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Accepted 17 Sep 2017 convection in a Newtonian fluid contained in a horizon¢atangular enclosurt
submitted to uniform heat and mass fluxes along its short vertical sides,
Keywords the horizontal ones are insulated and impermeable. Rigid, freeEfree,
v Doublediffusive natural rigidEfree and freeigid hydrodynamic boundary conditions are consider
convection The first part from this study is devoted to the numerical solution of
v Heat and mass transfers ~ governing equations, antig effect of thegoverningparameters, namelythe
v Parallel flow cavity aspect ratio, A, the Lewis humbkg, the buoyancy ratio, Nl and the

v Rectangular enclosures  thermal Rayleigh,R.r, number, is examinedfor each of theseboundary
conditions. In the second part, an analytical solution, based on the paralle

R. El Amraoui . .. . q
R A i approximationin the casef a shallow cavity A >>1), is proposedand a good
+212665669638 agreement is found between the two types of solutions.

1. Introduction

Doublediffusive, or thermosolutal, natural convection is a fluid motion due to simultaneous variations
temperature and concentration in the gra¥ig/d. Because of coupling between the fluid velocity and the
diffusive (thermal and solutal) fields, doulddéfusive convection is more complex than the convective flow
which is associated with a single diffusive scalar, and many different behaviorbemeypectedin nature,
such flows are encountered in the oceans, lakes, solar ponds, shallow coastal waters and the atmosph
industry, examples include chemical processes, crystal growth, energy storag®l matkfood processing,
etc..For areview of the fundamental works in this area, see, for instance, Ostrach [1] and Viskanta et al. [2].
However, The literature related to natural dowdléusive convection shows that the majority of analytical,
numerical and experimental investigatiomsre focused on the enclosures of rectangular form. On this subjec
the books of Bejan [3], Platten and Legros [4] and Nield and Bejan [5] constitute basic references.

On the other hand, most of the investigations, concerning Newtonian fluid flowsadosplayers and fluid
filled rectangularcavities, drivensimultaneously by thermal and solutal buoyancy effects, were carried ou
These can be classified under thrgges, according to theavity position In the first type, the cavity is
rectangular and horizontalibjected to a vertical solutal gradient and a horizontal thermdléen-9] or to
vertical gradients of heat and solute {ll] or , as in the present case, both the thermal and solutal gradients ¢
imposed laterally I7-18]. In the second typethe cavity is vertical subjectednly to temperature and
concentration gradients transversally9-22]. In the third type the cavity is inclined with respect to the
horizontal and subjected only to temperature and concentigi@miients transversally23-28]. In addition, the
square cavity is considered to study numerically the double diffusive convection in a porous enclos
submitted to cross gradients of temperature and concentragi8?] andpartially heated and fully #ad from
below[33-34].

The above mentioned waskveremainly focused on the study of tleavity form andposition andhe
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imposed thermal and solutal boundary conditieffsct on thermosolutal natural convectiwhile considering

all walls to be rigid. Comparatively, few workae concerned with the effect bfydrodynamic boundary
conditionson flow intensity andheat and mass transfer rat@fe investigation conducted IDelahay et al.

[35] was made to investigatey bothnumerical and aadytical parallel flow wayshatural convection with Soret
effect in a binary fluid filling a horizontal cavity with an undeformable free upper susdnke the other walls
are rigid The cavity is heated from below andoled from abwee by a constant heat flux withertical walls
maintained adiabatid@hese authors determined the critical Rayleigh numbers for the onset of supercritical ¢
subcritical convection in terms of the governing parameitktise problem. Also, their results wepbtained for
finite amplitude convectionBourich et al.[36] studied, analytically and numericallthe combined effecof
shear stress applied on the upperizontal free surface (the lower one being rigid) and Soret effect in |
horizontal porous laye under an external magnetic fielThe horizontal wallsare subject to uniform heat
fluxes. These authors obtained the critical Rayleigh numbers for the onset of stationary, subcritical,
oscillatory convection explicitly as functions of the governiagameters for case of no shear stress applied ol
the upper surfacdt is demonstrated in this study that the imposition of a shear stress may suppress
multiplicity of solutions if the dimensionleshear stress is high enough. Furthermore, it emicas the flow
corresponding to one solution and damps that of the second solution depending on the. sign of

