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1. Introduction 
In recent years, among available non-traditional machining techniques, Electric Spark Machining (ESM) otherwise 
called Electric Discharge Machining gained prominence due to its effectiveness in machining precise, complex 
shapes with special micro-features on the difficult-to-cut tool, die and mould materials irrespective of their hardness 
[1–4]. This process is based on controlled thermal erosion of electrically conductive material immersed in dielectric 
and initiation of quick, recurring spark discharges between the tool electrode and workpiece in the absence of 
physical contact between them [5]. This machining approach is currently being implemented extensively in press 
tools as well as dies, aerospace, automotive, together with surgical equipment manufacturing companies[6]. Despite 
astounding process capacities, low volumetric material extraction rates, as well as poor surface quality, are some of 
the limitations linked with conventional electrical discharge machining. In order to address these issues, researchers 
followed three different approaches. In the first approach, termed as Powder Blended Electric Spark Machining 
(PBESM), fine powder either in micro or nano size is suspended in the dielectric fluid which improves 
homogeneous disbursement of sparking among the powder particles creating shallow craters on the workpiece 
exterior surface causing enrichment in surface finish. Also, the ploughing action of conductive material in dielectric 
fluid enhances the material extraction rate [7]. The second approach is tool rotation that creates flushing effect and 
reduces debris accumulation within the discharge gap thereby improving material subtraction rate [8]. The third 
approach is vibrating the workpiece which enhances the machining time[9]. Out of three methods, the first approach 
offers better-machined surface quality and imparts functional properties to the machined surface [8,10]. 
 All the influencing process variables in PBESM can be categorized under four headings viz., non-electrical 
parameters (like gain, lift and flushing pressure), powder properties (like particle size, shape, concentration, thermal 
conductivity, melting point), electrode material properties and electrical parameters (like gap voltage, pulse-ON 
time, peak current) [11,12]. Just like many other machining techniques, the quality of machined parts is substantially 
influenced by input process conditions. For this reason, promoting the quality of the process by establishing an 
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Abstract 
 
The main objective of this research paper is to present the results of multi response 
optimization performed for nano powder blended electrical spark machining operations on 
AISI D3 Die steel based on Taguchi method coupled with grey relational analysis. 
Different sets of experiments planned as per Taguchi technique were carried out by 
varying four parameters such as peak current, pulse-on time, spark voltage and powder 
concentration. Material removal rate(MRR), electrode wear rate (EWR) and surface 
roughness (SR) are selected as output parameters for this research. Results showed that 
powder concentration and peak current were the influencing parameters on MRR, EWR, 
and SR as per Grey relational grade. The optimal combination parameters were identified 
as peak current at 7 A, pulse on-time at 50µs, gap voltage at 100 V and powder 
concentration at 0.5g/L. The confirmation test performed to validate the result obtained by 
grey relational analysis revealed a satisfactory enhancement in the response. 
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exhaustive understanding of the relationship between these parameters for much better-machined surfaces has 
become a major research concern.  
 Unlike traditional Electric Discharge Machining, Powder Blended Dielectric based Electric Discharge 
Machining has a different machining technique[11] as shown in Figure. 1. Upon applying 80–320V voltage in the 
gap of 25–50 microns present between the electrode and the workpiece an electric field in the range of 105–107V/m 
is generated. Due to this, the powder particles not only gain energy but also come close to each other and arrange 
themselves in a crisscross series fashion forming an interlock among them[13]. This series configuration promotes 
in linking the discharge gap between both the electrodes. Also, the developed electric field accelerates the charged 
particles to behave like conductors which prop up the breakdown in the gap and increase the spark gap between the 
tool and the workpiece. Owing to linking effect, a reduction in insulating strength of the dielectric fluid is observed. 
A premature explosion in the gap takes place due to developed ‘short circuit.' The applied fine-grained powder 
changes (expands and broadens) the plasma channel. Thus, the sparking is uniformly disbursed among the 
powdered particles; in consequence electric density of the spark diminishes. As a result of homogeneous 
disbursement of sparking among the powder particles, shallow craters are created on the workpiece exterior surface. 
This will cause enrichment in surface finish[7].  
 

