (3)
\end{align*}
\]

The precursor was thermally decomposed at 850°C, for 2 hours, in a tubular furnace open both sides. The strontium cerate formation starts at 800°C and at 1200°C its thermal decomposition to is observed[14].

2.2. Characterization

In order to verify the crystallographic purity of the prepared samples a Shimadzu X-ray diffractometer 6000 equipped with a Ni filter and a Cu-Kα radiation (1.5406 Å) source was used. The adsorption desorption isotherms of liquid nitrogen on the phosphor nanoparticles were obtained using a Micromeritics ASAP 2020 surface area and porosity analyzer. The morphology, shape and size of the particles in the powder were investigated by observation with a Jeol JEM – 1400 Flash transmission electron microscope operated at 120 kV and a FEI Quanta FEG 250 scanning electron microscope. Finally the photoluminescence of the well characterized \(\text{Sr}_2\text{CeO}_4 \) nanophosphor was studied on a Shimadzu RF-5301PC spectrofluorophotometer.

3. Results and discussion

3.1. Characterization of the as prepared strontium cerate

3.1.1. X-ray diffraction XRD

X-ray diffraction permits to identify the crystallized phase existing in the powder. Figure 1 depicts the XRD pattern of the obtained powder. All the peaks were indexed in accordance with the J.C.P.D.S. file # 89-5546 corresponding to the orthorhombic phase of the strontium cerate \(\text{Sr}_2\text{CeO}_4 \) with cell parameters \(a=6.117\text{Å}, b=10.346\text{Å} \) and \(c=3.597\text{Å} \).

![Figure 1: XRD pattern of the as prepared \(\text{Sr}_2\text{CeO}_4 \) nanophosphor prepared at 850°C](image)

A structure where both strontium and cerium are in an octahedral environment surrounded each one by six oxygen atoms. A particles size estimation \(D_{\text{XRD}} \) could be obtained by using the Scherer formula \(D_{\text{XRD}} = 0.9 \cdot \lambda / B \cdot \cos \theta \), where \(\lambda \) is the wavelength, in this case \(\lambda =1.5406 \text{Å} \), \(B \) is the full width at half maximum (FWHM) and \(\theta \)
is the Bragg angle. Actually it is difficult to use this formula when peaks are superposed in the pattern, so calculation was done on the isolated (110) diffraction peak. It was found a particles size of 43.8 nm.

3.1.2. BET Brunauer Emmet Teller technique isotherms

The adsorption desorption curves are presented in Figure 2. These curves are classified as type IV. An hysteresis between adsorption and desorption curves is observed indicating the presence of mesopores. It is a B type hysteresis suggesting presence of pores with slits shape. The resulting calculation of the specific surface area with the BET method gives a value of 3.5 m²/g a relatively small value than expected. An estimation of the particles size was done using the formula \(D_{BET} = 6000/S \cdot d \) where \(S \) is the specific surface area and \(d \) is the density. The value of the calculated \(D_{BET} \) was found to be of 310 nm. It is expected now that the particles are very agglomerated. Thus the agglomeration of the particles reduces the surface available for the nitrogen \(N_2 \) adsorption. Indeed calculation leads to higher particles size.

![Figure 2: BET adsorption desorption curves of Sr₂CeO₄ nanophosphor prepared at 850°C](image)

3.1.3. Scanning Electron microscopy (SEM) and EDS

The observation of the powder in the SEM gives a good explanation to the high \(D_{BET} \) value. The particles are highly agglomerated (Figure 3a and 3b). The agglomerates are of 1 to 5 microns in size. Separated particles could not be observed even at higher magnification. The agglomerates have a parallelepiped shape as if the powder is being assembled to form bigger crystallites. On the other hand, the EDS spectrum shown in Figure 4, the composition of the prepared strontium cerate was confirmed. The presence of the carbon peak is due to the tape used for sample deposition that contains a conductive carbon to avoid the charge accumulation on the sample. As it can be seen all the elements are present in the ratio 2/1/4 for Sr/Ce/O respectively.

![Figure 3a and 3b: SEM images of Sr₂CeO₄ nanophosphor](image)

![Figure 4: EDS spectrum of Sr₂CeO₄](image)
3.1.4. Transmission electron microscopy TEM

The micrographs obtained from the transmission electron microscope observation are given in Figures 5a and 5b corresponding to magnifications at x300000 and x500000 respectively. It has to be noted that the sample, when prepared to the observation in transmission microscope, was well ground and then sonicated for 15 minutes. This helps to break the agglomeration and obtain fractions of the agglomerates. The particles that were agglomerated are now well defined in shape and size. The particles seem to offer still slits shape for the pores if assembled again (Figure 5a). They are stacked parallel to each other. At higher magnification the size of the nanoparticles was found to be around 10 nm with distinguished shape of hexagonal nanoplates.

3.2. Photoluminescence of the as prepared Sr$_2$CeO$_4$ nanophosphor

When the Sr$_2$CeO$_4$ phosphor is excited under 325 nm, an emission occurs with an intense peak located in the blue region of the spectrum at 466 nm. This result was in accordance with papers published earlier[14-15]. However, what was seen earlier is only one large band enveloping both of the two bands at 372 nm and 466 nm. It is believed that if the emission intensity was higher, then the two bands will overlap and a large band will be observed. It is worthy to note that the emission is due to the charge transfer between ligand O$^-$ and metal Ce$^{4+}$. More papers were published recently dealing with the use of this material as white phosphor when doped adequately [16-19].
The CIE diagram (Commission Internationale de l’Eclairage) is given in Figure 7. The calculated \((x; y)\) chromaticity coordinates were found to be of \((0.15; 0.19)\) that are located in the blue region of the diagram.

Figure 7: Plot of colour coordinates in the CIE 1931 chromaticity diagram for \(\text{Sr}_2\text{CeO}_4\) phosphor

Conclusion

Nanoparticles of the blue phosphor \(\text{Sr}_2\text{CeO}_4\) were successfully synthesized using a new process. The synthesis undergoes in the solid state between oxalic acid and nitrate salts of the strontium and cerium. A precursor was obtained and decomposed at 850 °C. The characterization of the obtained powder shown that the nanoparticles were highly agglomerated. A blue emission was observed when the phosphor was excited under 325 nm radiation. The coordinates of its chromaticity were found of \((0.15; 0.19)\) located in the blue region of the diagram.
References

(2018) ; http://www.jmaterenvironsci.com