Aiming to fill a gap in the literature, the present study is focusednatural doubkgiffusive convection
problem inside a twalimensional horiantal rectangular enclosure filled with a Newtonian fluid. The cavity is
submitted to uniform heat and mass fluxes from its short vertical sides, while its long horizontal boundaries
insulated and impermeable. Furthermore, the problem will be exténdedier to consider various classical
hydrodynamical boundary conditions, imposed on the horizontal surfaces of the fluidiayat follows, a
numerical solution of the full governing equations is obtained for a wide range of the governing parame:
whose influenceon theflow intensity andthe heat and mass transfer ratesamply discussed for various
hydrodynamical boundary conditian§he computations are limited to watmased solutions in which the

Prandtl number is Pr = for values ofgoverning parameters within the rangésR ; <10°, 1=<Le=<10,
N=0, |N|=1, and A = 24, where R is thethermal Rayleigh number, Le is the Lewis number, N is the

buoyancy ratioand A is theaspect ratioln addition, an analytical solution, valid for stratified flows in slender
enclosures, is derived on the basis of the parallel flow concept.

2. Mathematical formulation

The studied configuration, sketched in g1, is a rectangular enclosure of heidfitand lengthl' filled
with a Newtonian fluid. The long horizontalalls insulated and impermeable and the short vertical one:
submitted to constant heat and mass densities of fluxasdj', respectively.

AYI,V,
<] i I

q' q L < q’
- G 2
J'<€ control volume™” <

px! ul!
Figure 1 : Schematic viewf the geometry and coordinates system.

Various hydrodynamic boundagonditionsare imposed on the horizontal surfaces of the fluid layer namely
rigid-rigid, rigid-free, freerigid and freefree. However, the short vertical walls are assumed to be always rigic
The main assumptions made here #rose commonly used Matural doublediffusive convectionproblems
[17-18]. Therefore, using the characteristic scald$, H™ /! , pa®/H?, "/H!,q'H'/A and jH'/D,
corresponding respectively to length, time,pressureyvelocity, characteristic temperatuand characteristic
concentrationwherel, p, a, and Dare the thermal condtieity, the density of fluidthermal diffusivityand
massdiffusivity, respectively.

Then, the dimensionless governing equations, writteterms of velocity components,(v), pressure ),
temperatureT) and concentration (Sare

u v _ @)
ox dy

] [ ] ' 12 1 2

'—u+u'—u+v|—u=(|—p+Pr§—g+—gf )
t X y X X 'y
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Thedimensionless thermal and solutal boundary conditions applied on the walls of the system are

" T n S

—!1=—11=0forx=0andA (6)
X X

£=a—s=0f0ry=0anoy=l )
dy dy

The corresponding hydrodynamic boundary conditions applied on the short vertical walls are :

u=v=0 forx=0and A (8)

However,for the horizontal walls, arious hydrodynamic boundary conditions will be considered in this study
namely rigicxigid (ie. a shallow cavity bounded by rigid boundariefs@eEfree (ie. a layer with free horizontal
boundaries)rigidEfree (ie. a layer, with a rigid upper boundary and a free lower and)freerigid (ie. a layer,
with a free upper boundary and a rigid lower onE)ey will be specified in the following sect®nFor
convenience, in the following text, these boundavidl be referred as RR, FRF and FRrespectively.Then,

the corresponding hydrodynamic boundary conditions applied on the horizontal surfaces of the fluiok layel
RR, FF, RF and FR are, respectivaliyen by:

u=0fory=0andy =1 9)
a—u=0fory=0andy=1 (120)
dy
Ju
u=0fory=0anda—=0fory=1 (12)
y
Ju
a—=0fory=0andu=0fory=1 (12
y
In addition, to analysis the flow structure, the stream funatiomelated to the velocity components via
u:(y—l/j; V:_ﬁ—l/j is used.
Jdy Jdx

