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1. Introduction  

Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering  

applications  and  has  been  the subject of  interest  for  many  researchers. Some of these include the energy 

conversion systems found in some design of nuclear reactor, heat exchangers, solar collectors, cooling of 

industrial machines and electronic components.  

Considerable work has been done, in recent years, on the investigations of the flow and heat transfer processes 

at the shell-side. These are of special interest in order to improve the accuracy of prediction of heat exchangers 

performances. Somme  works  are  of  particular  interest  in  the  improvement  and  the  prediction  of the flows 

around baffles . 

These studies are devised as experimental and numerical techniques. An extensive experimental study of 

turbulent flow and heat transfer past baffles [1-3] in heat exchangers, has been performed by various authors. 

Among others, Patankar and Sparrow [1] solved numerically, the problem of fluid flow and heat transfer in fully 

developed heat exchangers, these one was equipped by isothermal plate placed transversely to the direction of 

flow. They found solid plates caused strong recirculation zones in the flow field. They concluded that the 

Nusselt number depends strongly on the Reynolds number, and it is higher in the case of fully developed then 

that of laminar flow regime. Demartini et al [2] conducted numerical and experimental investigations on 

turbulent flow inside a rectangular channel containing two rectangular baffles. They found that numerical results 

were in good agreement with those obtained by experiment. In conclusion, baffles play an important role in the 

dynamic exchangers studied. Indeed, regions of high pressure' recirculation regions 'are formed nearly to 

chicanes. Rajendra et al [3]. Where conducted an experimental work on study of heat transfer and friction in 

rectangular ducts with baffles (solid or perforated) attached to one of the broad walls. Another study was 

reported by Wilfried et al [4]. These authors examined experimentally turbulent flows throughout tubular heat-

exchangers. The authors focused on the impact of the baffles on heat transfer, and the geometrical properties of 

the heat-exchanger on the overall thermal efficiency. Ahmet et al [5] examined the effect of the geometric 

parameters on the steady turbulent flow passing through a pipe with baffles. The effect of the orientation and the 

distance between nine baffles on the improvement of heat transfer was highlighted in this work. Another 

experimental investigation was carried out by Molki et al [6] to evaluate heat transfer and pressure losses in a 
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rectangular channel with baffles. Recently, Saim et al [7] presented a numerical study of the dynamic behavior 

of turbulent air flow in horizontal channel with transverse baffles. They adapted numerical finite volume method 

based on the SIMPLE algorithm and chose k-ε model, for treatment of turbulence. The  results  obtained  for  a 

case of such  type, at  low  Reynolds  number, were  presented  in  terms of  velocity  and  temperature  fields. 

They found the existence of relatively strong recirculation zones near the baffles. The eddy zones are 

responsible of local variations in the Nusselt numbers along the baffles and walls. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The  main  objective  of  the  present  work  is to investigate  the  forced turbulent  convection  in  a  

two-dimensional channel containing  two  baffles  placed on the lower wall. To carry out this study, we have 

used a thermal model. The analysis of the turbulent flow of  the  air  in  this  channel  allows  to  understand  the  

dynamic and thermal  comportment from a channel, to  knowing upstream ,downstream and between the  two  

baffles. For  the different  placement  between  the  baffles  are  presented  and  a special  interest is given to the  

influence  of  the  Nusselt  number. The  simulation results  are then  analyzed  to  explain  this real application 

in  the field of  heat  exchangers and their  importance in the industry. The remainder  of  this  article  presents, 

in section 2, a  presentation  of  the  physical model  and  a brief  description  of  the mathematical formulation. 

Section 3 is dedicated to the numerical technique. Section 4 is devoted to the presentation and comments of the 

obtained results. Then, a general conclusion will be presented. 
 

2. Mathematical modeling and analysis 

2.1. Description of the physical model 

The geometry of the problem is presented on (Fig 1). Is a rectangular duct with isothermal horizontal walls, 

crossed by a stationary turbulent flow. The physical properties are considered to be constants. In this   numerical 

investigation, the following hypotheses are adopted: 
 

(i) Physical properties of air are constant. 

