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1. Introduction 
Phencyclidine (PCP) is a psychomimetic drug that was originally developed as a general (Sernyl

®
). PCP induces 

schizophrenia-like symptoms in healthy humans and exacerbates existing symptoms in stabilized patients with 

schizophrenia [1]. Common symptoms of schizophrenia are usually classified into two categories, positive and 

negative symptoms [2-8]. A typical psychostimulant such as methamphetamine generally induces only positive 

symptoms and induces few negative symptoms, or can even improve negative symptoms [9-10]. In contrast, 

PCP-induced psychosis involves both positive and negative symptoms, as well as cognitive dysfunction 

(disturbed attention and working memory) [11-14]. In non-human animals, systemic administration of PCP also 

produces cognitive and behavioral abnormalities that correspond to the symptoms of schizophrenia [15]. 

Furthermore, PCP-treated animals exhibited poor performance in a delayed-response task [16], indicating 

disturbance in working memory; a typical cognitive deficit in patients with schizophrenia. PCP-treated animals 

provide a useful pharmacological model of schizophrenia, and there is a great interest in understanding the 

neural mechanisms by which PCP modulates behavior. However, the neural mechanisms involved in the 

development of PCP-induced psychosis remain unclear. Therefore, the development of new alternative 

psychomimetic drugs devoid of side effects is still needed. Therefore, to find the structural requirements for 

more active psychotomimetic agents, comparative QSAR studies remains the alternative mean in this area. The 

quantitative structure-activity relationships (QSAR) are certainly a major factor in contemporary drug design. 

Thus, it’s quite clear why a large number of users of QSAR [17, 18] are located in industrial research units. So, 

classical QSAR and 3D-QSAR are highly active areas of research in drug design [19, 20]. In attempt to set up a 

3D-QSAR model able to predict inhibitory activity of new molecules, we applied in this work appropriate 

QSAR tools, Multiple Linear Regression (MLR) analysis and Artificial Neural Network (ANN), to a series of 

37 derivatives of N-(1-phenylcyclohexyl)piperidine. In a final section, molecular docking of PCP and 

derivatives is carried out in an attempt to understand the mode of interaction between ligands and receptor site. 

2. Materials and Methods 
2.1. Experimental data 

The 3D-QSAR studies were performed on 37 arylcyclohexylamines including PCP and TCP derivatives (Table 

1) that is reported by Chaudieu et al [21]. The inhibitory activities of the compounds cover a wide range of 

Journal of Materials and  
Environmental Sciences 
ISSN : 2028-2508 

 
Copyright © 2017, 

University of Mohammed 1er 

Oujda  Morocco 

 
 

Quantum calculations to construct a 3D-QSAR model based on PCP-TCP 

derivatives and Molecular Docking with NMDA receptor 

Charif EL M’BARKI, Menana ELHALLAOUI 

Engineering Materials, Modeling and Environmental Laboratory, group of computational chemistry. Department  

of chemistry, Faculty of Science, University Sidi Mohammed Ben Abdellah, B.P. 1796, Atlas, Fes, Morocco. 

Abstract 
In order to investigate the relationship between K0.5 activities and structures of PCP and 

TCP derivatives, QSAR studies are applied on a series of 37 compounds by using the 

multiple linear regression method (MLR), and artificial neural network (ANN) techniques 

considering the relevant descriptors obtained from the MLR. Density functional theory 

(DFT) and ab-initio molecular orbital calculations have been carried out in order to get 

insights into the structure, so, main informations of the general properties are provided. 

So, As a result of quantitative structure-activity relationship of PCP and TCP derivatives, 

we found that the model proposed in this study is constituted of major descriptors used to 

describe these molecules as dipole moment and total energy. A correlation coefficient of 

0.9436 was obtained with 4-3-1 ANN model. This model is statistically significant and 

shows very good stability towards data variation in leave-one-out (LOO) cross-validation 

(Rcv =0.9149). The docking of PCP and some derivatives show that the nitrogen hydrogen 

bonding is essential to enhance activity at NMDA receptor. In the other hand the docking 

of compounds 19, 20 and 21 reveals the impact of steric effect in decreasing activity. 

 

 

 

Received 10 Aug 2016,  

Revised   07 Feb2017,  

Accepted 12 Feb 2017 

 

Keywords 

 

 Inhibition activity, 

 3D-QSAR model, 

 MLR, 

 ANN, 

 LOO, 

 Docking 

 
charif.elmbarki@usmba.ac.ma 

 

http://www.jmaterenvironsci.com/
mailto:charif.elmbarki@usmba.ac.ma


JMES, 2017, 8 (4), pp. 1391-1400   1392 

 

biological activity spanning over five log units (0.017-370 µM) and diverse structural features. In this work, The 

K0.5 values were converted into logK0.5 for use in the QSAR studies. 