From the above equatigrisis observed that the present problem is governed by the thermal Rayleigh numi
Rar, the buoyancy ratio N, the Lewis number Le, the Prandtl number Pr and the aspect ratio of the enclosu
They are expressed sectively, as :

L/

g uh!271(,+1 %’I !|u SI v o
T  N=—— Pr=—, Le=— and A =— 13
(o / # )8 ™ RV a D H' (13

whereg, ! |, By, and v arethe gravitational acceleratipthe thermal andoncentration expansion coefficients

and the kinematic viscosity of fluid respectively.
In the present study the intensity of the thermal and solutal buoyancy forces are expressed in terms
parameters R andN.
The local heat and mass transferstigh the fluid layer filling the cavity can be expressed in terms of the local
Nusselt and Sherwood numbers, respectively, defined as
Nu(y)=—L -1 andsh(y) -4 -
MT"  (AT/A) DAS" (AS/A)
where T', S' , AT=T(A,y)-T(0,y) and "S=S(A,y)! S(0,y) are the dimensional temperature and
concentration anthe side to side dimensionless local temperature and concentration differences, respecti
This definition is, however, notoriously inaccurate owing to the uncertainty of tdraperature and
concentration values evaluated at the two vertical walls (edge efferdtdad, the Nusselt and Sherwood
numbers are calculated on the basis of a temperature and concentration differences between two ve
sections, far from the enddsis (see [18] and [37]) Thus, by analogy with Eql4), and considering two
infinitesimally close sections, the local Nusselt and Sherwood numbers can be defined by

(14)
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Nu(y) = lim dx /8T = lim 1 = 1 and Sh(y) = lim dx/8S= lim 1 = ! (15)
X0 X=0Q8T/dx  (IT/IX)y_p;» X0 X=038S/dX  (9S/IX),_a/>
where!x is the distance betwedwo symmetrical sections with respect to the central one. The correspondit

average Nusselt and Sherwood numbers are, respectively, calculated at different locations, as follows

Nu = i Nu(y) and Sh :}Sh(y) (16)

As an additional check of the results accuracy, energy and matter balances are systematically verified fc
system at each numerical code running. Thus, the overall heat and mass transfers, through each vertical
are evaluated and compared wiitle quantities of heat and mass furnished to the system @t For the results
reported here, the energy and matter balances are satisfied within 2 % as a maximum difference.

In the above equations the cdée= 0 corresponds to pure thermal convecti@m. the other handN = +1
corresponds to the case of a doutiiféusive convection for which thieuoyancy forces induced by the thermal
and solutal effects are opposing or aiding each other and of equal intensity

3. Numerical approach

Equations(1)-(5) associated with(6)-(12) have been solved using a finite volume method and SIMPLER
algorithm in astaggered uniform grid system3g. The convergence has been considered as reached whe

# ‘/ ikj” " /ikj <10 # /ikj+1 , Wherez,z;ikj stands for the vak of u, v T or Sat the K iteration level and grid
i i ’

location (i, j) in the plane (X, y). In the limit of the values selected foRRr,Le and N, as shown in Table B

uniform grid of 32&80 has been judged sufficietst model accurately the flowemperatureand concentration
fields within a cavity of A= 24 (found as the lower value of A beyond whidnvectionheat and massransfer
does not change).

Table 1: Convergence tests for A= 24, 10%, Le = 10 and various values of N.