(ii) A profile of velocity is uniform at the inlet.  

(iii) The radiation heat transfer is negligible. 

(iv)The flow is assumed to be steady. 

NOMENCLATURE 

 C1 - Turbulent constant used in the standard k-ε model                           Re -Reynolds   number (= ρ𝐷ℎ𝑈0/µ) 

 C2-  Turbulent constant used in the standard k-ε model                           k - turbulent kinetic energy, [m²/s²] 

 Cμ -  Constant used in the standard k –ε model                                         υ- kinematics   viscosity, [m²/s] 

 μl , μt- laminar, turbulent viscosity, [Pa.s]                                                 μe- effective viscosity, [Pa·s]                                                                                   

 P- Pressure, [Pa]                                                                                        L -channel  length, [m]   
 T- Temperature, (K)                                                                                 uint - inlet velocity [m/s]                                                              

  -Width of baffles, [m]                                                                           di=1,3- distance between two baffles, [m]                                                     

 𝑈0-Inlet velocity [m/s]                                                                              𝑆∅- limit of source for the general variable 
 u, v -  Fluid velocity in the x- and y-direction,[m/s]                                 L1-distance   upstream   of   the   first   baffle,[m]  
 Tint  -  Inlet temperature (°C)                                                                      h- baffle height, [m] 

Greek symbols 

𝑁𝜇 - Local Nusselt number 

G - Flow production term.                                                                          ρ- density of the air  [Kg/𝑚3] 

𝐷ℎ - Hydraulic diameter, [ m]                                                                      in, out -  inlet, outlet  of  the  test  section  

H - Channel height, [m]                                                                              Φ - Stands for the dependent used u,v,T, k and ε 

𝑓𝜇  - Modeling damping functions for the LRN k-ε model                          𝜎𝐾 , 𝜎𝜀  ,𝜎𝑇- turbulence  model constant  for  k, ε  

Ʈ𝛷- diffusion   coefficient                                                                           and  T 

      

Subscripts   and Superscripts 

ε- dissipation   rate of turbulence energy,[m²/s²]        

f - fluid 

t – turbulent 

 w - wall 

e – effective 

SIMPLE- Semi-implicit method for pressure-linked equations 
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Fig 1: The geometry of the system under investigation: Plate baffles  

 

2.2. Mathematical modeling 

Under these conditions, transport equations that describe the principle of conservation of matter and momentum 

can be written in the following form Patankar [8]: 
 

  ( )u
S

x y x x y y
  

          
                                                                                 

(1) 

 

Φ is a vector composed of the scalars u, v, k and ε. 

u and v stand  for  the  mean  velocities  towards  the  axis  x  and  y  respectively. 

k and ε stand for  kinetic energy and turbulent  dissipation  respectively. 
 

 and S represent  the  coefficient  of  turbulent  diffusion  and  the source  term associated  with  the variable 

 ,The expressions of  ,  and S are presented for. 

- The continuity equation : 

 

1

0

0S















  

The continuity equation is given by: 

    0u v
x y
 

 
 

                                                                                                                        

(2)                                                                       

- The momentum equation in X-direction : 

e

u

P
S

x







 






 



  

The momentum equation in X-direction is given by: 

       2 ( )l t l t

P u u
u uv

x y x x x y y
     

         
                                                           

(3) 

- The momentum equation inY-direction : 
 

 
e

v





 




  

P
S

y



 


 

The momentum equation in Y-direction is given by: 

       2

l t l t

P v v
uv v

x y y x x y y
     

          
          

           

                                (4) 
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- The energy equation :  
 

0

t
l

T

T

S








 





 



  

 

The energy equation is given by: 

  ( ) t t
l l

T T

T T
uT vT

x y x x y y

 
   

 

            
           

                                                      

(5) 

