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1. Introduction 

Rotating cylindrical shells form critical segments of machines such as jet engines, rockets, missiles, centrifugal 

filters and offshore drilling systems. The installation of sensitive equipment on these structures which feature 

high vibrations and resonance can cause them to malfunction. Analysis of free vibrations and critical speed 

during design can improve the safety and functionality of the shells.  

Functionally-graded materials are composed of two or more materials. The characteristics of such materials 

change in thickness with the type of function to create continuity of the mechanical features. Materials made of 

a combination of metal and ceramic are the best FGM materials. The high resistance of the ceramic at various 

temperature gradients, thermal stress, abrasion and oxidation and the toughness and strength of metal can be 

taken advantage of at the same time. 

So far many studies were carried out in regarding the free vibration of the FGM cylindrical shell. Loy et al. [1] 

analyzed the free vibrations of FGM cylindrical shells made of stainless steel and nickel with simply supported 

ends conditions. They concluded that the vibrational features of these shells are strongly similar to the shells 

made of isotropic materials. Pradhan et al. [2] investigated the vibrations of FGM shell with various boundary 

conditions using Love’s thin shells theory and Rayleigh Ritz method. Santos et al. [3] using a kind of semi-

analytical finite element model and three-dimensional linear elasticity theory studied the cylindrical shells made 

of functionally graded materials. Iqbal et al. [4] used wave Propagation method to analyze the vibrational 

characteristics of the shells made of functionally graded materials with various boundary conditions. Arjangpay 

et al. [5] studied the free vibrations of the shells made of functionally graded materials with numerical method 

and using Mesh-less Local Petrov-Galerkin (MLPG) method. They extracted the effects of power law index, 

geometric parameters and boundary conditions on the natural frequencies. Fakhari and ghorbani., [6] 

investigated free  vibration  of  FGM  thin  cylindrical  shells  under  non-uniform  linear  and  nonlinear  

internal pressure. 
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Abstract 

This study analyzed the free vibrations and critical speed of rotating bi-layered 

circular cylindrical shells made of functionally graded materials (FGM). The 

characteristics of the materials in both layers change continuously according to 

volume fraction power-law distribution. The Coriolis effects, centrifugal force 

and initial hoop tension created by the rotation and the Sanders’ thin shells 

theory equations were extracted. The effect of the ratios of length to radius and 

thickness to radius, the rotation speed of the shell, the composition of the 

materials in the layers, the power law index and circumferential and 

longitudinal wave numbers on the backward and forward natural frequencies 

and critical speed of the shells were investigated. The results indicate that the 

bi-layered shells improved vibration behavior over single-layered shells of the 

same thickness. The results were confirmed by comparison with the results of 

previous studies. The natural frequencies of the results for non-rotating bi-

layered FGM cylindrical shells and rotating single-layered FGM shells were 

compared and confirmed the accuracy of the results. 
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Multi-layered FGM cylindrical shells have different uses such as in atomic reactors. Lee et al. [7] studied the 

vibrations of three-layered shells with isotropic outer layer and the FGM core using Flügge’s shell theory. They 

used two different functions to determine the characteristics of FGM layer. Sofiyev et al. [8] analyzed the 

vibrations and stability of three layers cone shells with the middle layer made of functionally graded materials. 

They used Galerkin method to extract the equations and noticed that the important parameters in the vibrations 

of the shells are the combination of their materials and geometric parameters. Arshad et al. [9] studied the 

vibrations of the bi-layered cylindrical shells with layers of the different material. One layer is made of FGM 

material and the second layer is made of isotropic materials. The frequencies of the shells with long and short 

length and low and high thickness were extracted with changing of non-dimensional geometric parameters. 

Sepiani et al. [10] analyzed the vibration and the buckling of two-layered shells with the inner layer made of 

functionally graded materials and the outer layer made of isotropic materials. The shell under their investigation 

was under the static and periodic combined loading. Arshad et al. [11] studied the vibrations of FGM bi-layered 

shells made of two separate layers which are assumed to be perfectly bonded in the transverse direction at their 

interface without slip and their deformation is continuous across the layers interface. Shah et al. [12] analyzed 

vibrational characteristics of the three layered shells with inner and outer layer of FGM and isotropic middle 

layer.  

