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1. Introduction  

Double-diffusive, or thermosolutal, natural convection is a fluid motion due to simultaneous variations of 
temperature and concentration in the gravity field. Because of coupling between the fluid velocity and the 
diffusive (thermal and solutal) fields, double-diffusive convection is more complex than the convective flow 
which is associated with a single diffusive scalar, and many different behaviors may be expected. In nature, 
such flows are encountered in the oceans, lakes, solar ponds, shallow coastal waters and the atmosphere. In 
industry, examples include chemical processes, crystal growth, energy storage, material and food processing, 
etc...For a review of the fundamental works in this area, see, for instance, Ostrach [1] and Viskanta et al. [2]. 
However, The literature related to natural double-diffusive convection shows that the majority of analytical, 
numerical and experimental investigations were focused on the enclosures of rectangular form. On this subject, 
the books of Bejan [3], Platten and Legros [4] and Nield and Bejan [5] constitute basic references. 
On the other hand, most of the investigations, concerning Newtonian fluid flows in porous layers and fluid-
filled rectangular cavities, driven simultaneously by thermal and solutal buoyancy effects, were carried out. 
These can be classified under three types, according to the cavity position. In the first type, the cavity is 
rectangular and horizontal subjected to a vertical solutal gradient and a horizontal thermal one [6-7-8-9] or to 
vertical gradients of heat and solute [10-16] or , as in the present case, both the thermal and solutal gradients are 
imposed laterally [17-18]. In the second type, the cavity is vertical subjected only to temperature and 
concentration gradients transversally [19-22]. In the third type, the cavity is inclined with respect to the 
horizontal and subjected only to temperature and concentration gradients transversally [23-28]. In addition, the 
square cavity is considered to study numerically the double diffusive convection in a porous enclosure 
submitted to cross gradients of temperature and concentration [29-32] and partially heated and fully salted from 
below [33-34]. 
The above mentioned works were mainly focused on the study of the cavity form and position and the  
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imposed thermal and solutal boundary conditions effect on thermosolutal natural convection while considering 
all walls to be rigid. Comparatively, few works are concerned with the effect of hydrodynamic boundary 
conditions on flow intensity and heat and mass transfer rates. The investigation conducted by Delahaye et al. 
[35] was made to investigate, by both numerical and analytical parallel flow ways, natural convection with Soret 
effect in a binary fluid filling a horizontal cavity with an undeformable free upper surface, while the other walls 
are rigid. The cavity is heated from below and cooled from above by a constant heat flux with vertical walls 
maintained adiabatic. These authors determined the critical Rayleigh numbers for the onset of supercritical and 
subcritical convection in terms of the governing parameters of the problem. Also, their results were obtained for 
finite amplitude convection. Bourich et al. [36] studied, analytically and numerically, the combined effect of 
shear stress applied on the upper horizontal free surface (the lower one being rigid) and Soret effect in a 
horizontal porous layer, under an external magnetic field. The horizontal walls are subject to uniform heat 
fluxes. These authors obtained the critical Rayleigh numbers for the onset of stationary, subcritical, and 
oscillatory convection explicitly as functions of the governing parameters for case of no shear stress applied on 
the upper surface. It is demonstrated in this study that the imposition of a shear stress may suppress the 
multiplicity of solutions if the dimensionless shear stress τ is high enough. Furthermore, it enhances the flow 
corresponding to one solution and damps that of the second solution depending on the sign of τ. 
Aiming to fill a gap in the literature, the present study is focused on natural double-diffusive convection 
problem inside a two-dimensional horizontal rectangular enclosure filled with a Newtonian fluid. The cavity is 
submitted to uniform heat and mass fluxes from its short vertical sides, while its long horizontal boundaries are 
insulated and impermeable. Furthermore, the problem will be extended in order to consider various classical 
hydrodynamical boundary conditions, imposed on the horizontal surfaces of the fluid layer. In what follows, a 
numerical solution of the full governing equations is obtained for a wide range of the governing parameters, 
whose influence on the flow intensity and the heat and mass transfer rates is amply discussed for various 
hydrodynamical boundary conditions. The computations are limited to water-based solutions in which the 
Prandtl number is Pr = 7 for values of governing parameters within the ranges, 6

aT 10R1 ≤≤ , 10Le1 ≤≤ , 

0N = , 1N = , and A = 24, where RaT is the thermal Rayleigh number, Le is the Lewis number, N is the 

buoyancy ratio, and A is the aspect ratio. In addition, an analytical solution, valid for stratified flows in slender 
enclosures, is derived on the basis of the parallel flow concept.  
 