- Turbulent energy equation : 

t
l

k

k

S G








 







 

  

  

 

The turbulent energy equation is given by: 

  ( ) t t
l l

K K

K K
uK vK G

x y x x y y

 
    

 

             
              

                                 

(6)        

- The turbulent dissipation equation : 
 

0

t
lT

S







 







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The turbulent dissipation equation is given by: 

( ) ( ) t t
l lu v

x y x x y y 

  
     

 

             
            

                                                        

(7)           

Where, for a 2-D, the flow production term becomes: 
2 22

2 2t

u v v u
G

x y x y

        

        
           

l and t represent, respectively, the laminar and turbulent viscosities. 

e l t     

2

. . .t

K
f c  




 
The turbulent constants  correspond to those suggested by Launder  and spalding [9] and  Chieng et al  [10]  

These constants are arranged in  the  table  below (Table  1). 

 

Table 1: Turbulent constant in the governing equations 
 

C  1C  2C  T  
k    

0,09 1,44 1,92 0,9 1 1,3 
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2.3 .Boundary conditions:  

A fully developed turbulent flow is considered. The quantities K, ε are obtained by using numerical calculations 

based on the k-ε, model. 

The boundary conditions are listed below: 
 

1- At  the inlet of  the channel: 
 

int 7,8 /u u m s   , 0v   

2

in in0,005K U  

20,1in inK   

300inT K  
 

Kin  Stands for the admission condition for turbulent kinetic energy, and εin   is the inlet condition for dissipation. 
 

2- At  the  walls: 
0, 0u v K      

373WT T K   
 

3- At the exit: all gradients are null. 

0
u v K T

x x x x x

    
    

    
 

 

atmP P
 

 

2.4. Mathematical Resolution 

The discretization consists to transform a transport differential equation into a system of algebraic equations. As 

shown by the following mesh, the integration of the equation (1) is done on the control volume (square mesh)  

of center P, (Fig 2). 
 

       
    Fig 2: Two-dimensional control volume (Square mesh) 

Then, the transport equation (1) can be written from: 

( ) ( ) ( ) ( )e w n s e w n s

v

u u v v S dv
x x y y

    

   
           

   
       

                                   (8) 

eD
x





                                                                                                                      ,                                                           
wD

x





                                                 ,                                                               ( ) E P
e

x x

  


 
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sD
y





                                                                                                                   ,                                                               nD
y





                                                                        ,                                                            ( ) P w
w

x x

  


 
 , 

e eF u                                                                                                                    ,                                                           n nF v                                                                                 ,                                                                 ( ) N P
y

y y

  


 
  

w wF u                                                                                                               ,                                                               s sF v                                                                                ,                          ( ) P S
s

y y

  


 
 

Hence, the expression of equation (8) becomes: 

( ) ( ) ( ) ( )e e w w n n s s e E P w P w n N P s P S v

V

F F F F D D D D S Dv                               (9) 

The value of  on the faces e, w, n and s can be given by scheme “Quick” (Quadratic upwind differencing 

scheme), which proposes to approximate the variation of the variable Ф, by a quadratic interpolation where uses 

a three point upstream weighted quadratic interpolation for cell face values: 2 bracketing nodes and one in the 

further upstream side. 
 
 

                                 
                                

 

 

                                                                                                                   
1 2

6 3 1

8 8 8
face i i i      

 
When, 𝑢𝑤  > 0 and 𝑢𝑒  > 0 a quadratic fit through WW, W and P is used to evaluate  ∅𝑤 , and a further quadratic 

fit through W, P and E to calculate  ∅𝑒  (Fig 2). 

And when,𝑣𝑠>0 and 𝑣𝑛>0 values of φ at S, P and SS are used for ∅𝑠, and values at P, N and S for ∅𝑛  (Fig 2).  

It  can be  shown  that  for  a  uniform grid the value  of  at  the  cell face between two bracketing nodes i and 

i − 1 and upstream node i − 2 is given by the following formula: 
 

1 2

6 3 1

8 8 8
face i i i      

 
When, 𝑢𝑤  > 0, the bracketing nodes for the west face w are W and P, the upstream node is WW. 

