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1. Introduction 
Lagoons are almost closed bodies connected loosely to the sea by narrow channels subjected to siltation and 
sediment obstruction. The hydrodynamic circulation pattern of these bodies is difficult to compute due to their 
usually complex geometry combined with the influence of the tides, the wind and the fresh water inputs coming 
from the rivers and streams of the lagoon watershed. From a biological point of view, lagoons can be 
characterized as complex ecosystems in a fragile equilibrium and their modelling is a difficult task as one has to 
take into account numerous interactions between physical, chemical and biological parameters. 

Lagoons have important environmental and societal aspects. They are extremely rich from a biological 
point of view as the reproduction area of a great number of species as well as the passage of many migratory 
bird species. Lagoons are also the siege of many human activities: urbanization, tourism, agriculture, fishing and 
shell-fishing farming all influencing the lagoon state in a complex way. Many lagoons are affected over the 
years by anthropogenic influences, including environmental degradation and local or global sources of 
pollution. Among these lagoons, the Nador lagoon located on the North-East of Morocco is an ecosystem that is 
of great biological, ecological and economic interest. It covers an area that exceeds 120 Km2 and a maximum 
depth of 8m and is fed by water of the Mediterranean through a pass known as ‘Bokhana’, the freshwater 
waterways, the rejections of the untreated human activities (agriculture and urban water industry, metallurgy, 
textile …), and by water of the station of purification. Figure 1, taken from [1], gives a Schematic description of 
the Nador lagoon. 

Ecological qualities of the lagoon have been relatively affected, during the last years, by the human 
activities, particularly the pollution coming from worn water of the city and the waste evacuated along its banks 
as well as the hydrocarbons coming from the industrial boats. These polluting products, if they are not rapidly 
evacuated, could have a harmful effect on humans. This is manifested in damage to biological resources, risks 
for human health, deterioration of marine activities including fishing, the quality of seawater. In addition, the 
Nador lagoon has been the subject of many recent investigations that have concerned water quality, currents, 
bathymetry, flora, fauna, fishing and aquaculture (see for instance [2-4]). These studies have focused especially 
on the environmental aspect of the lagoon and are biological, geochemical and economic ([5,6]). However, the 
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studies from numerical point of view concerning the transport and dispersion of contaminants in the 
surroundings of the lagoon are missing. The rare works in the literature on the subject can be found in ([7], [8]). 
Using numerical models it is possible now to predict changes in water quality and to plan suitable interventions 
and control strategies for environmental protection. 

In this paper, we propose a finite volume method for the simulation of the hydrodynamic, water 
circulations and transport of wastewater in the Nador lagoon. The physical model is based on the 2D shallow 
water equations that include slope variations and friction terms. The computational code uses a Non 
Homogeneous Riemann Solver (SRNH) for the discretization of the convection and bed slope source terms [9], 
and semi-implicit splitting scheme for the friction terms. It can be used on complicated geometries by 
incorporating unstructured meshes. In addition, the algorithm preserves the balance between the pressure 
gradient and source term due to the slope variation. The preliminary results that will be presented here 
considering the new “pass” with the Mediterranean Sea, will demonstrate the performance and robustness of the 
solver for the simulation of flows in real situations. 

The paper is organized as follows. The governing equations are first described in section 2. This includes 
the equations for the free-surface flow and the model for pollutant transport and dispersion. Section 3 is devoted 
to the solution procedure for the proposed model. We describe the finite volume discretization and the 
formulation of the SRNH scheme on unstructured grids. The extension to second order and the treatment of the 
friction terms are also shown. In section 4, we present an application of the solver to the simulation of the 
hydrodynamic circulations and a wastewater transport event in the Nador lagoon. Some concluding remarks are 
given in section 5.                                              

 
 

Figure 1:  Maps showing Nador lagoon location (a) Lagoon watershed (b) and lagoon and  
freshwater hydrographic network (shown by yellow arrows), old settling basins  
and new wastewater treatment plant (shown by red arrows) (c) [1]. 

