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1. Introduction 

Two-dimensional depth averaged models have become very popular since the last decades, and the shallow 

water equations in depth-averaged form have been successfully applied to many engineering problems, and their 

application fields include a wide spectrum of phenomena other than water waves. For instance, the shallow 

water equations have applications in environmental and hydraulic engineering such as tidal flows in an estuary 

or coastal regions, rivers, reservoir, and open channel flows. Such practical flow problems are not trivial to 

simulate because the geometry can be complex, and the topography tends to be irregular. In addition, most of 

water free-surface flows encountered in engineering practice are turbulent characterized. This property makes 

direct numerical simulation of turbulent flows very difficult. 

In this paper, we adopt the depth-averaged k  model proposed in [1], which was the first depth-averaged 

two-equation eddy viscosity model, and it is still the most commonly used with the depth-averaged models 

when turbulent effects are accounted for in the computation. The depth-averaged k  model constitutes an 

alternative for direct numerical simulation and large eddy simulation in industrial codes. Their advantage lies in 

the fact that the resolved quantities are assumed to be deterministic and therefore require no effective capture of 

random fluctuations, especially in the near-wall regions. As a direct consequence, the spatial discretizations 

involved may be significantly more larges. More details concerning the depth-averaged models can be found in 

the references [2-3] and for research studies on modeling and numerical simulation of turbulent shallow water 

flows, we cite, for example, [4-5]. 

Research on numerical methods for the solution of the shallow water equations has attracted tremendous 

attention in the past years. The finite volume numerical discretization of the convective flux in the shallow water 

equations has been extensively studied in many recent works, see for example, [6-11]. A useful finite volume 

Non-Homogeneous Riemann Solver method in computing such solutions is proposed and studied throughout 

many papers by Benkhaldoun et al, in [12-14-16]. The flux gradient and source term are balancing and the 

Journal of Materials and  
Environmental Sciences 
ISSN : 2028-2508 

 

Copyright © 2017,                            

University of Mohammed Premier      

Oujda Morocco http://www.jmaterenvironsci.com/  

An enhanced finite volume method for numerical simulation of turbulent 

shallow water flows  

 
A. Abakouy

1
, EM. Chaabelasri

1, 2
, N. Salhi

 1
, I. Elmahi

3
 

 

1. LME, Faculté des Sciences, BP. 717,  60000 Oujda, Maroc 

2. Ecole National des Sciences Appliquées, BP.03, Ajdir Al-Hoceima 

3. ENSAO, EMSN, COSTE, Université Mohammed 1, B.P. 669, 60000 Oujda, Morocco. 

 

 
Abstract  

 

We consider in this work an expanded finite volume numerical approximation 

of the turbulent k  shallow water equations, on unstructured meshes, we use 

a simple discretization in wish only physical fluxes and averaged states are 

used in their formulations. To control the local diffusion in the scheme and also 

to preserve monotonicity, a parameter is introduced based on the sign matrix of 

the flux Jacobian. Numerical results are presented and compared with 

experimental data, for a backward-facing flow problem, to demonstrate and 

confirm its capability to provide accurate simulation of turbulent flows. 

Furthermore, we test the method on a practical problem by simulating flows in 

Moulouya River. The main focus is to examine the performance of the method 

for complex geometries that involve water recirculation. The obtained results 

demonstrate its ability to capture the main flow features. 

Received 29 Dec 2016,  

Revised   21 Feb 2017,  

Accepted 23 Feb 2017 
 

Keywords 

 Shallow water 

equations;  

 Turbulence model;  

 Depth-averaged k   

model;  

 Finite volume;  

 Unstructured mesh ; 
 

A  Abakouy 

abkouy2012@gmail.com      
+212635442905 

 

http://www.jmaterenvironsci.com/  

http://www.jmaterenvironsci.com/
mailto:abkouy2012@gmail.com
http://www.jmaterenvironsci.com/


Abakouy et al., JMES, 2017, 8 (5), pp. 1708-1717 1709 

 

stability analysis of the scheme leads to the introduction of the sign matrix of the flux jacobian. The method is 

successfully applied in many problems and confirms its capability to provide accurate and efficient simulations 

of real problems, such the numerical simulation of pollution dispersion in the Strait of Gibraltar [15] and 

sediment transport in the Nador lagoon [17]. 