 
Figure. 1 Schematic depicting nano powder blended based dielectric EDM technique 

 
 Early in 1980 A. Erden and S. Bilgin[14] stated that intentionally added artificial impurities to dielectric 
have a significant effect on EDM performance. Since then several researchers focused on investigating the influence 
of artificial additives in dielectric when machining materials through electric discharge machining. Baljinder 
Singh[15] studied the effect of concentration of 325µm aluminum powder in the dielectric fluid along with other 
electrical parameters on H11 steel surface roughness employing L18 array and reported that polarity, suspended 
powder play a major role in the response. Abhishek Abrol[16] mixed 45-55µm chromium powder in kerosene to 
examine the simultaneous effect of powder concentration along with peak current, pulse on time and pulse off time 
when machining AISI D2 die steel and found that current is the most significant factor for MRR and TWR. Mohd. 
Junaid Mir[17] presented the discharge current, pulse time and aluminum powder (46µm) concentration optimized 
levels for surface roughness study on H11 steel and revealed that the peak current and concentration are most 
influential parameters affecting surface roughness. Suspending 37, 44 and 74µm sized aluminum powder of 
quantities 0-12g/L in EDM oil supplied by the manufacturer Anil Kumar et al.[18] fabricated circular holes on 
Inconel 718 using copper electrode. It is stated that powder concentration and size influenced EDM efficiency. It 
was also mentioned that highest Material Removal Rate (MRR) is obtained for 44µm powder at 6g/L concentration.  
H K Kansal et al.[19] utilized 0-6 g/L quantity of 20-30µm aluminum powder into kerosene available commercially 
to machine Al-10%SiCp material for 40minutes time. It was reported that added aluminum powder enhanced MRR 
up to certain (3g/L) concentration. Also, it was stated that most influential parameters on the performance of EDM 
are peak current and concentration of added powder.  
 In another attempt by H K Kansal et al.[13] to optimize process parameters utilizing Taguchi design, 25mm 
diameter blind holes were drilled on AISI D2 Die steel when dipped in Kerosene doped with 0-4g/L 30µm silicon 
powder. It was highlighted that effect of nozzle flushing at inter electrodes gap on machining efficiency is 
negligible. Tzeng Yih-Fong et al.[20] proclaimed that 70–80nm powder blended Hercules ed 320h resulted in the 
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better surface finish of skd-11. MP Jahan et al.[2] experimented with 55nm Gr blended total final elf edm3 oil when 
machining cemented tungsten carbide. GS Prihandana et al.[3] experimented with ultrasonicated 55nm Gr blended 
kerosene on silver-tungsten and reported that surface quality of machined surface improved. PC Tan et al.[5] 
reported that 40-47nm SiC and 45-55nm Al2O3 blended Idemistu Daphene cut oil on stainless mold steel reduced 
the average surface roughness. Houriyeh Marashi et al.[21] concluded that 40-60nm Ti powder blended 
hydrocarbon oil on D2 steel resulted in an enhancement in MRR.  
 From the review of literature available on PBESM, it is observed that only fundamental research work has 
been carried on the improvement of machining efficiency of PBESM. The aim of the present research work is multi 
characteristic optimization of Material Removal Rate (MRR), Electrode Wear Rate (EWR) and surface roughness 
(SR) when machining AISI D3 steel using copper electrode with and without suspended Silicon carbide nano 
powder in commercially available EDM oil dielectric medium using Taguchi Method and grey relation analysis. 
Taguchi methodology was applied to plan and analyze the experiments. The most efficient controllable factors in 
PBESM are determined using grey relation grade. 
  
2. Experiment Set-up and Method 
2.1 Machine 
The experiments were conducted on the Electric Discharge Machine model S-50 ZNC of ELECTRONICA 
MACHINE TOOLS (Pvt. Ltd). Several input variables like spark voltage, pulse on time, % Duty factor, polarity, 
peak current and type of flushing can be varied in this machine. Also, this machine is equipped with a machining 
tank occupying a volume of 140liters of EDM Oil as supplied by the manufacturer. In order to reduce the amount of 
dielectric used and to avoid the damage of filtering system due to clogging of nano powder in filters, a new 
experimental set-up for nano powder blended EDM (NPBEDM) is fabricated. The newly fabricated set-up 
presented as a schematic in Figure. 2 consists of a small tank occupying a volume of 10liters accompanied with a 
motorized stirrer and dielectric recirculation pump, dielectric supply tank fitted with filters and mono block pump 
(not shown in the schematic) in chronological order. An in-line magnetic filter is used to filter the debris. 