One of the important factors regarding the vibrations of the circular cylindrical shell is to determine the point at 

which the critical speed occurs. At this point the frequency of the shell reaches zero and resonance occurs. At 

the critical speed any remained imbalance in the shell coordinates with the rotation and causes the increase of 

the vibrations. Some studies are conducted regarding the critical speed of the shells. Kim and Bert, [13] used a 

simple theory to analyze the critical speed of the cylindrical shell. Ng and Lam, [14] studied free vibrations and 

critical speed of circular isotropic shells under constant axial load. Ahmad and Naeem [15] studied the vibration 

of FGM circular shells using Love’s thin shell theory. In that study, to analyze the effect of rotation speed only 

centrifugal forces were taken into account for facilitation of the equations. Hosseini Hashemi and Khorrami, 

[16] analyzed free vibrations of cylindrical shells made of functionally graded material by Differential 

Quadrature Method (DQM). The results extracted by them were compared and confirmed by ABAQUS 

software. The effect of the power law index and geometric parameters on the natural frequencies were extracted 

in their study. Daneshjoo et al. [17] studied the analysis of three dimensional vibrations and critical speed of the 

composite cylindrical shells with orthogonal stiffeners under axial load and pressure. They analyzed the effect 

of different parameters such as geometric parameters, axial load and pressure on the critical speed of the shells. 

Hosseini Hashemi et al. [18] presented analytical solution of vibrations and critical speed of the thick circular 

cylindrical FGM shells using Sander’s theory. In their study, were studied the effect of boundary conditions, 

rotation speed and geometric parameters on the natural frequencies and critical speed. Talebitooti et al. [19] 

presented the analysis of vibrations and critical speed of FGM shells under the thermomechanic loading using 

GDQ method. Civalek [20] using the discrete singular convolution (DSC) method, studied the free vibration 

analysis of rotating truncated conical shells, circular shells and panels. Isotropic, orthotropic, functionally 

graded materials (FGM) and laminated material cases were considered. Mehrparar [21] analyzed vibration of 

functionally graded spinning cylindrical shells using higher order shear deformation theory. 

Previous studies have not provided accurate analysis of the free vibrations and critical speed of circular 

cylindrical shells made of multi-layered functionally graded materials, nor have the Coriolis effects, centrifugal 

and initial hoop tensions been considered. The present study analyzed the critical speed of bi-layered circular 

cylindrical shells made of functionally graded materials which rotate around their longitudinal axes. Both layers 

are formed of functionally graded materials and the characteristics of the materials change continuously 

according to the volume fraction power-law distribution. To extract the equations of motion, the Sanders’ thin 

shell theory was used regarding the Coriolis effects, centrifugal forces and initially hoop tension created by 

rotation. The results were confirmed by comparison with the results of other studies. The natural frequencies 

were compared with results of previous studies on FGM non-rotating bi-layered cylindrical shells and rotating 

FGM single-layered shells and show the accuracy of the present study. The effect of the number of layers, 

environmental modes, longitudinal modes, power law index, composition of shell materials and geometric ratio 

on the natural frequencies and critical speed of the shells were extracted. 

 

2. FGM material properties 

FGM materials are made from a combination of two or more materials. Most of these materials are used in high 

temperature environments and the properties of these materials are defined as a function of temperature according 

to the following equation [1]: 
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   1 2 3

0 1 1 2 3P P P T 1 PT P T P T

       (1) 

 Where
0 1 1 2, , ,P P P P

and 
3P are constants at temperature T in Kelvin scale and are fixed for any specific matter. The 

characteristics of FGM, P related to ingredient properties and volume ratio and defined as follows: 

 
k

j fi

j 1

P P V


   (2) 

jP & fiV  in the aforementioned equation are the characteristics of materials and volume fraction j. Total volume 

ratio of materials is equal to one. 

 
k
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j 1

V 1


   (3) 

For a cylindrical shell with a uniform thickness h and a reference surface at its middle surface, the volume 

fraction of the two constituents for a shell having a single FGM layer can be expressed as [11]: 
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  (4) 

Where N is the power law (0 )N   . For a bi-layered functionally graded cylindrical shell with the constituent 

materials M1 and M2 for inner FGM Layer, M2 and M3 for outer FGM layer, the effective material parameters 

Young’s modulus E, Poisson’s ratio ν and the mass density ρ of both  layers are expressed as [11]: 
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  (5) 

Where 1 1 1

fgm fgm fgmE   and 22 2

fgm fgm fgmE   correspond to the resultant material properties for inner and outer FGM 

layers, respectively.  