2. Mathematical formulation 

The studied configuration, sketched in Figure 1, is a rectangular enclosure of height H!and length !L  filled 
with a Newtonian fluid. The long horizontal walls insulated and impermeable and the short vertical ones 
submitted to constant heat and mass densities of fluxes, q!andj! , respectively.  
 
 
 
 
 

Figure 1 : Schematic view of the geometry and coordinates system. 
 

Various hydrodynamic boundary conditions are imposed on the horizontal surfaces of the fluid layer namely 
rigid-rigid, rigid-free, free-rigid and free-free. However, the short vertical walls are assumed to be always rigid. 
The main assumptions made here are those commonly used in Natural double-diffusive convection problems 
[17-18]. Therefore, using the characteristic scales H! , !" /H 2 , 22 'H/ρα , ,H!" λ""Hq  and DHj !! , 
corresponding, respectively, to length, time, pressure, velocity, characteristic temperature and characteristic 
concentration, where λ, ρ, α, and D are the thermal conductivity, the density of fluid thermal diffusivity and 
mass diffusivity, respectively. 
Then, the dimensionless governing equations, written in terms of velocity components (u, v), pressure (p), 
temperature (T) and concentration (S), are 
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The dimensionless thermal and solutal boundary conditions applied on the walls of the system are :  
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The corresponding hydrodynamic boundary conditions applied on the short vertical walls are : 
0vu ==  for x = 0 and A                           (8) 

However, for the horizontal walls, various hydrodynamic boundary conditions will be considered in this study, 
namely rigidÐrigid (ie. a shallow cavity bounded by rigid boundaries), freeÐfree (ie. a layer with free horizontal 
boundaries), rigidÐfree (ie. a layer, with a rigid upper boundary and a free lower one) and free-rigid (ie. a layer, 
with a free upper boundary and a rigid lower one). They will be specified in the following sections. For 
convenience, in the following text, these boundaries will be referred as RR, FF, RF and FR respectively. Then, 
the corresponding hydrodynamic boundary conditions applied on the horizontal surfaces of the fluid layer for 
RR, FF, RF and FR are, respectively, given by :  

0u =  for y = 0 and y = 1                            (9) 
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In addition, to analysis the flow structure, the stream function,ψ, related to the velocity components via 

u v= = −
∂ψ
∂

∂ψ
∂y x

;   is used. 

From the above equations, it is observed that the present problem is governed by the thermal Rayleigh number 
RaT, the buoyancy ratio N, the Lewis number Le, the Prandtl number Pr and the aspect ratio of the enclosure A. 
They are expressed, respectively, as : 
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where g, T! " , Sβ" , and ν are the gravitational acceleration, the thermal and concentration expansion coefficients 
and the kinematic viscosity of fluid respectively. 
In the present study the intensity of the thermal and solutal buoyancy forces are expressed in terms of the 
parameters RaT and N. 
The local heat and mass transfers through the fluid layer filling the cavity can be expressed in terms of the local  
Nusselt and Sherwood numbers, respectively, defined as 
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where T', S' , )y,0(T)y,A(TT −=Δ  and )y,0(S)y,A(SS !="  are the dimensional temperature and 
concentration and the side to side dimensionless local temperature and concentration differences, respectively. 
This definition is, however, notoriously inaccurate owing to the uncertainty of the temperature and 
concentration values evaluated at the two vertical walls (edge effects). Instead, the Nusselt and Sherwood 
numbers are calculated on the basis of a temperature and concentration differences between two vertical 
sections, far from the end sides (see [18] and [37]). Thus, by analogy with Eq. (14), and considering two 
infinitesimally close sections, the local Nusselt and Sherwood numbers can be defined by 
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where ! x is the distance between two symmetrical sections with respect to the central one. The corresponding 
average Nusselt and Sherwood numbers are, respectively, calculated at different locations, as follows 
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As an additional check of the results accuracy, energy and matter balances are systematically verified for the 
system at each numerical code running. Thus, the overall heat and mass transfers, through each vertical plane, 
are evaluated and compared with the quantities of heat and mass furnished to the system at x = 0. For the results 
reported here, the energy and matter balances are satisfied within 2 % as a maximum difference. 
In the above equations the case N = 0 corresponds to pure thermal convection. On the other hand, N = ±1 
corresponds to the case of a double-diffusive convection for which the buoyancy forces induced by the thermal 
and solutal effects are opposing or aiding each other and of equal intensity. 
 