6 3 1

8 8 8
w W P WW                                                                                                                  (10) 

When, 𝑢𝑒  > 0, the bracketing nodes for the east face e are P and E, the upstream node is W, so: 

6 3 1

8 8 8
e P E W                                                                                                                     (11) 

The same thing is done for the vertical "y" direction, using the faces "n" and "s" and by introducing the Quick 

diagram nodes N, NN, S and SS (Fig 2). 

 

6 3 1

8 8 8
n P N S                              (12)           ,         

6 3 1

8 8 8
s S P SS                                (13) 

Finally, the equation (9) is discretized on the mesh with P at center, where as the direction of flow  on 

these faces as  ( 𝑢 𝑒  >0,𝑢𝑤>0,𝑣𝑛>0,𝑣𝑠>0). 

p p E E w w N N S S WW WW SS SS x

v

a a a a a a a S dv                                                              (14) 

          

With:  

 
 
 

 
 𝑎𝐸 = 𝐷𝑒 −

3

8
𝐹𝑒             

𝑎𝑤 = 𝐷𝑤 +
1

8
𝐹𝑒 +

6

8
𝐹𝑤

𝑎𝑁=𝐷𝑛−
3

8
𝐹𝑛                     

𝑎𝑆 = 𝐷𝑠 +
1

8
𝐹𝑛 +

6

8
𝐹𝑠  

 
 

 
 

 and neighbour coefficients,  

 
 
 

 
 𝑎𝑤𝑤 = −

1

8
𝐹𝑤                                              

𝑎𝑆𝑆 = −
1

8
𝐹𝑠                                               

𝑎𝑝 = 𝑎𝐸 + 𝑎𝑊 + 𝑎𝑁 + 𝑎𝑆 + 𝑎𝑊𝑊 + 𝑎𝑆𝑆

+ 𝐹𝑒 − 𝐹𝑤  +  𝐹𝑛 − 𝐹𝑠  
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For, 𝑢𝑤  < 0 , 𝑢𝑒  < 0 ,𝑣𝑛 <0  and  𝑣𝑠<0, the  flux across  the west ,east, north and south  boundaries  is given by  

the expressions,(Fig 2): 

6 3 1

8 8 8
e E P EE              (15)                     ,              

6 3 1

8 8 8
w P W E                (16) 

6 3 1

8 8 8
n N P NN             (17)                  ,                 

6 3 1

8 8 8
s P S N               (18) 

Substitution of these formulae (15, 16, 17, 18), for the convective terms in the discretised equation (9), after 

rearrangement, we obtain the following formula. 

P P E E W W EE EE NN NN S S N N y

v

a a a a a a a S dv                                              (19) 

   With:  

 
 
 

 
 𝑎𝑤 = 𝐷𝑤 −

3

8
𝐹𝑤           

𝑎𝐸 = 𝐷𝑒 +
1

8
𝐹𝑤 +

6

8
𝐹𝑒

𝑎𝑁 = 𝐷𝑛 +
1

8
𝐹𝑠 +

6

8
𝐹𝑛

𝑎𝑆 = 𝐷𝑆 −
3

8
𝐹𝑠               

 
 

 
 

         and,               

 
 
 

 
 𝑎𝐸𝐸 = −

1

8
𝐹𝑒                                                  

𝑎𝑁𝑁 = −
1

8
𝐹𝑛                                                   

𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸 + 𝑎𝑁 + 𝑎𝐸𝐸 + 𝑎𝑆 + 𝑎𝑁𝑁

+ 𝐹𝑤 − 𝐹𝑒 +  𝐹𝑠 − 𝐹𝑛         
 
 

 
 

 

General expressions, valid for positive and negative flow directions, can be obtained by combining the two sets 

of coefficients above. The QUICK scheme for the transport equation problems (1) can be summarized as 

follows: 