 
Figure 1: Variation of material properties along the thickness direction of the bi-layered FGM 

cylindrical shell [9] 
 

Figure 1 shows that material M1 is enriched at the inner surface of the inner layer and is gradually reduced in 

the thickness direction till it has zero concentration at the outer surface of the inner layer, while material M2 is 

enriched at the outer surface of the inner layer and has zero concentration at the inner surface of the inner layer. 

Similarly, in the second layer material M2 is concentrated at the inner surface of the outer layer and has zero 

concentration at the outer surface of the outer layer, while material M3 is enriched at the outer surface of the 

outer layer and has zero concentration at the inner surface of the outer layer of the cylindrical shell. The material 

properties given in Equations (5) are for inner and outer FGM layers of the cylindrical shell which vary from 

−h/2 to 0 and from 0 to +h/2, respectively. From these relations, it can be concluded that at z =−h/2, the 

effective material properties become E=E1, ν=ν1, ρ=ρ1 for inner layer, for z =0, material properties become 

E=E2, ν =ν2, ρ=ρ2 in both layers, and at z =+h/2, the material properties turn into E=E3, ν = ν3, and ρ = ρ3 for 

functionally graded outer layer of the cylindrical shell. These results lead to the conclusion that there exists a 

smooth and continuous change in the material properties from material M1 at the inner surface to the material 

properties of M2 at the outer surface of the shell of the FGM inner layer of the cylindrical shell. Similarly in the 

outer layer, there is a variation in the material properties from material properties M2 at the inner surface of the 

outer layer to material properties M3 at the outer surface of the outer layer of the cylindrical shell. Similar 

behavior is seen in the inverse direction. For this shell, if the thickness to radius ratio is less than 0.05, it will be 

possible to use the theory of thin shells. In the next section, a formulation based on Sanders’ shell theory, for a 

functionally graded cylindrical shell is carried out. 
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3. Theory and equations 

The main purpose of this section is to obtain the equations of motion for FGM thin cylindrical shell shown in 

Figure 2, with uniform thickness h , radius R  , length L  and mass density  , which rotates about the x-axis at 

constant angular velocity . The shell has a coordinate system fixed on its middle surface. Membrane 

displacement in the longitudinal, circumferential and radial direction (x،𝜃،z) are shown by u, v and w and 

velocity vectors and displacements of a point on the shell are shown byV and r , respectively. The velocity and 

displacement vectors at each point of the shell is determined by the following equation. 

 ( 0) ( )V r i r        (6) 

 r u i vj wk     (7) 

 

 
Figure 2: Rotating Bi-layered FGM Cylindrical shell 

  

That i , j and k are unit vectors in x and 𝜃 and z directions, respectively when 0  . By combining equation (7) 

with equation (6), the velocity vector is obtained as follows: 

 ( ) ( )V ui vj wk i wk i vj             (8) 

In this equation u , v  and w are velocity components in three main directions. The kinetic energy of the shell is 

expressed by following equation [22]: 
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1
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2
t     (9) 

By putting equation (8) into equation (9), the kinetic energy of the shell can be obtained as follows: 
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Where 
t is the mass density per unit length and is defined by: 
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H/2 0
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

     (11) 

Where  1fgm and  2fgm represent the mass density of the constituent materials in both the FGM layers. The initial 

hope tension due to the centrifugal force is defined as [22]: 

 2 2N h R     (12) 

The strain energy of the shell due to hoop tension is given as: 
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Shell tensile and flexural strain energy can be written as follows [15]: 

  
L 2π

T

ε

0 0

1
U ε S ε R dθ dx

2
     (14) 

In this equation S is the stiffness matrix, and strain vector ε can be written as: 

  T

1 2 1  2ε e e  γ k k  2τ   (15) 

In this equation, the middle surface strain is determined by e1  ،e2 and γ and the middle surface curvature is 

determined by k1 ،k2 and 𝜏.  