In the current work, we propose an enhanced finite volume method that incorporates the techniques of the 

methods proposed in [13]. Our main goal is to present a class of efficient numerical methods that can accurately 

solves the turbulent k  shallow water equations. We, firstly, rearranged the turbulent k  shallow water 

equations in a model forms a hyperbolic system of conservation laws with source terms. Then, the finite volume 

Non-Homogeneous Riemann Solver is used to solve this system. The method employs only physical fluxes and 

averaged states in their formulations. To control the local diffusion in the scheme and also to preserve 

monotonicity, a parameter is introduced based on the sign matrix of the flux Jacobian.  

The structure of this paper is as follows. In Section 2, we present the mathematical equations for turbulent 

k  shallow water equations. The formulation of the finite volume method is detailed in Section 3. Section 4 

is devoted to numerical results. Finally, Section 5 contains the conclusions. 

 
2. The turbulence shallow water equations 

In conservation form, the two-dimensional non-linear shallow water equations are given by the depth-averaged 

continuity equation and the respective x- and y-depth-averaged momentum equations [18-19]: 
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where h is the total depth from the sea bed to the free surface, u and v are the depth-averaged velocity 

components in the Cartesian x and y directions, bz  is the bed elevation above a fixed horizontal datum, g the 

acceleration due to gravity, and 
fxS  and 

fyS  are the bed shear stress components, defined as 

2222 , vuvCSvuuCS bfybfx  
                                              (4) 

where   is the water density and bC  is the bed friction coefficient, which may be estimated from 
2
M

1
3

gn

b
h

C  , 

where Mn  is the Manning coefficient,  is the kinematic viscosity of water, and t  is a turbulent eddy 

viscosity, that quantify the energy dissipation due to the turbulent interactions among the particles.  

To determine the turbulent eddy viscosity, the k  model is used, in which k  is the turbulence kinetic energy 

and   is the dissipation rate per unit mass. The shallow water equations are obtained from depth integration, 

therefore it seems reasonable to use the same calcul of the k  model [6]. Therefore, the turbulent eddy 

viscosity is calculated as:  

2

t

k
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                                                                                          (5) 
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Where k and ε are given by the transport equations 
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HP is the production of k due to interactions of turbulent stresses with horizontal mean velocity gradients, and 

kVP  and VP  are the productions of k and  due to vertical velocity gradients and are related to the friction 

velocity 
*U . The friction coefficient Cf  can be obtained as:  

2* )kU C U


                                                                      (8) 

 Finally, the values of the empirical constants considered in this study are 0.09C  ,
1 1.44C  , 

2 1.92C  , 1.2k   

and 1.3  . 

 

3. Enhanced finite volume Scheme   

For simplify, using matrix-vector notation, the two dimensional turbulent shallow water system can be written: 

)()(
~

)(
~

)()( 2121 WSWFWFWFWFW  yxyxt                                  (9) 

where W  is the vector of dependent variables, 1F , 2F  are the inviscid flux vectors, 
1F , 

2F are diffusive flux 

vectors, S  is the vector of source terms, and the subscripts x, y, and t denote partial differentiation.  In full, the 

vectors are: 
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In order to discretize system (9), the domain is meshed with a set of conforming triangular elements. Using the 

control volume dedicted in Figure 1, a finite volume discretization of (9) yields  

 

Figure 1:  Control volume model and notations. 
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Where ),( ni

n

i txWW  is the vector of conserved variables evaluated at time level tntn  , n is the number 

of time steps, t  is the time step, and iV is the area of cell iV .  F and F


are the advection and diffusion 

fluxes given by 
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To evaluate the state
n

iW , an approximation is required of the convective and diffusive flux terms at each edge 

of the cell. For this purpose, a Non Homogeneous Riemann Solver, developed in [12-14] for non-homogeneous 

hyperbolic systems to evaluate the convective flux. In this work, a special attention was taken to extend this 

scheme to k  turbulent shallow water flows. The construction of the numerical scheme is based on the 

hyperbolicity of the system and the self-similarity of the solution, it's consists of a predictor and corrector stages 

as: 
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Where ( ( , ))n

ijFA W n is the Jacobian matrix with respect to 
n

ijW , and 
n

ijW  is approximated either by Roe’s 

average state.  