3.  Numerical approach 

Equations (1)-(5) associated with (6)-(12) have been solved using a finite volume method and SIMPLER 
algorithm in a staggered uniform grid system [38]. The convergence has been considered as reached when
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location (i, j) in the plane (x, y). In the limit of the values selected for Pr, RaT, Le and N, as shown in Table 1, a 
uniform grid of 320×80 has been judged sufficient to model accurately the flow, temperature and concentration 
fields within a cavity of A = 24 (found as the lower value of A beyond which convection heat  and mass transfer 
does not change). 

Table 1: Convergence tests for A= 24, RaT = 104, Le = 10 and various values of N. 

Hydrodynamical 
boundary 
conditions 

 
 

Grids 
N 

Numerical solution 
 

Analytical solution 

(280×80) (360×80) (320×80) 

Nu 

(320×100) (320×60) 

 
RF or FR 

-1 11.208 11.208 11.208 11.207 11.213 11.203 
0 11.288 11.288 11.288 11.286 11.292 11.283 
1 11.367 11.367 11.367 11.365 11.371 11.362 

 
FF 

-1 20.647 20.647 20.647 20.647 20.649 20.638 
0 20.783 20.783 20.783 20.782 20.785 20.781 
1 20.916 20.916 20.916 20.915 20.917 20.924 

 
RR 

-1 6.815 6.814 6.814 6.812 6.819 6.808 
0 6.865 6.865 6.865 6.863 6.870 6.858 
1 6.915 6.915 6.915 6.913 6.920 6.909 

 
    Sh    
 

RF or FR 
-1 1027.064 1026.104 1026.524 1026.327 1026.957 1021.261 
0 1035.563 1034.596 1035.019 1034.819 1035.458 1029.268 
1 1044.075 1043.108 1043.531 1043.329 1043.976 1037.234 

 
FF 

-1 2033.225 2031.479 2032.270 2032.038 2032.780 1964.791 
0 2059.880 2058.033 2058.867 2058.622 2059.400 1979.127 
1 2087.142 2085.372 2086.209 2085.953 2086.765 1993.404 

 
RR 

-1 584.804 584.083 584.397 584.164 584.910 581.774 
0 589.895 589.176 589.489 589.254 590.006 586.846 
1 594.958 594.241 594.553 594.316 595.074 591.886 

 

Moreover, the present computational code is validated against the results reported by Belazizia et al. [39], 
Corcione et al [40] and Alloui et al. [41], in the case of double-diffusive and RayleighÐBŽnard convections in a 
square and a shallow horizontal cavity, as displayed in Table 2, where the maximum relative differences do not 
exceed 2%. 
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Table 2 : Validation of the numerical code against previous studies 

Double diffusive convection (A = 1) Present work Belazizia et al. [39] Corcione et al [40] 

RaT Pr Le N Nu Sh Nu Sh Nu Sh 

104 7 34.28 -1 1.454 4.665 1.440 4.690 ----- ----- 

104 10 1 0.5 1.773 1.773 ----- ----- 1.74 1.74 

105 10 10 1 3.932 8.715 ----- ----- 3.99 8.78 

106 10 1 0.5 7.578 7.578 ----- ----- 7.55 7.55 

RayleighÐBŽnard convection (A = 6) 
Newtonien fluid 

Present work Alloui et al [41] 
Nu Nu 

RaT  RR FF RF RR FF RF 

103 1.246 3.510 2.031 1.25 3.56 2.06 

 
The numerical results presented in this study were obtained for the particular case Pr = 7. However, the results 
are not limited to this specific value since it is well known (see for instance Ref. [42]) that the solution is rather 
insensitive to the Prandtl number provided that this latter is of order one or greater. 
Typical numerical results, in terms of streamlines, isotherms and isoconcentrations, are presented in Figures 2 to 
4, obtained, for n0 , 10Le = , 4

aT 10R =  and three values of N for a layer with RR, FF, RF and FR 
hydrodynamical boundary conditions, respectively. As appears, from these figures, for a shallow layer A>>1, 
the flow is parallel to the horizontal boundaries of the enclosure and the temperature and the concentration are 
linearly stratified in the x-direction of the core region and this independently of the values of N and 
hydrodynamical boundary conditions. As discussed in the following section, this follows from the thermal and 
solutal boundary conditions applied on the system, namely Neumann conditions. The approximate analytical 
solution, developed in the next section, relies on these observations. 
 