The formulation in the present study is confined to linear elastic behavior with small displacements and hence 

small strains. The linear strain- displacement relations according to Sander's shell theory are [23] : 
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  (16) 

Stiffness matrix for shell is given by: 
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  (17) 

Here ijA , ijB and ijD (i, j =1, 2 and 6) are extensional, coupling and bending stiffness for isotropic materials, 

respectively and can be defined in both layers of the cylindrical shells as: 

      
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Reduced stiffness matrix Q determines by (19): 
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  (19) 

 

Displacement functions u  , v  and w considered as follow: 
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

  (20) 

mnA , 
mnB and 

mnC are constant modes of shape coefficient, m is the number of half – wave longitudinal wave and 

n is the number of half –wave circumferential waves. By substituting equation (18) and (19) into (17), the 

stiffness matrix of the shell is calculated and by substituting equation (20) in Sanders’ strain equations, the strain 

vector is calculated, and then according to equation (14), the  potential energy of the shell can be obtained. The 

total energy of the system is given as follows: 

 
h εΠ T U U     (21) 

Using the Ritz minimizing method, 

 
mn mn mn

Π
0        Δ A  ,  B  ,  C

Δ


 


  (22) 

The following matrix relation is extracted:  

 
11 12 13

21 22 23
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α α α A 0
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  (23) 

That αij  are the constants. For obtaining a non-trivial answer of the aforementioned equations, the determinant 

matrix must be zero. After expanding determinant, the characteristic equations of membrane frequencies can be 

obtained as follows: 

 6 4 3 2

1 mn 3 mn 4 mn 5 mn 6 1β ω β ω β ω β ω β β 0mn        (24) 

After solving equation (24), the natural frequencies of shell is extracted. 
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4. Results and discussion 

4.1. Materials 

Material properties listed in this study is expressed in table 1. 

 

Table 1: Material properties of FGM [24] 

Material Coefficients P0 P-1 P1 P2 P3 P 

Stainless 

steel  

(SS) 

E(N m
-2

) 201.04×109 0 3.079×10-4 -6.534×10-7 0 2.07788×1011 

ν 0.3262 0 -2.002×10-4 3.797×10-7 0 0.317756 

ρ(kg m
-3

) 8166 0 0 0 0 8166 

Nickel  

(Ni) 

E(N m
-2

) 223.95×109 0 -2.794×10-4 -3.998×10-9 0 2.05098×1011 

ν 0.3100 0 0 0 0 0.3100 

ρ(kg m
-3

) 8900 0 0 0 0 8900 

Zirconia 

(Zr) 

E(N m
-2

) 244.27×109 0 -1.371×10-3 1.214×10-6 -3.681×10-10 1.6806296×1011 

ν 0.288 0 1.133×10-4 0 0 0.297996 

ρ(kg m
-3

) 5700 0 0 0 0 5700 

Alumina 

(Al2O3) 

E(N m
-2

) 349.55×109 0 -3.853×10-4 -4.027×10-7 -1.673×10-10 3.8×1011 

ν 0.30 0 0 0 0 0.30 

ρ(kg m
-3

) 3800 0 0 0 0 3800 

 

4.2. Validation 

The accuracy and precision of the results in this study are evident when compared with results of previous 

studies. Table 2 shows the natural frequencies of five types of FGM bi-layered shells with non-dimensional 

geometric parameters L/R = 20, h/R = 0.002, longitudinal wave number (m) = 1, circumferential wave number 

(n) = 1,2,3,4,5 and power law index (N) = 5 as compared with the results of Arshad et al. [11]. 
 

 

Table 2:  Comparison of natural frequencies (Hz) with circumferential wave number n for power law exponent 

N =5 with geometrical parameters(m=1,h/R=0.002,L/R=20) for simply supported Bi-layer FGM cylindrical 

shells 

 

Zr-Ni-SS SS-Zr-Ni SS-Ni-Zr Ni-SS-Zr Ni-Zr-SS Material 
Present Ref.[11] Present Ref.[11] Present Ref.[11] Present Ref.[11] Present Ref.[11] n 
13.512 13.512 13.914 13.915 13.265 13.266 13.321 13.322 13.645 13.645 1 

4.5827 4.5808 4.7070 4.7113 4.4852 4.4853 4.5110 4.5108 4.6222 4.6257 2 

4.2234 4.2154 4.3923 4.4087 4.1281 4.1284 4.1509 4.1502 4.3185 4.3313 3 

7.1213 7.1114 7.4870 7.5069 6.9886 6.9889 7.0130 7.0123 7.3509 7.3665 4 

11.36 11.35 11.983 12.005 11.167 11.168 11.198 11.198 11.758 11.775 5 

Average error = 0.09 % 

 

Table 3 shows the natural frequencies of a single-layered FGM cylindrical shell at different rotation speeds (0 to 

200 rev/s) [18]. The frequencies were extracted for a shell composed of Al-Al2O3 for m = n = 1 modes.  