2.(The equations to be solved 
The mathematical model can be derived by vertical integration of the three-dimensional incompressible Navier-
Stokes equations along with the assumptions of a hydrostatic pressure and a vertically uniform horizontal 
velocity field, which results in the well-established shallow water equations written in conservative form as                                                                                            

                           
( ) ( )( ) ( ) ( )( ) ( ) ( )WSWSWGWG

y
WFWF

xt
W

21
~~

+=−
∂
∂

+−
∂
∂

+
∂
∂

                                             
(1)!

W is the vector of conserved variables, 1S  and 2S  are the source terms due to slope variations and friction 

forces, F  and G  are the advection tensor fluxes F~ and G~  are the diffusion tensor fluxes 
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g is the gravitational acceleration, h  is the water depth, u  and v  are the depth-averaged velocities in the x and 
y direction respectively. The bed slopes are functions of the bottom level Z and are given by 
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and the friction losses along the x and y direction are described in terms of the Manning’s roughness coefficient 
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In the pollutant equation, C is the depth-averaged contaminant concentration, xD and yD the diffusion 
coefficient and Q  the depth-averaged pollutant source or sink.                                                                                                  
 
3.(Numerical methods  
3.1! Mesh generation and bed topography 
Let Ω  be the domain of computation covered by a conformal grid consisting of a set of unstructured polygons 
K that are as general as possible. In this work the unstructured meshes are composed of triangles. Figure 2 (left) 
shows the mesh of the Nador lagoon generated by using the Delaunay triangulation technique [10]. Since the 
boundary conditions in the Mediterranean part are not well known, the computational domain has been limited 
in this study to the pass between the lagoon and Mediterranean sea. In this way the tidal boundary conditions 
will be imposed at this pass.                    
                                                                             

                      
Figure 2: Unstructured mesh of the Nador lagoon (left), zoom on the “pass” (middle) and Bathymetry (right). 

 

The geometry and the bed surface topography of the lagoon are very irregular and several regions of various 
depths coexist. In our simulations the bathymetry was reconstructed from topographical data. This bathymetry is 
illustrated in Figure 2 (right).    
                     
3.2! Finite volume formulation 
Research on numerical solution of equations (1) has received considerable attention during the last decades and 
a several finite volume methods have been developed, compare [11,12] among others. The main advantages of 
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these methods lie on their implementation on unstructured triangular meshes and preserving conservation 
properties of the equations. The computational code developed here uses the «cell-centred» finite volume 
formulation for which all the state variables are updated at the centroid of each cell (the centre of gravity in our 
case). Figure 3 illustrates the type of control volumes used. 
                                                                       

 
Figure 3:  A cell-centred control volume. 

 
Hence, integration of the system (1) over a control volume Ti and using Gauss divergence, an explicit finite 
volume discretization yields to 
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where the convection and diffusion flux functions are defined by 
( ) ( ) ( ) ( ) ( ) ( ) yxyx nWGnWFnWHnWGnWFnWH ~~,~;, +=+=  

N(i) is the set of neighboring triangles of the cell Ti, n
iW is an average value of the solution W in the cell Ti at 

time tn, ijΓ  is the edge separating control volumes Ti and Tj, and ( )Tyx nnn ,=  denotes the unit vector normal to ijΓ . 
                                                               

3.3!  Discretization of the convective and bed slope source terms 
The system of Saint-Venant equations (1) includes the variation of topography and therefore special attention 
should be paid to his numerical discretization. Indeed, a well known problem is that shallow-water equations on 
non-flat topography have steady-state solutions in which the flux gradients are non zero but are exactly balanced 
by the source terms. Standard numerical methods for the discretization of conservation laws may fail in 
correctly reproducing this balance (called also C-property) and, thus, specific methods have been developed to 
deal with this problem (well-balanced schemes, see e.g., [13,14]). The method adopted herein for the space 
discretization has been proposed by Benkhaldoun, Elmahi and Seaid in a series of papers (see for instance [9, 
15, 16]). It is based on a Riemann Solver, named SRNH, and consists of a predictor stage for which the state Wij 
at each edge ijΓ  is computed by solving a Riemann problem, and a corrector stage where the state Wn+1 at time 
tn+1 is reconstructed iteratively using the physical flux on Wij. The scheme considers only the advection part and 
the source term containing slope variations 
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Let's start with the predictor stage. A projection of the system (3) according to the normal η and tangential τ  
yields: 
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where 
yx nvnuu +=η
 and 

xy nvnuu +−=τ
 are, respectively, the normal and tangential velocity.                           
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For this projected system, the predictor stage is then formulated, for the evaluation of the averaged state n
ijU  on 

each edge
ijΓ , using an upwind scheme, in the following manner                                          
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In (5), U is the intermediate Roe-averaged state given by                     
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[ ])(sgn UFη∇  denotes the sign matrix of the Jacobean )(UFη∇ , it is defined by:   