Hydrodynamical Numerical solution Analytical solution
boundary
conditions  Grids (280x80) (360x80) (320x80) (320x100) (320x60)
N Nu
-1 11.208 11.208 11.208 11.207 11.213 11.203
RF or FR 0 11.288 11.288 11.288 11.286 11.292 11.283
1 11.367 11.367 11.367 11.365 11.371 11.362
-1 20.647 20.647 20.647 20.647 20.649 20.638
FF 0 20.783 20.783 20.783 20.782 20.785 20.781
1 20.916 20.916 20.916 20.915 20.917 20.924
-1 6.815 6.814 6.814 6.812 6.819 6.808
RR 0 6.865 6.865 6.865 6.863 6.870 6.858
1 6.915 6.915 6.915 6.913 6.920 6.909
Sh
-1 1027.064 1026.104 1026.524 1026.327 1026.957 1021.261
RF or FR 0 1035.563 1034.596 1035.019 1034.819 1035.458 1029.268

1 1044.075 1043.108 1043.531 1043.329 1043.976 1037.234
-1 2033.225 2031.479 2032.270 2032.038 2032.780 1964.791

FF 0  2059.880 2058.033 2058.867 2058.622 2059.400 1979.127
1 2087.142 2085.372 2086.209 2085.953 2086.765 1993.404
-1 584.804 584.083 584.397 584.164 584.910 581.774
RR 0 589.805 589.176 589.489 589.254 590.006 586.846
1 594.958 594.241 594.553 594.316 595.074 591.886

Moreover, the present computational code is validated against shksreeported byBelazizia et al [39],
Corcione et al40] andAlloui et al. [41], in thecase of doubliffusive and RyleighBBZnardconvections in a
squareand a shallow horizontaavity, as displayed in Table 2, where the maximum relative differences do n
exceed 2%.
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Table 2 : Validation of the numerical code against previous studies

Double diffusive convection (A =1) | Present work Belazizia et al. [39]| Corcione et al [40]
Rar Pr Le N Nu Sh Nu Sh Nu Sh
10" 7 34.28 -1 1.454 | 4.665 | 1.440 4690 | - | -
10" 10 1 0.5 1.773 1773 | - | - 1.74 1.74
10° 10 10 1 3.932 | 8715 | - | - 3.99 8.78
10° 10 1 0.5 7578 | 7578 | - | - 7.55 7.55
RayleigfBBZnard convection (A = 6) Present work Alloui et al[41]
Newtonien fluid Nu Nu
Rar RR FF RF RR FF RF
10° 1.246 | 3.510 | 2.031 1.25 3.56 2.06

The numerical results presented in this study were obtained for the particular cageHywever, the results
are not limited to this specific value since it is well known (see for instancg42pfthat the solution is rather
insensitive to the Prandtl number provided that this latter is of order one or greater

Typical numerical resultsn terms of streamlines, isotherms and isoconcentrations, are presentagr@sFig

4, obtained, for Y1, Le=10, R.; =10* andthreevalues of N for a layer with RR, FF, RF and FR
hydrodynamical boundary conditions, respectively. As appears, from these figurasshallow layer A>>1,
the flow is parallel to the horizontal boundaries of the enclosure and the temperature and thieatmmcare
linearly stratified in the xdirection of the core regiomnd this independently of the values of N and
hydrodynamical boundary conditian&s discussed in the following section, this follows from the themmnal
solutal boundary conditions gfied on the system, namely Neumann conditidrfee approximate analytical
solution, developed in the next section, relies on these observations.

4. Parallel flow approach

On the basis of Figres2-4, the following simplifications, in the central part of the cavity, can be made :
T(xY)=Cx+ /(). T(xy)=Cxs/(y), T(X,y) = CXx+ (y) andT(X,y)=Cx+7(y) (17)
whereCr andCs are unknown constant temperature and concentration gradients respectiselydction (see
for instance Refs. [11] and [118]).