 

Table 3: Comparison of natural frequency for a rotating single layer FGM cylinder  

(h/R=0.01,L/R=3,N=1,n=m=1, AL-Alumina) 
 

Ff  (Hz) Fb (Hz) 
Ω(rad/s) 

Ref [18] Present Ref [18] Present 
518 516.97 518 516.97 0 

493.8 492.82 542.13 541.11 25 

469.56 468.66 566.2 565.23 50 

420.91 420.29 614.16 613.43 100 

372.07 371.87 661.85 661.56 150 

323.04 323.39 709.22 709.63 200 

Average error = 0.14 % 

 

Table 3 shows two columns for each rotating speed that reflects forward and backward frequencies. Indeed, 

rotation in the positive direction presents a decreasing behavior in the natural frequencies and rotation in the 

negative direction presents an increasing behavior in the natural frequencies. Hence, the natural frequencies of 
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rotating cylinder versus rotational speed bifurcate into two branches as the forward and backward whirl, 

respectively. The average values of the errors in Tables 2 and 3 are confirmation of the results of the present 

study when compared with results of previous studies. 

 

4.3. Effect of increase in the number of layers on critical speed 

In the related figures to the critical speed, the lower branch corresponds to the forward whirl and the upper 

branch corresponds to the backward whirl. The critical speed of the rotating shell corresponds to the rotational 

speed of the shell at the point where the forward mode intersects the abscissa. At this intersection, unstable 

phenomena may exist as the forward mode ceases for the travelling θ coordinate in preparation to switch to 

backward mode. At this critical speed, any residual unbalance will synchronize with the rotation and magnify 

the whirling amplitude. The results of the present study and other studies on critical speed confirm that this 

phenomenon only occurs at n = 1[14]. The results of the present study for critical speed in this mode were 

extracted and the effects of the different parameters on them was analyzed.  

Figure 3 shows the forward and backward natural frequencies for a single-layered shell (Ni-SS) and bi-layered 

shell (Ni-alumina-SS) for rotation speeds of 0 to 2000 (rad/s) at n = m = 1 with non-dimensional geometric 

parameters L/R = 6 and h/R = 0.002 and power law index N = 1.  
 

 
Figure 3: Variation of natural frequencies of a single layer (Ni -SS) and bi-layered (Ni-Alumina-SS) FGM 

Cylindrical shell versus Ω (L/R=6, h/R=0.002, n=m=1, N=1) 

As shown, at different rotation speeds, the natural frequencies of the bi-layered FGM shell are higher than those 

of the single-layered FGM shells. This is a major finding of the present study. Increasing one alumina layer 

without changing the total thickness of the shell increased the critical speed about 40% and its vibrational 

characteristics were substantially improved. 

 
4.4. Effect of mode on critical speed 

Figures 4 and 5 show the bifurcations of the natural frequencies for the transverse modes of (m,n) = (1,1), (1,2), 

(1,3) and (m,n) = (2,1), (2,2), (2,3) for bi-layered FGM shells of Ni-alumina-SS material and non-dimensional 

geometric parameters L/R = 6 and h/R = 0.002, respectively. Critical speed only occurred at n = 1; at higher 

circumferential modes, there was no critical speed. Increasing the rotation speed increased the distance between 

the forward and backward modes. When Ω = 0, increasing n decreased the natural frequencies, but increasing 

the rotation speed reversed these results; for example, at a rotation speed greater than 485 (rad/s) the backward 

frequency at n = 3 is higher than at n = 1 and n = 2. Comparison of Figures 4 and 5 reveals that the effect of 

rotation speed in higher longitudinal wave numbers is greater on critical speed and natural frequencies. 

Figure 6 shows the natural frequencies and critical speed based on the number of longitudinal waves                  

m = 1, 2, 3, 4, 5 at n = 1 for a bi-layered FGM shell made of Ni-alumina-SS and non-dimensional geometric 

parameters L/R = 6 and h/R = 0.002. As seen, an increase in the number of longitudinal waves from 1 to 5 

increased the critical speed of the shell and the increase was larger at lower longitudinal wave numbers. Figure 6 

also shows that the backward frequencies at the top of the chart at high rotation speeds and the number of high 

longitudinal waves approach each other. 
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  Figure 4: Variation of natural frequencies of a bi-

layered (Ni-Alumina-SS) FGM Cylindrical shell 

versus Ω (L/R=6,h/R=0.002, m=1, N=1) 