P P E E W W N N S S EE EE WW EE NN NN SS SS

v

a a a a a a a a a S dv                                   (20) 

With central coefficient: 

P E W N S EE WW NN SSa a a a a a a a a                                                                                  (21) 

 

and neighbour coefficients :  

 
 
 
 
 
 
 

 
 
 
 
 
 𝑎𝐸 = 𝐷𝑒 −

3

8
𝛼𝑒𝐹𝑒 +

1

8
 1 − 𝛼𝑤  𝐹𝑤 +

6

8
 1 − 𝛼𝑒 𝐹𝑒     

𝑎𝑤 = 𝐷𝑤 +
1

8
𝛼𝑒𝐹𝑒 +

6

8
𝛼𝑤𝐹𝑤 −

3

8
 1 − 𝛼𝑤  𝐹𝑤              

𝑎𝑁 = 𝐷𝑛 −
3

8
 𝛼𝑁𝐹𝑁 +

1

8
  1 − 𝛼𝑠   𝐹𝑠 +

6

8
   1 − 𝛼𝑛 𝐹𝑛

𝑎𝑆 = 𝐷𝑠 +
1

8
𝛼𝑛𝐹𝑛 +

6

8
𝛼𝑠𝐹𝑠 −

3

8
 1 − 𝛼𝑠 𝐹𝑠                    

𝑎𝐸𝐸 = −
1

8
 1 − 𝛼𝑒 𝐹𝑒                                                           

𝑎𝑤𝑤 = −
1

8
𝛼𝑤𝐹𝑤                                                                   

𝑎𝑁𝑁 = −
1

8
 1 − 𝛼𝑛 𝐹𝑛                                                         

𝑎𝑆𝑆 = −
1

8
𝛼𝑠𝐹𝑠                                                                       

 
 
 
 
 
 

 
 
 
 
 
 

 

Where:  
 

𝛼𝑤  = 1 for   𝑢𝑤  > 0 and  𝛼𝑒  = 1 for  𝑢𝑒  > 0 

𝛼𝑤  = 0 for  𝑢𝑤  < 0 and  𝛼𝑒  = 0 for  𝑢𝑒  < 0 

𝛼𝑛  = 1 for  𝑢𝑛  > 0 and   𝛼𝑠  = 1 for  𝑢𝑠 > 0 

𝛼𝑛  = 0 for   𝑢𝑛  < 0 and  𝛼𝑠  = 0 for  𝑢𝑠 < 0 
 

Finally, the discritization of the flow domain by the finite volume method on the control volume [(I, j); (I, j -1); 

 (I -1, j -1); (I -1, j)], (Fig 2), where,  = u. the algebraic equation can be written as: 

,J , 1[ ( 1, ) (I, J)](y )i i J nb nb j j

nb

a u a u P I J P y                                                                (22) 

Where:    

2,J 2, 1, 1, 1, 1, 2, 2, , 1 , 1 , 2 2

, 1 1 , 2 2

nb nb i i J i J i J i J i J i J i J i J i J i J J

nb

i J J i J J

a u a u a u a u a u a u a u

a u a u

           

   

     

 



                 (23) 
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Similarly, the integration of the conservation of momentum equation in the vertical direction « v » in the volume 

(i 1, J 1); (i 1, J); (i, J); (i 1, J 1), (Fig 2) give as: 
 

, , 1[ ( , 1) ( , )](x )I j I j nb nb i i

nb

a v a v P I J P I J x                                                           (24) 

Where: 

1, 1, 2, 2, 1, 1, 2, 2, , 1 , 1 , 2 , 2

, 1 , 1 , 2 , 2

nb nb I j I j I j I j I j I j I j I j I j I j I j I j

nb

I j I j I j I j

a v a v a v a v a v a v a v

a v a v

           

   

     

 



      (25) 

Therefore, the general algebraic equation can be written as: 
 