SN

LAMMMMOMNY
———— I ————

RR

Figure 2: Streamlies (left), isotherms (middle) and isoconcentrations (right) fpFR.(, Le = 10, N =1 and various
hydrodynamical boundary conditio(BF:v, . =6.282 Nu= 20.647, Sh=2032.27( RF-FR:

Y o = 4816 NU=11208 Sh=1026524; RR: | __ =3.807, Nu = 6.814, Sh=584.397 )
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Figure 3: Streamlines (left), isotherms (middle) and isoconcentrations (right).for R, Le = 10, N = 0 and various
hydrodynamical boundary conditio@BF: v =6.266, Nu=20.783, Sh=2058.867 ; RF-FR:
| . =4801Nu=11288Sh=1035019; RR: | __ =3798 Nu=6.865Sh=589489)

FF

FR

RF

——— NN

RR
Figure 4: Streamlines (left), isotherms (middle) and isoconcentrations (right).for B, Le = 10 N = 1and various
hydrodynamical boundary conditioBF: v =6.287, Nu =20.916, Sh=2086.209; RF-FR:
| =4820Nu=11367Sh=1043.53; RR: | ,_ =3815Nu=6.915Sh=594.55)

On the basis of thiapproximationthe dimensionless governing equationd)become

2
_P Yo (18)
x oy
|
" ;—p +R,; P{T +NS)=0 (19)
ly
12T
UCT =7 (20)
1175
S _EV (21
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with

T _dS
C; Ty and Cg M (22)
Deriving equations (18) and (19) with respect to y and x respectaralytaking account of equality tis

n2T ||2!T_d2!T "25_"2!5_d2!s

obtained results;—- = —— —and —=— - the dimensionless governing equations can be
'y 'y dy 'y 'y dy
simplified in the following form
12 A 23
e T (23)
./ 2 n
Cu=~ ¥ (24)
'/ 2 ”n
Cu=- V2 (25)
with the following thermal boundary conditions :
! |
d'—T:d'—s=0fory=0andy=l (26)
dy dy
andthe return flow and mean temperature and concentratinditions respectively
1 1 1
lu(y)dy =0, [6r(y)dy=0and [0 (y)dy=0 (27)
0 0 0

Using such an approach, the solutions23f25), satisfying 26-27) and(9-12) for RR, FF, RF and FRare
generalised in thiollowing form :

u(y) = %(83’3 I ay’ + by+ c) (28)
Y. s a3 b,
-t oyt & =z 29
Y(y) 48Y]( y 3y +2y +cy) (29)
Cryp
0. (y) = —+<(24y° —5ay* +100y® + 30cy? - d 30
+(y) 288m(y y' +100y” +30cy ) (30)
LeC
05 (y) = ; 50,(y) (31)
T
where
1
e =0y =) =n(Cq + NCR g (32)

is the stream function at the center of the encloantka, b, ¢, d ang arethe coefficientswhich dependonly
on the nature of the hydrodynamic boundary conditions applied on the horizontal surfaces of the fluid la
Theirvalues are presented infdla 3.

On the other handC, and C are evaluated from thermal and solutal boundary conditions imposed c

the end walls. Because of the turning flow at the end regions of the fluid layer, the boundary conditioss in tt
direction, Eq. (6), could not be satisfied by the parallel flow appration. Instead, the expressions©f and

C, are determined by matching the core solution, E@), (b the integral solution for the end regions, which

consists on the integration of Eqgs. (4) and (5), togetheln wie boundary conditions (6) and (12), by
considering the arbitrary control volume of &ig 1 [17-18]. This yields:

1 1
Cr #1=1u(y) "+ (y)dy and Cs #1=Lel u(y) " s (v)dy (33)
0 0
to which the substitution of the expressionsuff), ! T(y) and! 4(y) gives:
B #2 B #2
e S T (34

wherep is a coefficient whose value is givenTiable3 according to theonditions(9-12) applied
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Table 3 : Coefficients values a, b, ¢,q,andp for the hydrodynamical boundary conditions considered in this study
(RR,FF, RF and FR).

a b c d n B
FF 12 0 2 12 5/384 31/362880
RR 12 4 0 2 1/384 1/362880
FR 9 0 1 5 1/192 19/1451520
RF 15 6 0 4 1/192 19/1451520

Substituting the above values Gk and Cs into the expression fot _ (32), the following transcendental
equationis obtained:
| Le? Le’ + NJR 1+N)R
Le ; (e ) aT#(Z:_'_i#Cu( ) aT:O (35)
$° $° $° 9! !
whose solution, via NewteRaphson method, for each given value of Le, N, &g leads to! _ and the
values ofC; and C are deduced from Eq34).
Finally, taking intoaccount 0f{15-16), (22) and @4), the mean Nusselt and Sherwood numbers becomes
— 124y — 1 Z+#le™?