4. Parallel flow approach 

On the basis of Figures 2-4, the following simplifications, in the central part of the cavity, can be made : 
T x y Cx y( , ) ( )= + ! ,T x y Cx y( , ) ( )= + ! , T x y Cx y( , ) ( )= + θ  and T x y Cx y( , ) ( )= + !            (17) 
where CT and CS are unknown constant temperature and concentration gradients respectively in x-direction (see 
for instance Refs. [11] and [17-18]).  
 

 
Figure 2: Streamlines (left), isotherms (middle) and isoconcentrations (right) for RaT = 104, Le = 10, N = -1 and various 

hydrodynamical boundary conditions (FF: 2032.270  Sh ,647.20Nu ,282.6max ===ψ ; RF-FR: 

 524.1026 Sh ,208.11Nu ,816.4max ===ψ ; RR:  397.584 Sh ,814.6Nu ,807.3max ===! ) 

FF 

RF 

FR 

RR 



Lamsaadi et al., J. Mater. Environ. Sci., 2018, 9 (3), pp. 741-753 746 

 
Figure 3: Streamlines (left), isotherms (middle) and isoconcentrations (right) for RaT = 104, Le = 10, N = 0 and various 

hydrodynamical boundary conditions (FF:  867.2058 Sh ,783.20Nu ,266.6max ===ψ ; RF-FR: 

 019.1035 Sh ,288.11Nu ,801.4max ===! ; RR:  489.589 Sh ,865.6Nu ,798.3max ===! ) 

 

 
Figure 4: Streamlines (left), isotherms (middle) and isoconcentrations (right) for RaT = 104, Le = 10, N = 1 and various 

hydrodynamical boundary conditions (FF: 2086.209  Sh ,916.20Nu ,287.6max ===ψ ; RF-FR: 

1043.531  Sh ,367.11Nu ,820.4max ===! ; RR: 594.553  Sh ,915.6Nu ,815.3max ===! ) 

 
On the basis of this approximation, the dimensionless governing equations (1-5) become  
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Using such an approach, the solutions of (23-25), satisfying (26-27) and (9-12) for RR, FF, RF and FR, are 
generalised in the following form : 

( )cbyayy8
48

)y(u 23c ++!
"

#
=                          (28) 

!
"

#
$
%

&
++−

η

ψ
=ψ cyy

2
b

y
3
a

y2
48

)y( 234c                          (29) 

( )dcy30by10ay5y24
2880

C
y( 2345cT

T −++−
η

ψ
=θ )                      (30) 

)) y(
C
LeC

y( T
T

S
S θ=θ                          (31) 

where  

( ) aTSTc RNCC)
2
1y( +η==ψ=ψ                      (32) 

is the stream function at the center of the enclosure and a, b, c, d and η are the coefficients, which depend only 
on the nature of the hydrodynamic boundary conditions applied on the horizontal surfaces of the fluid layer. 
Their values are presented in Table 3. 

On the other hand, TC  and SC  are evaluated from thermal and solutal boundary conditions imposed on 
the end walls. Because of the turning flow at the end regions of the fluid layer, the boundary conditions in the x-
direction, Eq. (6), could not be satisfied by the parallel flow approximation. Instead, the expressions of TC  and 

SC  are determined by matching the core solution, Eq. (17), to the integral solution for the end regions, which 
consists on the integration of Eqs. (4) and (5), together with the boundary conditions (6) and (12), by 
considering the arbitrary control volume of Figure 1 [17-18]. This yields: 
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to which the substitution of the expressions of ( )yu , ( )y! T  and ( )y! S  gives : 
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where β is a coefficient whose value is given in Table 3 according to the conditions (9-12) applied. 
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Table 3 : Coefficients values a, b, c, d, η and β for the hydrodynamical boundary conditions considered in this study 
(RR,FF, RF and FR). 

 a b c d η β 
FF 12 0 2 12 5/384 31/362880 
RR 12 4 0 2 1/384 1/362880 
FR 9 0 1 5 1/192 19/1451520 
RF 15 6 0 4 1/192 19/1451520 

 

Substituting the above values of CT and CS into the expression for c!  (32), the following transcendental 
equation is obtained: 
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whose solution, via Newton-Raphson method, for each given value of Le, N, and aTR  leads to c!  and the 

values of TC  and SC  are deduced from Eqs. (34). 
Finally, taking into account of (15-16), (22) and (34), the mean Nusselt and Sherwood numbers becomes 
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5. Results and discussion  