To determine the sign matrix of the Jacobian in the prediction stage, a projection of k  turbulent shallow 

water equations (9) including only advection and slope terms according to the normal   and tangential  is 

required. In condensed form the resulting projection can write as [15]: 
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u and u are the normal and tangential velocity. Then a upwind scheme is used for the evaluation of the 

projected averaged state 
n

ijU on each adge 
ij . The predictor stage is then formulated as: 
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Where U and F as some defined in (16), U  is the Roe’s average state and ijS is the slope term vector 

upwinded given by: 
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( )UR and ( )UΛ are respectively the eigenvector and eigenvalue matrices of ( ( , ))n

ijF UA n . In [14] find out 

more details on the explicit form of the matrix in (10).  

Once the the projected state 
n

ijU  on each edge 
ij is obtained using (17), the conservative state 

n

ijW is then 

evaluated using the transformations 
x yu u n u n   and .x yv v n v n   To discretize the diffusion fluxes in 

(9) we used a Green-Gauss diamond reconstruction, adopted by [15-16]. This method is selected because is 

applied for unstructured triangular mesh without any restriction on the angles of triangles. The construction of 

the method begins by the reconstruction of a co-volume ijcoV centred on the edge 
ij  by connecting 

barycentres of the triangles that share the edge 
ij  and its endpoints. The diffusion flux at the interface 

ij  is 

the evaluated as : 
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Where , and n  denote, respectivement ( , , , ), ( , )u v k x y and ( , )x yn n in diffusion vector. The gradient 
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on the interface 
ij  are computed using the nodes of the co-volume ijcoV (see figure 1) as follows:  
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Where 
1N  and 

2N are the nodes of the edge 
 
on the surface

ijcoV  , 
1N  and 

2N  are the values of the 

incnoune   in the node 
1N  and 

2N , respectively. 

 
4. Results and Discussion 

For demonstrate the performance and accuracy of the developed scheme, two test cases are selected. The first 

example is a turbulent flow in a channel with forward-facing step for which experimental results are available. 

This example is selected to test the performance of the model to reproduce the experimental results, especially 

the recirculation zone after the expansion though a qualitative comparison of the numerical results to the 

experimental data. The second is a practical test example in a section of Moulouya River; the computational 

domain is a real domain contains complicated two-dimensional geometries, eddy viscosity; which can be a 

challenge for most numerical methods.  In the examples reported in this work, the stability of the the present 

explicit scheme is guaranteed by choosing a time stepsize t  according to the Courant-Friedrichs-Lewy (CFL) 

criterion, giving : 
 

min
2 max( ( ) )ij

i j

ij p ij

V V
t CFL
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 
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 
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                                                   (23) 

where CFL  is the Courant number ( 0 1CFL  ), ( )p ij is the eigenvalue of the system evaluated at the 

interface ij  between two cells iV and jV .For all numerical solutions presented here, the Courant number is 

set to 0.6CFL  and the initial conditions are selected for the water depth as inlet boundary when the flow are 

at rest.   
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5. Flow in a channel with for forward-facing step 

Two-dimensional turbulent flow past a sudden expansion in a sidewall is the first example, in order to test the 

ability of the numerical model to reproduce the recirculation zone that develops behind a step due to flow 

separation at a step. The results will be compared against data obtained by Fe et al. [20] who carried out an 

experimental and numerical study of recirculation in a water channel containing a sidewall expansion. The 

computational domain consists in a 0,5 3,5m m horizontal channel with an abrupt expansion located at 1m from 

the inlet, commonly known as backward facing step (show figure 2). The inflow discharge at the left boundary 

is enforced with 20.2 /l s and imposed a water height of 24.2cm  at the outflow boundary. the no-slip condition 

assumes that at a solid boundary, the fluid will have zero velocity is imposed for the rest. An unstructured 

triangular mesh are generated for the channel with consist of a 2000 nodes and 3691 elements (see figure 3).   