Nu—!—zc andSh:- !2

5
#.+

(36)

5. Results and discussion

The fact of imposing uniform heat and mass fluxes, as boundary conditions, leads to flow characteri:
independent on the aspect ra#g,when this parameter is large enough. The approximate solution, developed
the preceding section, on the basigtaf parallel flow assumption, is thus valid asymptotically in the limit of a
shallow cavityA >> 1. In this respect, after some numerical tests (results not presented here), 24 is foun
being the smallest value éfleading to results reasonably closdhiose of the large aspect ratio approximation.
In fact, the asymptotic analytical limits are largely reached in such a situation. Thisofaluis reduced by
decreasing Ror Le.

At first, it is advisable to recall that the cadde= 0 corresponds tpure thermal convection for witch tiselutal
buoyancy forces are absent, whereas in presence of these forces, which correspbhds, ib is about the
natural double diffusive convectio®n the other hantll = 1 and N =1 correspond, respectively, tioe cases

of aiding and opposing thermal and solutal buoyancy forces of equal intensities.

It seems obvious from HFiges 2 to 4, where are depicted thgtreamlines l€ft), isotherms ihiddle) and
isoconcentrations (rightthat the flow structurand the thermaind solutaffields do not undergo qualitative
changewhen N passes froml to 1for each type of hydrodynamical boundary conditjosiace the isolines
indicate aunicellular regime with a parallel aspect and theraral solutaktratificaions in the core region of
the cavity and thisndependently omMN. This can be attributed to the fact that witkv values of N ana large
value of Ry, led to aregime of prevailing thermduoyancyforceswhere thecontribution of the solutal effects

in the convectioris negligible[18]. These qualitative observations are consistent with the evolutions_ of

Nu and Sh with Ry, which are presented in kige 5. On the other hand, qualitativelyhe streamlines,
isotherms and isoconcentrations seem to be more sensitive to the hydrodynamical boundary ¢@idit@ns
the centresymmetry of the convective cell disappeatsle passingrom identical boundary conditions (RR or
FF) to mixed ones (RF or FR), which affects at the same time the isotherms amhdeatrations whose
inclination, with respect to the vertical directionaiscentuated by changing RR by.HARe flow, heat and mass
transfer intensities, whosglues are presentedtime titles of the figure& to 4 show also this fact.

The influence of the thermal Rayleigh numiRy;, on the flow intensity and the heat and mass tramafes, is
illustrated on Figre 5, for Le =10, various values of N and different hydrodynamical boundary conditions.
appears clear, frorthis figure that the results of the two approaches adopted in this study agree perfectly,
least for the governing parameters selected values, which validates the parallel flow assumption used in st
4 and justifies the choice oiN/z, as a lage aspect ratio approximation valdmother confirmation of this is
given by Table 1 where the relative difference between analytical and numerical results does not exceed 1
Nu and 4 % forSh. The analyticakolution, displayed by a dashed liioe the case of N =1, has nopossible

to obtainnumerically.These results indicate that all these quantities increase monotonously,witluéto the
obvious contribution of buoyancy effects in promoting the eotien heat and mass transfers. However, the
effect of this parameter differs according to the type of hydrodynamical boundary conditions in presence
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fact, it becomes important with the case RR than with that FF, the situations RF and FR beingiatterkived
also note that, owing to the fact that= 10 , the mass transfer is more pronounced than the heat transfer.