, , 1, 1, 2, j 2, 1, 1, 2, 2, , 1 , 1 , 2 , 2

, 1 , 1 , 2 , 2 ,

i j i j i j i j i i j i j i j i j i j i j i j i j i j

i j i j i j i j i j

a a a a a a a

a a b

      

 

           

   

     

  
                (26) 

 

3. Numerical Resolution  

The governing equations describe the flow and heat transfer in this problem, are solved by the finite volume 

method (FVM), based on the algorithm SIMPLE (Semi-implicit method for pressure-linked equations) [11], for 

the coupling pressure-velocity, taking into account the characteristics the air flow, the numerical the schema 

Quick [12], was applied to the interpolations and since the system is a second order it was used for the terms of 

pressure. Therefore, the general algebraic equation can be written as: 

, , 1, 1, 2, j 2, 1, 1, 2, 2, , 1 , 1 , 2 , 2

, 1 , 1 , 2 , 2 ,

i j i j i j i j i i j i j i j i j i j i j i j i j i j

i j i j i j i j i j

a a a a a a a

a a b

      

 

           

   

     

  
                    (26) 

A structured grid element with the quadrilateral type is used because it is considered to be more adequate for the 

suggested geometry. The Numerical simulations are tested by varying the number of elements of mesh and the 

results show that the stability of convergence of the model is achieved for all meshes. 

The iterative solution is continued until the residuals for all cells of calculation have become less than  10−5 for 

all dependent variables. 

 
4. Results and discussion 
For the numerical simulations presented  in  this  work, we refer  to the  experimental  work done  by (Demartini 

et al. 2004), who  studied  the  baffles  transversal . 

The geometric dimensions of the system are listed below:  
 

- length of  the channel L = 0.554 m, 

- height of the channel H = 0.146 m, 

- thickness of the baffle  δ= 0.08 m, 

- height of the baffle  h= 0.1 𝑚, 

- distance  between  the  intake  of  the  channel  and  the  first  baffle  L1 = 0.218 m, 
- reynolds  number𝑅𝑒 = 8.73 10

4  

- hydraulic diameter  of  the channel  Dh  = 0.167 m, and 

- Velocity of air particles at the inlet 0U =7.8m/s. 

Numerically, we used a constant mesh of (200 x 90) in the vertical and horizontal directions respectively. 

They proved to be sufficient to the model of the system. The meshing size is comparatively smaller near to the 

boundaries of the baffles, so a good estimate of the gradients can be obtained. 

We first studied the flow along the channel containing two baffles placed a lower wall to put in evidence the 

influence of the spacing of the baffles on heat exchange. 

Both baffles have the same height (h = 0.1 m), the first baffle is placed at L1= 0.15 𝑚 distance, while the second 

is placed at d1 = 0.05m distance from the first (case 1), d2= 0.10 m (case 2) and d3= 0.15 m (case3). 

The streamlines for the three cases are presented in (Fig 3): 
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                      Case 1 :  d 1  = 0 .051 m                                    Case 2:  d 2  = 0 .101 m 

 

 

 

 

 

 
 

 
                                                                         Case 3: d3  = 0.152 m 
 

Fig 3: Streamlines for the different spacing for both baffles 

 

We first  find the existence  of  two  recirculation  zones in  a  downstream of  the second  baffle and the other 

between both  of  them. The analysis  of  the  results show the increase of the recirculation  zone  between  the  

two  baffles  when  the  variation of spacing is increasing. While second recirculation zone in a downstream of 

the second baffle decreases with the decrease of the distance between the second baffles and the outlet of the 

channel. 

In fact , when the two baffle are close to  each  other „ d1 small‟,the  fluid  is  blocked between  the  two  baffles 

therefore the velocity is decreasing in  this spacing. Consequently, there will  be a decrease  in  the heat  transfer 

in  this zone but an increase of d1.Hence ,the fluid has sufficient space to circulate quickly then  increases  the 

heat transfer in this zone ‘Fig 4‟. 