  

[ ] )(])(sgn[)()(sgn 1 URUURUF −Λ=∇ η       and        )()()()( 111 URUURUF −−− Λ=∇ η
!

)(UR  and )(UΛ  are respectively the eigenvector and eigenvalue matrices of )(UFη∇ .                                

By incorporating these matrices in the predictor stage (5), the projected state n
ijU  on each edge 

ijΓ  can be easily 

obtained. The conservative state n
ijW  is then evaluated using the transformations 

yx nunuu τη −= and 

xy nunuv τη += .                                                                                                                                                             
Therefore, the incremental corrector stage is written using the non projected conservative states in the following 
manner:  
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iT  is the surface of the control volume iT  and ijΓ  the length of the edge ijΓ  separating triangles iT  and jT                                                                                                                                             

In the corrector stage (6), the source term approximation is reconstructed in such a way to obtain a well 
balanced scheme preserving steady state at rest (see [9] for details on this reconstruction).                                     
 
3.4! Second order well-balanced scheme 
The SRNH scheme described above is first order accurate in space. It is monotone but has a poor accuracy due 
to the large amount of numerical dissipation. The extension to 2nd-order accuracy in space can be achieved by 
using a classical MUSCL technique [9]. In the definition of the flux in (6), we replace the piecewise constant 
values iW  and jW  by more accurate reconstructions deduced from piecewise linear approximations, namely the 
values ijW  and jiW , reconstructed on both sides of the interface as follow 
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where ∇  denotes the gradient operator, ( )Tiii yxX ,=  and ( )Tjjj yxX ,=  are respectively the barycentres of 

cells iT  and jT . β  is a parameter between 0 and 1. In practice one uses 32=β  . The resulting scheme is 
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second order in space but is not necessarily monotonous and non-physical oscillations are produced. To damp 
the numerical oscillations in the current computations, the Van Albada flux limiter is applied: 
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with the Van albada limiter given by 
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where 10 !!! ε . With this limitation one obtains a monotonic second reconstruction for the hyperbolic part. 
 

3.5! Treatment of the friction terms 
The friction terms in (2) are discretized using an operator splitting procedure. For example, to evaluate the x-
momentum, the second equation of the system (2) is split into two equations 
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where bn  is the Manning’s coefficient and Res describes the convection contributions in the x-momentum 
equation corresponding to the surface integral in eq. (2), and is approximated as the sum taken over all boundary 
segments.                                                                                                                                                                     
First, a semi-implicit method is used to integrate the upper equation in (7), giving                                                  
 

                                     ( ) ( )
( ) ( )
( )3

4

22

2)(

n
i

n
i

n
i

ib

n
ii

h

vu
hugn

t
huhu +

−=
Δ

−
∧

                                                              (10) 

 In the second step, the value ihu)(
∧

 is taken to be the initial condition when solving the second equation in (9).   
3.6! Discretization of the diffusion terms 
Finally, to approximate the diffusion fluxes in the discrete system (2) a Green-Gauss diamond reconstruction is 
used here, see for example [17] and further references are therein. This method has been selected because it is 
second-order accurate, it can be applied on general unstructured grids, it does not require serious restrictions on 

the angles of triangles, and it can be easily incorporated in our finite volume scheme. Hence, a co-volume ijcoV  

is first constructed by connecting the barycentre of the elements that share the edge ijΓ and its endpoints as 
shown in Figure (4) below.  

!
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Figure 4: A generic control volume and notations. 

Then, the diffusion fluxes in the concentration equation are evaluated at an inner edge ijΓ as 
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where N1 and N2 are the nodes of the edge ε  on the surface ijcoV∂ , 1N
C  and 2N

C are the values of the pollutant 
concentrations at the nodes N1 and N2  respectively.  
 