 
Figure 2: Schematic of fabricated experimental set-up 

2.2 Work piece, Electrode, and Powder Material 
AISI D3 die-Steel, Copper of dimensions 45mm×32.5mm×12mm (Figure. 3a) and 150mm×φ9.5mm (Figure. 4) 
respectively are considered as work piece and tool in this experimentation. The chemical composition of work piece 
material is as depicted in Table 1. Figure. 3b illustrates the workpiece with a set of experiments. Powder opted for 
present investigation is Silicon Carbide (Conductive) of 50nm size procured from Sisco Research Laboratories Pvt. 
Ltd. (SRL) - India. XRD spectra of Silicon Carbide powder is presented in Figure 5. 
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Table 1: AISI D3 Die-Steel’s chemical composition used in experimentation 
Elements Fe Cr C Si Mn Ni V Mo W P S 

Wt % 85.74 11.125 2.078 0.395 0.223 0.152 0.106 0.06 0.056 0.031 0.03 
 

   
Figure 3: AISI D3 die-steel workpiece before and after machining 

 

 
Figure 4: Copper Electrode used in experimentation 

 

 
Figure 5: SiC nanopowder XRD spectra 

 
2.3 Parameters and Experiment Plan 
Four quantitative type process variables (peak current, gap voltage, pulse-ON time, and powder concentration) with 
three levels are considered as process variables. It could require a whole of eighty-one (34) sets of experiments to 
optimize the variables if a full factorial design is carried out [22] which remains a significant challenge. To address 
this challenge the Taguchi method utilizes orthogonal arrays designed to contemplate the whole parameter space 
and its influence on response with just a little number of examinations[23,24]. As suggested by Datta et al[25] and 
Harmesh Kumar et al. [12] experiments were conducted based on an L9 orthogonal array. Throughout the 
experiments, positive polarity, 30min machining time, 10% duty factor are fixed. Standard L9 orthogonal array with 
actual values and experimental findings are shown in Table 3. The levels of the process variables are fixed after 
conducting pilot experiments and presented in Table 2. Each machining case was repeated three times to achieve 
accurate surface roughness values as shown in Figure. 3b. 
 

Table 2: Process variables and levels 

Process variable Code Levels 
Level 1 Level 2 Level 3 

Peak Current, Ip, (A) K 5 6 7 
Pulse-ON time, TON, (µs)  X 50 100 150 
Gap Voltage, Vg, (V) M 50 60 70 
Powder Concentration, PC, (g/L)  N 0 0.5 1 

a b 
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Table 3: Experimental findings using orthogonal array 
Experiment  

Trail 
Ip 

(A) 
Ton 
(µs) 

Vg 
(V) 

Powder 
Concentration 

(g/L) 

Decision Matrix [D] 
MRR 

(mm3/min) 
EWR 

(mm3/min) 
SR 

(µm) 
1 5 50 50 0 0.45 0.074 6.575 
2 5 100 60 0.5 1.31 0.187 4.550 
3 5 150 70 1 0.77 0.374 5.105 
4 6 50 60 1 1.17 0.374 4.630 
5 6 100 70 0 0.70 0.299 4.555 
6 6 150 50 0.5 1.41 0.224 4.720 
7 7 50 70 0.5 1.60 0.112 4.975 
8 7 100 50 1 1.45 0.262 4.970 
9 7 150 60 0 1.20 0.080 6.590 

 
2.4 Machining Performance Assessment 
Material Removal Rate (MRR), Electrode Wear Rate (EWR) and Surface Roughness (SR) are considered as 
responses. The difference in weights of workpiece and tool, before and after experimentation are measured on 
SHIMADZU (AUX 200) analytical balance respectively. Numerical values are then substituted in Eqs. (1)[26] and 
(2)[26] to calculate MRR and EWR.  

MRR = 
)(

]1000)[(
tD

WW

w

ambm

×

×−
  (1) 

where MRR – Material Removal Rate (mm3/min), Wbm – weight of workpiece before machining (g), Wam – weight 
of workpiece after machining (g), Dw – density of the workpiece (7.7 g/cm3), t – machining time (minutes). 

EWR = 
)(

]1000)[(
tD

EE

e

ambm

×

×−
  (2) 

MRR – Material Removal Rate (mm3/min), Ebm – weight of electrode/tool before machining (g), Eam – weight of 
electrode/tool after machining (g), De – density of the electrode/tool (8.9 g/cm3), t – machining time (minutes). 
 Surface Roughness calculated in terms of arithmetic mean roughness (Ra) is defined as 

∫=
S

dzzh
SaR
0

)(1 where h(z) is the value of roughness profile, and S is evaluation length. It is measured along 

horizontal, vertical diameters on the facade of blind holes using Mitutoyo make (SJ-201) surface roughness tester 
and the average value is considered for analysis.  
 