6 —
W, Analytical solution Numerical solution
............... N=-1 - N=-1
1 d--- N=0
- N=1
0.1 L 4
PPl A
L. _ ,’f,-'
- AT e . .
-7 _ ~=T T e e T
0.01 ,f'/’_./”’,‘ .......................
P ) a- T e e T
0.001 =} y—epeyyrrrry S ———r e — ————
1 10 10° 10° R.r  10*
2000
1000 Analytical solution Numerical solution
A N=-1 ] N =-1
Sh {J--- N=0 4 N=0
: —e—- N=1 e N=1
100-!
10 -!
PR SR s S5 o b
O% # T | ]
1 10 100 10° R,r  ad
4
3 Analytical solution Numerical solution
Nu § — . N =-1 = N=-1 b
34 --- N=0 4 N=0 ®)
q---- N=1 e N=1
2 -
1
0.9 ———r—r—r—rry v —p——r——rry v —————
1 10° 10° R,r 10

Figure 5: Effect of Rgron vy _(a), ﬁ(b) andS_h(c) for Le = 10, variousalues of N and various hydrodynamical
boundary conditions.

Moreover, forN =0, contrary to the case where the cavity is heated and salted from below for which the or
of convection occurs when some threshold gfiR reached [12], # convection phenomenon is present in the

case of lateral heating and salting at any value,@tierent from zero. The results obtained for N = 0 with FF

(RF or RF) tend to coincide with those obtained for N = 1 with RF or FR (RR) while decreasing R

For N =-1 and Le =1 the rest state is a possible solution provided thatifRbelow a critical valueRi#E,

which will be predicted numerically by starting the numerical code with a conductive state as initial conditic
when increasindR,r. Then, the parallel flow theory, described in Section 4, will be used to predict the resultil

convective flow occurringbove the critical Rayleigh number 5

aTc *

It can be demonstrated tthi#E for the onset of convection is given by the following correlating relation:

R Sup __ R (37)

aTc Le _ 1
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whereR is a constant which depends upon the hydrodynamical boundary conditions. Thus, it is folhée that

6644.7, 4487.4 and 2844.9 for RR, RF (or FR) and rEBpectively For RR boundaries, it was found by

Mamou [43] that Rj;lg =6510/(Le! 1). Thus, the constarRR has about approach to that obtained in the
present study with a relative error &2

It is necessary to point out thagrfthe particular casBl = -1, the value ofy_ can be evaluated from the

following expression :
BLe® .\ (Le23+ 1) ) (Le2 +N)RaT 1 ]=0 (38)

wc wc wc _—wc +
,Y,IS 2

n n np
from which, it can be seen that the onset of motion, occurs at a subcritical Rayleigh mljﬁtxgaiwen by :
Cmelt f (et w1t 2 et

RSub cc 39
aTe "3 Le? +N) (39)

where

$.. L[\/ Le* +14Le? +1! Le?! 1F (40)

) Le\/?

For convenience, the values Rﬁ?‘é and Rf%lg are indicated on thEigure 6 by vertical dotted lines depending
on the hydrodynamical boundary conditions.
3

! s Analytical solution

Numerical solution
- RR
=- RF or FR
- FF

-0.5

T T T T T T T T T
o 100 200 300 400 500 600 700 800 R T 900 1000
a

Figure 6 : Bifurcation diagram for N =1, Le = 10 and various hydrodynamical boundary conditions

These values increase while passing from FF to RR boundary conditions, the situations RF and FR
intermediate. Upon starting the numerical code with a condustate or a finiteamplitude state convection
as initial conditions, when increasing or decreadiag the resulting solution follows the hysteresis loop
indicated by arrows. The analytical solution, depicted by the solid and dashed lines, indicates the pos
existence of two convective modes for a given valueRgf. The solution corresponding to the highe
convective mode (solid line), was found numerically to be stable. On the other hand it has not been possit
obtain numerical results for the lower (dashed line) unstable branch.