4.(Numerical tests 

3.1!  Hydrodynamic in the Nador lagoon 
The first test case that we consider here consists is the study of the hydrodynamic and water circulations in the 
Nador lagoon. This test problem is interesting in the sense that it can give an answer to how the water moves 
into the lagoon, regions where the water recirculates and those where it stagnates.  These last regions can be in 
fact very affected by contamination of wastewater coming from the city. The computations can also give an idea 
of the time residence of the water coming from the Mediterranean Sea before leaving the entrance of the lagoon.                                                                  
Initially, the flow is assumed to be at rest with constant free surface (h + Z = Cte). 
Two types of boundary conditions must be specified respectively at the pass between the Mediterranean Sea and 
the lagoon noted pΓ   and land-type boundary located on the Nador coastlines wΓ . Hence the following boundary 
conditions :                                                                                                                                                   

                            0=⋅∇ nu             on pΓ  and wΓ  
are imposed for the water flow and                                                                                                                        

                                          )cos( ***0 ϕω +++= tAhHh                    on pΓ                                                   (12) 

                                          0. =∇ nh                                                        on pΓ                                           

are used for the water height.                                                                                                                                     
In (12), H is the depth from a fixed reference level to the bottom, h0 is a given averaged water elevation taken 
here equal to 3m (initially we have h=H+ h0), A* is the tidal amplitude at the entrance of the lagoon, *ω  is the 
angular frequency of the tide, and *ϕ  is the phase of the tide. In the Nador lagoon, the main astronomical tidal 
constituents are the semidiurnal M2, S2 and N2 tides, and the diurnal K1 tide. The values of the parameters A*, 
*ω  and *ϕ  for each tidal wave are taken from [18] and are illustrated in table 1. Thus, the boundary condition 

on  pΓ   is replaced by                                                                                                                                                             
 

              )cos()cos()cos()cos( 1112222222220 KKKNNNSSSMMM tAtAtAtAhHh ϕωϕωϕωϕω +++++++++=            (13) 
 

Note that the boundary conditions for the water height on pΓ   are time-dependent and should be updated at each 
time step according to the condition (13).                              
                                                                                      

Table 1: Parameters for the considered tidal waves at the ‘’pass’’ of the Nador Lagoon. 

Tide A*[m] ω*[rad/s] ϕ*[°] 

M2 0.288 1.4052 10-4 -55.02 

S2 0.105 1.4544 10-4 -76.13 

N2 0.071 1.3788 10-4 -37.38 

K1 0.038 7.2921 10-5 -147.72 
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The computations have been performed with a physical time step tΔ  chosen in such a way that the following 
stability condition is satisfied 

( ) !
!

"

#

$
$

%

&

Γ

+
⋅=Δ

Γ
ij

p
ij

ji TT
CFLt

ij λmax2
min

 

where p
ijλ  is the eigenvalue of the system, evaluated at the interface  ijΓ  between two cells Ti and Tj, and CFL is 

the courant number taken here equal to 0.5 in order to ensure stability of the numerical scheme.                                                                                                                                                  
In the figure 5, is presented the water height inside the lagoon. The computations have been performed for 6 
days in physical times.                                                                                                                                                

 

 
Figure 5: Water depth contours in the Nador lagoon at physical time t = 24h. 

 
In Figures 6 and 7 respectively, are illustrated the velocity field together with the iso-lines of u-velocity in the 
case of high and low tides. The clear result is the presence of recirculation zones inside the lagoon. It is also 
clear that in case of high tides the water flow is coming from the Mediterranean part and feeds the lagoon, this 
can be clearly seen on the Figure 6. On the other hand, when the tides are low, the water flows from the lagoon 
toward the Mediterranean part (see Figure 7). One can also observe that the flow is almost inert at Beni Enzar 
and Kariat Arkmane regions. These regions could then be very affected in case of contamination by wastewater 
because the pollutant can stagnate in these regions.                                                                                                                                          
In order to validate the results obtained by our solver, and since the observation data are missing, computations 
have been compared with those obtained by using the finite volume Vazquez solver which is based on a well 
balanced modified Roe scheme (see [13]). Figures 8, 9 and 10 show the historic of water depth and u-velocity 
with time at three gauged points, G1 situated at the entrance near the “pass”, G2 situated inside the lagoon and 
G3 situated at Kariat Arkmane region where the flow is almost inert (see Figure 5).  
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Figure 6: Velocity field (left) and iso-lines of u-velocity (right) in the case of high tides. 
 