The fact of imposing uniform heat and mass fluxes, as boundary conditions, leads to flow characteristics 
independent on the aspect ratio, A, when this parameter is large enough. The approximate solution, developed in 
the preceding section, on the basis of the parallel flow assumption, is thus valid asymptotically in the limit of a 
shallow cavity A >> 1. In this respect, after some numerical tests (results not presented here), 24 is found as 
being the smallest value of A leading to results reasonably close to those of the large aspect ratio approximation. 
In fact, the asymptotic analytical limits are largely reached in such a situation. This value of A is reduced by 
decreasing RaT or Le. 
At first, it is advisable to recall that the case N = 0 corresponds to pure thermal convection for witch the solutal 
buoyancy forces are absent, whereas in presence of these forces, which corresponds to N "  0, it is about the 
natural double diffusive convection. On the other hand N = 1 and N = -1 correspond, respectively, to the cases 
of aiding and opposing thermal and solutal buoyancy forces of equal intensities. 
It seems obvious from Figures 2 to 4, where are depicted the streamlines (left), isotherms (middle) and 
isoconcentrations (right), that the flow structure and the thermal and solutal fields do not undergo qualitative 
change when N passes from -1 to 1 for each type of hydrodynamical boundary conditions, since the isolines 
indicate a unicellular regime with a parallel aspect and thermal and solutal stratifications in the core region of 
the cavity and this independently on N. This can be attributed to the fact that with low values of N and a large 
value of RaT, led to a regime of prevailing thermal buoyancy forces where the contribution of the solutal effects 
in the convection is negligible [18]. These qualitative observations are consistent with the evolutions of cψ , 

Nu  and Sh  with RaT, which are presented in Figure 5. On the other hand, qualitatively, the streamlines, 
isotherms and isoconcentrations seem to be more sensitive to the hydrodynamical boundary conditions, since 
the centro-symmetry of the convective cell disappears while passing from identical boundary conditions (RR or 
FF) to mixed ones (RF or FR), which affects at the same time the isotherms and iso-concentrations whose 
inclination, with respect to the vertical direction, is accentuated by changing RR by FF. The flow, heat and mass 
transfer intensities, whose values are presented in the titles of the figures 2 to 4, show also this fact.  
The influence of the thermal Rayleigh number, RaT, on the flow intensity and the heat and mass transfer rates, is 
illustrated on Figure 5, for 10Le = , various values of N and different hydrodynamical boundary conditions. It 
appears clear, from this figure, that the results of the two approaches adopted in this study agree perfectly, at 
least for the governing parameters selected values, which validates the parallel flow assumption used in section 
4 and justifies the choice of Nu  as a large aspect ratio approximation value. Another confirmation of this is 
given by Table 1 where the relative difference between analytical and numerical results does not exceed 1 % for  

Nu  and 4 % for Sh . The analytical solution, displayed by a dashed line for the case of N = -1, has not possible 
to obtain numerically. These results indicate that all these quantities increase monotonously with RaT, due to the 
obvious contribution of buoyancy effects in promoting the convection heat and mass transfers. However, the 
effect of this parameter differs according to the type of hydrodynamical boundary conditions in presence. In 
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fact, it becomes important with the case RR than with that FF, the situations RF and FR being intermediate. We 
also note that, owing to the fact that Le = 10 , the mass transfer is more pronounced than the heat transfer. 

 
Figure 5: Effect of RaT on cψ (a), Nu (b) and Sh (c) for Le = 10, various values of N and various hydrodynamical 

boundary conditions. 
 

Moreover, for 0N ≥ , contrary to the case where the cavity is heated and salted from below for which the onset 
of convection occurs when some threshold of RaT is reached [12], the convection phenomenon is present in the 
case of lateral heating and salting at any value of RaT different from zero. The results obtained for N = 0 with FF 
(RF or RF) tend to coincide with those obtained for N = 1 with RF or FR (RR) while decreasing RaT.  
For N = -1 and 1Le ≠  the rest state is a possible solution provided that RaT is below a critical value, Sup

aTcR , 
which will be predicted numerically by starting the numerical code with a conductive state as initial conditions, 
when increasing RaT. Then, the parallel flow theory, described in Section 4, will be used to predict the resulting 
convective flow occurring above the critical Rayleigh number, SubaTcR . 