Figure 5: Variation of natural frequencies of a bi-

layered (Ni-Alumina-SS) FGM Cylindrical shell 

versus Ω (L/R=6,h/R=0.002, m=2, N=1) 

 
Figure 6: Variation of natural frequencies of a bi-layered (Ni-Alumina-SS) FGM Cylindrical shell versus Ω  

(L/R=6, h/R=0.002, n=2, N=1) 

 

4.5. Effect of power of law index on critical speed 
The power law index (N) effects the vibration and critical speed of a cylindrical shell made of functionally 

graded materials. Table 4 shows that an increase in N for both single layered and bi-layered shells decreased the 

critical speed. For each value of N, the addition of one alumina layer significantly increased the critical speed 

for different numbers of longitudinal wave numbers. For example at N = 0.01 and m = 1, the conversion of a 

shell from single-layered to bi-layered (without changing the total thickness) increased the critical speed about 

39%. 
 

Table 4: Critical speed of a rotating bi-layered (Ni-Alumina-SS) and single layer (Ni-SS) FGM cylinder  

(h/R=0.002, L/R=6, n=1) 

m=2 m=1 
N 

Ni-Alumina-SS Ni-SS Ni-Alumina-SS Ni-SS 

2814.528571 2022.138 1081.494216 777.4847 0.01 
2811.006315 2018.296 1080.148616 775.998 0.05 
2806.994846 2013.909 1078.613968 774.3005 0.1 
2785.06388 1989.784 1070.191907 764.9649 0.5 

2770.429967 1973.617 1064.549891 758.7084 1 
2749.038278 1949.972 1056.281036 749.5582 3 
2744.832396 1945.327 1054.65301 747.7608 4 
2742.041023 1942.246 1053.572114 746.5684 5 
2738.565668 1938.411 1052.226024 745.0845 7 
2737.410584 1937.137 1051.778544 744.5915 8 
2735.733434 1935.287 1051.128743 743.8757 10 
2733.380834 1932.694 1050.217099 742.8721 15 
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4.6. Effect of geometric parameters on critical speed 

Figure 7 shows the critical speed of the Ni-SS circular single-layered FGM shell and bi-layered Ni-alumina-SS 

versus non-dimensional ratio L/R. The critical speed of the shell rapidly decreased as the L/R ratio increased 

and at higher L/R ratios the values became nearly constant. Adding an alumina layer and converting the shell 

from single-layered to bi-layered in longitudinal modes 1 and 2 increased the critical speed. This increase was 

significant at low L/R values and was less at high L/R values. The effect of increasing the number of layers on 

critical speed at higher m values was larger. 
 

 
Figure 7: Variation of critical speed of a single-layer and bi-layered FGM Cylindrical shell versus L/R ratio  

(h/R=0.002, N=1, n=1) 

 

4.7. Effect of combined materials in layers on critical speed 

Figure 8 shows the effect of different combinations of layer materials on the critical speed of a circular FGM 

shell. For each arrangement, the critical speed point changes, which shows the strong effect of combined 

materials on the critical speed of the shells. The high modulus of elasticity and low density of the ingredients 

had a significant effect on critical speed. The combinations in Figure 8 showed the highest critical speed was 

recorded for the Al-alumina-Zr bi-layered shell and the lowest critical speed for the Ni-Zr-alumina shell. 
 

 
Figure 8: Variation of natural frequencies of a bi-layered FGM Cylindrical shell versus Ω  

(L/R=6, h/R=0.002, m=n=1, N=1) 
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Conclusions 

This study analyzed the critical speed of rotating bi-layered circular cylindrical shells made of functionally 

graded materials. To extract the movement equations, the Sanders’ thin shells theory was used while 

considering the Coriolis effects, centrifugal force and initial hoop tension. The effect of different parameters on 

the critical speed was studied and the results extracted. It can be seen that, at different rotating speeds, the 

natural frequencies of the bi-layered FGM shells were higher than for those of the single-layered FGM shells 

and their vibrational characteristics improved remarkably. The longitudinal wave number had a great effect on 

critical speed. It was observed that the critical speed of the shell increased as m increased and that the amount of 

increase was greater for lower longitudinal wave numbers. An increase in N in single- or double-layered shells 

decreased the critical speed. The critical speed of the shell rapidly decreased as the L/R ratios increased; at 

higher L/R ratios, the values were nearly constant. The mechanical properties of the layer materials had a strong 

effect on the point of critical speed of the shell. 
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