!  
Figure 7: Velocity field (left) and iso-lines of u-velocity (right) in the case of low tides. 

 

!
Figure 8:  Water depth and u-velocity versus time at gauged point G1 

( !
Figure 9:  Water depth and u-velocity versus time at gauged point G2 

!
Figure 10:  Water depth and u-velocity versus time at gauged point G3 

 
One remarks that the velocity is larger at the gauged point G1. This is due to the tide coming from the pass. The 
values of this velocity evolve from negative to positive depending on the case of high or low tides. Moreover, 
the negative and positive values of u-velocity at the gauged point G2 can be explained by the hydrodynamic 
circulations in this zone. Finally, at the gauged point G3 which is far from the tides and recirculation zones, we 
remark that the velocity is almost zero. One can notice also an excellent agreement between our results and 
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those obtained by the well known Vazquez finite volume solver, which confirms the capability of the finite 
volume solver developed here to deal with complicated geometries and real situations in shallow water flow. 
 

3.2! Transport of wastewater in the Nador lagoon 
As second validation test, we applied the solver for a contamination event in the Nador lagoon. The situation we 
consider here models the contamination by wastewater of the city. These wastewater are released from fifteen 
boundaries with discharge Q = 1 m3/s. The diffusion coefficients in x and y direction are taken constants Dx = 
Dy = 10-5 and the Manning's coefficient N = 10-3.  For this test case, three types of boundary conditions are 
specified respectively at the “pass” between the Mediterranean Sea and the lagoon noted pΓ , land-type 

boundary located on the Nador coastlines wΓ , and the fifteen boundaries cΓ  from where the wastewater are 
released. These boundary conditions are shown in Figure 11 below. Hence the boundary conditions are: 
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It is also important to mention that the initial conditions have been obtained by simulating the hydrodynamic of 
shallow water equations for 6 days in physical times until the flow is established (see results of the test case 1). 
After that, the water height and the velocity field are taken as initial state. The period of the tides has been found  
to be of the order of 12 hours. Figure 12 shows the contour plots of wastewater concentration at a physical time 
of 10 days.  

 
Figure 11:  Imposed boundary conditions. 

 
Figure 12:  Wastewater dispersion in the Nador lagoon after 

a physical time of 10 days. 
 

The pollutants coming from the fifteen boundaries are mixed and form some vortices inside the lagoon. This is 
due mainly to the recirculation in the hydrodynamic of the water inside the lagoon. The contaminant goes 
increasingly towards the “pass” in the direction of the Mediterranean part. It can be noted also in the legend of 
Figure 12 that the pollutant quantity that has been dispersed inside the lagoon is of the order 0.01, which is 
relatively low compared to the concentration released from the boundaries, but is significant to pollute the water 
in the lagoon. 

Conclusion and perspectives 
In this paper, a numerical code based on the finite volume method has been applied for the simulation of the 
hydrodynamic, water circulations and transport-dispersion of contaminant caused by wastewater in the Nador 
lagoon. The method consists of two stages, which can be interpreted as a predictor–corrector procedure. In the 
first stage, the scheme uses the projected system of the coupled equations and introduces the sign matrix of the 
flux Jacobian, which results in an upwind discretization of the characteristic variables. In the second stage, the 
solution is updated using the conservative form of the equations and a special treatment of the bed bottom to 
obtain a well-balanced discretization of the flux gradients and the source terms. The solver can be used on 
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complicated geometries with unstructured meshes. The tests cases presented here shows the good performance 
of the method and confirms its capability to provide accurate and efficient simulations for shallow water flows 
including complex topography and friction forces on unstructured grid.  
As perspective, a relevant study would also measure the residence time of water coming from the Mediterranean 
Sea into the lagoon in order to find a way to renew it often, and thus make it less polluted. An adequate 
numerical study would determine the necessity and indeed the eventual location of another passes between the 
lagoon and the Mediterranean permitting to reduce the residence time of a given tracer.   
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