It can be demonstrated that Sup
aTcR  for the onset of convection is given by the following correlating relation: 
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where R is a constant which depends upon the hydrodynamical boundary conditions. Thus, it is found that R = 
6644.7, 4487.4 and 2844.9 for RR, RF (or FR) and FF, respectively. For RR boundaries, it was found by 
Mamou [43] that )1Le/(6510RSupaTc != . Thus, the constant R has about approach to that obtained in the 

present study with a relative error of 2%. 
It is necessary to point out that, for the particular case N = -1, the value of cψ  can be evaluated from the 
following expression : 

( ) ( )
01RNLe1LeLe

c2
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2
2
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2
4
c5

2

c =!
"

#
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&

ηβ
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η
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β
ψ                       (38) 

from which, it can be seen that the onset of motion, occurs at a subcritical Rayleigh number Sub
aTcR  given by : 
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For convenience, the values of SupaTcR  and Sub
aTcR  are indicated on the Figure 6 by vertical dotted lines depending 

on the hydrodynamical boundary conditions.  

 
Figure 6 : Bifurcation diagram for N = -1, Le = 10 and various hydrodynamical boundary conditions. 

 
These values increase while passing from FF to RR boundary conditions, the situations RF and FR being 
intermediate. Upon starting the numerical code with a conductive state or a finite-amplitude state convection 
as initial conditions, when increasing or decreasing RaT, the resulting solution follows the hysteresis loop 
indicated by arrows. The analytical solution, depicted by the solid and dashed lines, indicates the possible 
existence of two convective modes for a given value of RaT . The solution corresponding to the higher 
convective mode (solid line), was found numerically to be stable. On the other hand it has not been possible to 
obtain numerical results for the lower (dashed line) unstable branch. 
In addition, the case of N = -1 and Le = 1, corresponds to a purely diffusive regime for any values of RaT and 
independently of hydrodynamical boundary conditions, since the equation (38) admits a unique possible 
solution 0c =! . This related to the opposite effect of thermal and solutal buoyancy forces of equal intensities 
and to the equality of the thermal and mass diffusivities. 
Finally, for all values of N explored in this study, the boundary layer regime is eventually reached for large 
Rayleigh number (RaT #  $ ). For this situation it is readily found from Equations (32) and (34) that : 
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such that the normalized strengths of convection *
cψ  and heat 

*
Nu  and mass 

*
Sh transfers, which depend on the 

hydrodynamical boundary conditions, are independent of both Le and N. The results obtained with Eq. (41) are 
presented in Figure 7 by solid lines.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7 : The boundary layer regime : (Le = 1, N = 1); (Le = 10, N = -1) for a layer with FF, RR, RF and FR boundaries. 
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They are seen to be in good agreement with both the parallel flow solution (depicted by dashed lines) and the 
numerical results (represented by symbols) obtained for various values of Le and N and hydrodynamical 
boundary conditions, provided that RaT is made large enough. Therefore the ratio of the mean Sherwood number 
with respect to the mean Nusselt one tends to an asymptotic value which is Le2 independently on N and the 
hydrodynamical boundary conditions (see Figure 8). 

Figure 8: Effect of RaT on 
Nu
Sh

for various values of N and Le and various hydrodynamical boundary conditions. 

 

6. Conclusion 

This study deals, numerically and analytically, with natural double-diffusive convection in a two dimensional 
horizontal shallow enclosure, filled with Newtonian fluid, in the case where both short vertical sides are 
submitted to uniform heat and mass fluxes while the horizontal boundaries are insulated and impermeable. Here, 
the thermal and solutal buoyancy driving forces are, particularly, considered of the same intensities with 
opposing or aiding effects. The main objective one of this paper, which is to examine the problem sensitivity 
with respect to hydrodynamic boundary conditions, is reached,!since the convection is favored by those of free-
free type and disadvantaged by those of rigid-rigid type.!Also, the agreement between the results of the two 
approaches adopted proves the existence of an analytical solution which in turn validates the numerical one. 
In the situation N = %1, a steady rest state solution corresponding to a purely diffusive regime is possible. The 
critical Rayleigh number, Sup

aTcR , for the onset of supercritical convection is predicted numerically. Also, the 

subcritical Rayleigh number, Sub
aTcR , for the onset of subcritical convection is deducted from the nonlinear 

parallel flow approximation. Moreover, for N = 0 and N = 1, contrary to the previous case, the convection is 
possible for any value of the thermal Rayleigh number greater than zero. In addition, for all values of N, 
considered in this study, a boundary layer regime is eventually reached for large thermal Rayleigh number. 
In the future an extent for this study will be carried out with moderate and high values of N in order to examine 
widely the combined effects of this parameter, Lewis Number and hydrodynamic boundary conditions on 
convection heat and mass transfers. 
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