In addition, the case of N <4 and Le = 1corresponds to a purely diffive regime for any values ofand
independently of hydrodynamical boundary conditions, since the equation (38) admits a unique pos:
solution! _ =0. This related to the opposite effect of thermal and solutal buoyancy foregsiafintensities

and to the equality of the thermal and mass diffusivities.
Finally, for all vales of N explored in this studyhe boundary layer regime is eventuallnaleed for large
Rayleigh numbe(Rsr # $). For this situation it is readily foundoim Equationg32) and @34) that :

* lpc n —_—* Nu Sh

_ _ 173 _
Ve = 1+l RERYE Ry Nu L N\ 22 (Le3 +NLe)2/3
Le’ Le’

~B'°R2 andSh = “BR2 (4
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such that the normalized strengths of convectjﬁc‘rand heatN_u* and mas$_h*transfers, which deperah the
hydrodynamical boundary conditiorereindependent of bothe andN. The results obtained with Eq4X) are

presented in Figre 7 by solid lines.
30

* Analytical solution
Ve 4. (Le=1,N=1) (a)
--- (Le=10,N=-1)

Boundary layer regime, Eq. (41)
Numerical solution

e (Le=1,N=1)

= (Le=10,N=-1)

500 10 10’ 10° Rar 10°
* : Analytical solution
Nu L. (Le=1,N=1) ()
--- (Le=10,N=1)
100 =

L Boundary layer regime, Eq. (41)
E Numerical solution

1 ¢ (Le=1,N=1)

1 = (e=10,N=1)

1 ey

500 10 10* 10° Rar 10°
— : Analytical solution
sh 1. (Le=1,N=1) ©
--- (Le=10,N=1)
100 K Boundary layer regime, Eq. (41)
E Numerical solution
1 ¢ (Le=1,N=1)
»  (Le=10,N=1)
10

10° 10*

Figure 7 : Theboundary layer regime : (Le =1, N = 1); (Le = 10, NL)}for a layer with FF, RR, RF and FR boundaries

10°

Rar 10°
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They are seen to be in good agreement with both the parallel flow soldépitted by dashed lines) atiee
numerical results (represented bymiols) obtained for various values dfe and N and hydrodynamical
boundary conditions, provided thRjir is made large enough. Therefore the ratio of the mean Sherwood numk
with respect to the mean Nusselt one tends to an asymptotic value whichimsi¢gendently on N and the
hydrodynamical boundary conditions (see Figure 8).

Analytical solution
---N=1
—N=-1
Numerical solution
* N=1
= N=-1

10 —r—r—r—rrr —r—r—r—rrr =

10° 10° 10 Rat 10

Figure 8: Effect of R,y on — for various values of Mind Leand various hydrodynamical boundary conditions.
Nu

6. Conclusion

This study deals, numerically and analytically, with natural dedifasive convection in a two dimensional
horizontal shallow enclosure, filled witNewtonian fluid in the case where both short vertical sides are
submitted to uniform heat and mdks<es while the horizontal boundaries are insulated and impermeable. Her
the thermal and solutal buoyancy driving forces are, particularly, considéréte sameintensities with
opposingor aiding effects The main objective one of this paper, whishtd examine the problem sensitivity
with respect to hydrodynamic boundary conditidegeachedsince the convection is favored by those of free
free type and disadvantaged by those of gl type.Also, the agreemertietween the resultsf the two
approaches adopted proves the existence of an analytical solution which ialtdiates the numerical one

In the situationN = %, a steady rest state solution corresponding to a purely diffusive regime is possible. -

critical Rayleigh numberR3%, for the onset of upercritical convection ipredicted numerically. Also, the
aTc

subcritical Rayleigh numberRi#E, for the onset of subcritical convection is deducted from the nonlinea

parallel flow approximationMoreover, forN = 0 and N = Lcontrary to the previous case, thenvection is
possible for any value of thi#nermal Rayleigh number greater than zeto addition, for all values of N
considered in this study, a boundary layer regime is eventually reached fahkemgalRayleigh number.

In the future an extent for this study will be carried out with moderate and high valNds ofder toexamine
widely the combined effectof this parameterLewis Number anchydrodynamic boundary conditiortn
convection heaaind massransfes.
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