    

                Case 1 :  d 1  = 0 .051 m                                            Case 2 :  d 2  = 0 .101 m 

 

 

 

 

 

 
 

                                                                                       

Case 3: d3  = 0.152 m 

Fig 4: Isotherms for different spacing for the two baffles 

 

Figures 5 and 6 show the Profiles of  the  horizontal velocity and the temperature distribution  respectively for  

the three different spacing d1, d2 , d3 , between the two  baffles, along the diameter of channel at the inlet in the 

downstream located at position x = 0,45m. 

This figure shows  the distribution  of  the  axial velocity  at  the position x = 0,45m.We observed a 

decrease of the velocity until it  reaches  its  negative values in the  lower region of  the channel. The values  

decrease with decreasing spacing between the two baffles (but very little). 



JMES, 2017, 8 (4), pp. 1417-1427 1426 

 

Also in the lower  part of  the channel , the  negative  velocity  indicates  the  presence  of  recirculation  zone  of  

the flow formed behind the  second  obstacles .This  field  decreases  with  decreasing the distance  between  the  

second baffle and the channel outlet . 

 
 

 
 

           Fig 5: Profiles of horizontal velocity u downstream                       Fig 6: Profiles of temperature of the second   

                        of the second baffle at x=0,45 m                                    baffle at x=0,45 m 

 

In  the upper half  of  the channel, the  flow  is characterized  by very  high velocity which  can reach  340%  in  

the inlet velocity. The results  show that  the maximum values of  the flow  velocity are observed  in the case 

where the spacing  between  the two baffles  is the largest  (but  very  little). 

We notice  that the flow is characterized  by  the  temperatures of  high  air  for  the  case  with  average  spacing  

between  the  two baffles ,which means  d2 = 0.101 m, compared  with  the case  of  the small  spacing   d1= 

0.051 m (Fig.6). 

For the case of  the spacing  d3 = 0.152 m, we observed a more important decrease of  the temperature, in  

comparison  to the two  other  cases  spacing in  the lower part of the  channel. These effects become negligible 

in the upper part of the channel. The numerical results show the relevance of the intermediate case where the 

spacing is d2= 0.101 m. 
This remark is still apparent if we observe the local Nusselt number along the wall (Fig 7) , where  we  represent  

the   local  Nusselt  number  along  the  channel  for  the  three  spacing considered« d1=0.051 m ; d2 = 0.101 

m and  d3 = 0.152 m ». 
 

 

                        

   Fig 7: Local Nusselt number along the channel «Effect of the spacing between the two baffles» 

 

The same transfer rate was observed before  reaching  the abscise corresponding abscise at the top of the first  

baffle .The  heat  transfer  is  more  important  between  the  two baffles if the  spacing  is greater. Beyond the 

second baffle, we acknowledge a more important transfer of the second case d2= 0.101 m. 

Horizontal velocity (m/s)                                                                             Temperature (k) 

 



JMES, 2017, 8 (4), pp. 1417-1427 1427 

 

Conclusion 

 
The contribution to the study of a turbulent flow in forced convection inside a channel equipping the baffles in 

the lower wall is carried out. The numerical results obtained by the finite volume method, are presented to 

analyze the results of a turbulent flow using the model k-ε. The results obtained by our code show the dynamic 

and thermal behavior for different geometric situation. 

The main objective of our work is to study the effect of spacing between the baffles on the heat exchange 

between hot solid wall and the flow. It can be concluded that the spacing between the baffles plays an important 

role in improving the heat transfer. The spacing of d1between the baffles has different effects on local heat 

transfer within the concerned zone. 

However ; the spacing of  d1doesn‟t  have much influence on the overall  heat transfer within the channel, so we 

observed  the  relevance of  the  intermediate case where  the  spacing d2 = 0.101m.Finally,we plan  to exploit 

our results and then try to apply this code to other  geometrically complicated situations ( Non-rectangular 

baffles or inclined baffles ). 
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