3. Results and discussion 
3.1 Grey relational technique 
Grey Relation Technique (GRT) is an important technique that not only predicts quandary behavior of systems but 
also interprets correlation among systems and corroborates models. In this technique, the complex multi-response 
optimization predicament is simplified as the optimization of Single Response Gray Relational Grade (SRGRG). 
This approach was initially established by Deng [27] and then has been efficiently employed in several disciplines 
of machining processes. Suman Kalyan Das [28] implemented Taguchi based grey relational analysis to optimize 
coating parameters when determining wear characteristics of electroless Nickle-Boron coatings. Hsuan-Liang 
Lin[29] deployed Taguchi method coupled with grey relational analysis to perform multi-criterion (penetration 
depth, fusion area, DWR of weld bead) optimization of a novel Gas Metal Arc welding process.  
 B Satyanarayana [30] applied Taguchi procedure together with grey relational technique to find out 
effective levels of feed, depth of cut and speed when performing simultaneous minimization of surface roughness, 
cutting force and tool flank wear. K.F.Tamrin[31] used grey relational analysis to determine optimum levels of 
power consumed, stand-off distance and welding speed for multi-performance (mean weld width, mean kerf width, 
weld tensile strength) analysis in CO2 laser joining of dissimilar materials. In an attempt to perform multi response 
optimization of wear characteristics of a hybrid composite, Saravanakumar[32] used grey relational analysis. In 
another effort to model and optimize multi-response (cutting force, vibration signals, and surface roughness) of 
milling characteristics Murat Sarıkaya[33] implemented Taguchi based gray relational analysis. Hence it was 
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observed that GRT had found its existence in a wide range of machining applications. On the other hand literature 
on multicriteria optimization of NPBEDM variables implementing GRT is still in developing stage. In the current 
experimental exploration, the grey relation has been applied to determine the optimal process input variables that 
give maximum MRR with an enhanced surface finish in NPBEDM of tool steel. 
 Determining GRG (Grey Relational Grade) is the key point of GRT. Four steps involved to find out GRG 
for a multi-objective optimization are detailed in below flowchart (Figure. 6) followed by a brief explanation of 
each step.  

 
Figure 6: Four steps involved to find GRG 

 
3.1 Decision matrix formation 
In this stage, a m×n decision matrix [D] is constructed where m and n represent a number of experiment trails and 
performance responses values respectively. Here m = 9 and n = 3 (MRR, EWR & SR). [D] is shown in Table 3. 

Table 4: Computed Normalized values, GRC and GRG 

Experiment  
Trail 

Normalized Values GRC 
GRG Rank 

MRR EWR SR MRR EWR SR 

1 0.000 1.000 0.007 0.333 1.000 0.335 0.556 8 
2 0.748 0.623 1.000 0.665 0.570 1.000 0.745 2 
3 0.278 0.000 0.728 0.409 0.333 0.648 0.463 9 
4 0.626 0.000 0.961 0.572 0.333 0.927 0.611 6 
5 0.217 0.250 0.998 0.390 0.400 0.995 0.595 7 
6 0.835 0.500 0.917 0.752 0.500 0.857 0.703 3 
7 1.000 0.873 0.792 1.000 0.798 0.706 0.835 1 
8 0.870 0.373 0.794 0.793 0.444 0.708 0.648 4 
9 0.652 0.980 0.000 0.590 0.962 0.333 0.628 5 

 

3.2 Data pre-processing 
 Each numeral (y

ij
) in Decision matrix [D] is normalized to scale down between 0-1 incorporating strategies 

(3) and (4). 

Higher-the-better 
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Smaller-the-better 
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ij yy
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x

minmax
max

−

−
=  (4) 

where y
ij = jth performance response for ith trail, max(y

ij
) and min(y

ij
) = maximum and minimum values of all jth 

performance responses. x
ij
 = normalized numeral. Table 4 depicts normalized values for the EWR, MRR, and SR. 

 
3.3 Grey relational coefficient calculation 
 Using normalized SNR values found in the preceding stage, the gray relational coefficients (GRCs) of 
performance responses are calculated after substituting in the equation (5)[26]. 
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ijj xx  for i = 1, 2, ….,m and j = 1, 2, …..n (5) 

where x0j = reference value of jth response (x0j = 1), Δij = |x0j – xij|, Δmin = min{Δij, i = 1, 2, ….,m;  j = 1, 2, …..n}, 
Δmax = max{Δij, i = 1, 2, ….,m;  j = 1, 2, …..n} and ξ = distinguishing coefficient, ξ∈ (0, 1]. In common ξ = 0.5 is 
applied when calculating GRCs[26,34]. Table 4 depicts GRC values for the EWR, MRR and SR. 
 