In Figure 4 and 5, we present a comparison between experimental and computational results; we illustrate the 

snapshot of the velocity and the kinetic energy along with the velocity fields. For clear presentation, we have 

also included streamlines within the presented results. From these results, we can see that the proposed method 

resolves accurately the flow structures, and the vortices seem to be localized in the correct place in the flow 

domain. For instance, the recirculation zone is in good agreement with the experimental measurements. For 

more comparisons, Figure 6 shows profiles of the velocity at 1.53x m within the measurement values. A good 

agreement between measured and predicted profiles has been obtained.  

 

Figure 2: Flow in channel with a backward-facing step: Definition of problem domain. 

 

Figure 3: Flow in channel with a backward-facing step: Unstructured triangular mesh used in numerical model. 

 

Figure 4:  Flow in channel with a backward-facing step: Comparison of experimental (top) and numerical 

(bottom) results of kinetic energy k.  
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Figure 5: Flow in channel with a backward-facing step: Comparison of experimental (top) and numerical 

(bottom) results of velocity fields.   

 

Figure 6: Flow in channel with a backward-facing step: a cross section at x=1.53m, 2.03m and 2.53m of the 

velocity, with a comparison between experimental and numerical results. 

6. Turbulent shallow water flow in Moulouya River 

The method proposed has been also applied to modeling steady turbulent flow in a small shallow river. The 

selected domain is one reach of the Moulouya River in Morocco, near Rass Elma City. Figure 7 displays the 

digital map of the selected domain, the total length of the calculated river reach is 280m, the flow direction if 

from the southwest to the northeast. A flow velocity 0.35m/s is set to at the inlet boundary, and the water depth 

is set to 1.5m at the outlet boundary, assuming that initially all computational cells in each of the streams had a 

velocity equal to zero. The river has small bathymetry irregularities with horizontal dimensions, no wetting 

drying case are considered herein. The Manning coefficient is set to 0.005. An unstructured triangular mesh are 

generated, which consists of 24350 nodes and 46921 elements (figure 8), to use for computations. A CFL=0.6 is 

used of computational runs.  

The figure 9 shows the simulation results which represent the behaviours of flow throughout, respectively, 

velocity magnitude and streamlines. The figures 10 represents a zooming snapshot over the largest recirculation 

zone, it contains the distribution of velocity fields and turbulent kinetic energy. These results show that the 

turbulent flow in the curved river has common behaviour with the open channel flow with forward-facing step. 

There is the large recirculation region after the bend when the flow tends to move to the opposite bank. The 

irregularities of the river generate this structure of the flow throughout these shores. The model predictions are 

reasonable in terms of magnitude as well as general direction of the depth-averaged velocities and accurately 

reproduce a region of recirculation along the inner bank downstream of the bend. 
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Figure 7: Turbulent shallow water flow in Moulouya River: Geographical map and location. 

 

Figure 8: Turbulent shallow water flow in Moulouya River: Unstructured triangular mesh used in numerical model 

 

Figure 9: Turbulent shallow water flow in Moulouya River: streamlines and velocity magnitude. 
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Figure 10: Turbulent shallow water flow in Moulouya River: Turbulent kinetic energy (left) and flow field (right). 

 

Conclusions 

In this study, a enhanced finite volume numerical approximation based on the Non-Homogeneous Riemann 

Solver formulation was expanded and applied to the turbulent shallow water problem. The governed equations 

are based on two dimensional depth-averaged model which combines the basic shallow water equations and 

depth-averaged k  model. The numerical model was performed to investigate a turbulent open channel flow. 

Overall, through the turbulent flow simulations in backward-facing channel and Moulouya River, the results 

showed good agreement with experimental data, which implies the capability of the scheme in resolving 

accurately the flow structures. Furthermore, the model shows acceptable results in modeling turbulent flow in 

open channels, as well as tow-dimensional flow.  
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