3.4 Grey Relational Grade Calculation 
 The calculation strategy for quantification in grey relational space is termed grey relational grade. A grey 
relational grade or degree is a weighted sum of grey relational coefficients, and it is often computed implementing 
equation (6)[26] 

∑
=

"
#

$
%
&

'
=

n

k
i k

n 1

)(1
γς  (6) 

where ςi is Grey Relational Grade for ith experiment, k is experimental trials. Table 4 depicts evaluated GRGs 
employing (6). 

 
Figure 7: Variation in GRG for all nine trails 

  
 A careful observation of Figure. 7 reveals that GRG for the 7th experiment is highest which equals to 0.835 
indicating that the corresponding experimental result is closer to the ideally normalized value and has the best 
multiple performance characteristics among nine experiments. 
 The mean of the grey relation grade for a unique level of machining parameters is computed using 
MINITAB 17 software and listed in Table 5. The influence of each cutting parameter can be more clearly 
understood by means of grey relation grade graph (Figure. 8).When the last row of Table 5 is compared, it is 
observed that the difference between the maximum and minimum value of the grey relational grade for factor N is 
bigger than other factors. This indicates that SiC nano powder addition has a stronger effect on multi performance 
characteristics than peak current, pulse on time, and gap voltage. From, Figure. 8 it is observed that K3X1M2N2 is 
the condition for maximum grey relation grade, i.e., optimal setting for maximum MRR, minimum Electrode wear 
rate and surface roughness. 

 
Table 5: Response table for GRG 

 Machining Parameters K X M N 

A
ve

ra
ge

 
G

R
G

 b
y 

pa
ra

m
et

er
 L

ev
el

 L1 0.5882 0.6672 0.6358 0.5931 
L2 0.6363 0.6628 0.6614 0.7608 
L3 0.7037 0.5982 0.6310 0.5742 

High-Low 0.1156 0.0690 0.0304 0.1866 
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Figure 8: Influence of NPBESM parameters on GRG 

 
3.5 Confirmation test 
 Once the optimal levels of the machining parameters are identified, the final step is to predict and verify the 
improvement of performance characteristic using optimal level of the machining parameters. The estimated grey 
relational grade using optimal level of the machining parameters can be calculated as follows[6,35] 

( )∑
=

−+=
q

i
mim

1

ˆ αααα     (7) 

Based on Eq. (7), the estimated grey relational grade using optimal machining parameters is obtained. Table 6 
shows results of confirmation experiments using optimal experimental conditions. It is clearly shown that the 
multiple performance characteristics in the NPBESM process are greatly improved through grey relation technique. 
 

Table 6: Results of GRG using initial and optimal machining parameter 

 

Preliminary 
machining parameters 

Optimal Machining parameters 

K1X1M1N1 
Predicted 

K3X1M2N2 
Experimental 

K3X1M2N2 
Grey relational grade 0.556 0.865 0.866 
 
Conclusions 
The grey relational analysis has been used to optimize the weld parameters in NPBESM of AISI D3 Steel for multi-
performance characteristics namely material removal rate, electrode wear rate, and surface roughness. Taguchi 
orthogonal array L9 has been used for the experiment work. Following are the observations from the present work. 

1.! The PBESM process parameters are optimized for material removal rate, electrode wear rate and surface 
roughness by grey relational analysis. The optimum levels of process parameters are peak current 7Amp, 
pulse-on time 50µs, gap voltage 50V and powder concentration 0.5g/L. These are therefore the 
recommended level of parameters for obtaining higher material removal, less electrode wear, and reduced 
surface roughness. 

2.! The experimental result for the optimal setting shows that there is considerable improvement in machining 
efficiency of the process and grey relation grade. 

3.! It is evident from the above study that the optimization of the complicated multi-performance 
characteristics can be greatly simplified through Taguchi and grey relational analysis approach. 
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4.! It is also found that nano powder addition has a stronger effect on multi characteristics than peak current, 
pulse on time, and gap voltage.  

Further, the technique presented in this study can be extended to different work materials and hybrid manufacturing 
techniques to improve performance characteristics simultaneously. 
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