Table 1: Structures and activities of the arylcyclohexylamines derivatives 

 

N

Aryl

R1 R2

2

4

3'2'

4'

3  
 

No Aryl
* 

R1
+ 

R2 logK0.5 K0.5 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

 

15 

 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

Ph 

Ph 

Ph 

Ph 

Ph 

Ph 

Ph 

Ph 

Ph 

Ph 

Ph 

Ph 

Ph 

Ph 

 

Ph 

 

Ph 

Ph 

m-Nitro-Ph 

p-Hydroxy-Ph 

m-Hydroxy-Ph 

o-Hydroxy-Ph 

m-Methoxy-Ph 

p,m-diMethoxy-Ph 

p-Methoxy-Ph 

p-Methoxy-Ph 

m-Methoxy-Ph 

m-Methoxy-Ph 

2-Th 

2-Th 

2-Th 

2-Th 

2-Th 

2-Th 

2-Th 

2-Th 

2-Th 

2-BzTh 

H 

4-tButyl-cis 

4-tButyl-trans 

4-Methyl-cis 

4-Methyl-trans 

3-Methyl-cis 

4- Methyl-trans 

2- Methyl-cis 

2- Methyl-trans 

2-Methoxy-trans 

2-Methoxy-cis 

4,4-diMethyl 

2-(CH2)3-6 

3,3-diMethyl 

5-Methyl-cis 

3,3-diMethyl 

5-Methyl-cis 

H 

H 

H 

H 

H 

H 

H 

H 

4-Methyl-cis 

4-Methyl-trans 

4-Methyl-cis 

4-Methyl-trans 

H 

2-Methyl-cis 

2-Methyl-trans 

4-tButyl-trans 

4-tButyl-cis 

4-Methyl-cis 

4-Methyl-trans 

4-Hydroxy-trans 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

 

H 

 

H 

4’-Hydroxyl 

3’Methyl 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

3’,4’ desH 

H 

-0.6021 

2.0000 

2.0170 

-0.3010 

-0.8861 

-0.2218 

-0.2218 

-0.9208 

0.2041 

0.6989 

-0.0809 

0.6989 

0.6721 

 

0.7993 

 

1.0000 

0.3424 

-0.7959 

1.0607 

1.3010 

-1.5229 

-0.1249 

-1.0458 

0.9777 

0.6812 

0.3424 

-1.3565 

-1.2366 

-1.5850 

-1.3979 

0.0000 

2.0000 

2.5682 

0.0000 

-0.8539 

0.9031 

-1.7696 

0.8325 

0.250 

100.000 

104.000 

0.500 

0.130 

0.600 

0.600 

0.120 

1.600 

0.500 

0.830 

5.000 

4.700 

 

6.300 

 

10.000 

2.200 

0.160 

11.500 

20.000 

0.030 

0.750 

0.090 

9.500 

4.800 

2.200 

0.440 

0.058 

0.026 

0.040 

1.000 

100.000 

370.000 

1.000 

0.140 

8.000 

0.017 

6.800 
*
Ph = Phenyl, Th = Thienyl, BzTh = Benzothiophenyl, desH = dehydrogenation 

+
Cis/trans refers to the relative positions of piperidine and the substituent R1. 

K0.5 is concentration of unlabeled derivatives which prevent 50% of the maximal specific binding determined in 

the absence of unlabeled derivative. 
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2.2. Calculation of molecular descriptors 

For each compound, the electronic descriptors were obtained from quantum chemical calculations. These global 

electronic descriptors that are defined on the basis of density functional theory have been widely used in 

SAR/QSAR investigations [22, 23]. All the compounds were fully optimized with the density functional theory 

(DFT)/B3LYP level of theory [24, 25], combined with the 6-31G basis set. All the calculations were performed 

by using the Gaussian 03 package of programs [26]. The rest of representative descriptors were calculated with 

Chem3D Ultra (version 8.0) and ACD/ChemSketch program [27]. 

Table 2: Descriptors chosen for the QSAR model, and used in this study 
Category of descriptors  Description Notation 

Electronic 

 

 

 

 

 

 

 

 

 

 

thermodynamic 

 

 

 

 

steric 

 

 

Physicochemical 

 

 

Optic 

Dipole moment 

Electronegativity 

Total energy 

Electron affinity 

Hardness 

Softness 

Polarisability 

Dipole Length 

Reactivity 

Reactivity index 

 

Molar refractivity 

Log P 

Critical Temperature 

Melting Point 

 

Sum Of Valence Degrees 

Cluster Count 

 

Parachor 

 

 

Refraction index 

 

Dp 

Χ 

E 

A 

Η 

S 

P 

DL 

R 

Ω 

 

MR 

logP 

Tc 

MP 

 

SVDe 

ClsC 

 

Pc 

 

 

n 

 

 

2.3. Statistical analysis 

2.3.1. Multiple linear regressions 

The statistic technique multiple linear regression is used to study the relation between one dependent variable 

and several independent variables. It is a mathematic technique that minimizes differences between actual and 

predicted values. The multiple linear regression model (MLR) was generated using the software SYSTAT, 

version 13, to predict inhibitory activity logK0.5. It has served also to select the descriptors used as the input 

parameters for a back propagation network (ANN). In this work four descriptors have been selected, details of 

calculations are given in the results paragraph. 

2.3.2. Artificial neural networks (ANNs) 

All the feed-forward ANN used in this paper are three-layer networks; the input layer contains four neurons, 

representing the relevant descriptors obtained in MLR technique. Although there are neither theoretical nor 

empirical rules to determine the number of hidden layers or the number of neurons layers, one hidden layer 

seems to be sufficient in the most chemical application of ANN. Some authors [28, 29] have proposed a 

parameter ρ, leading to determine the number of hidden neurons, which plays a major role in determining the 

best ANN architecture. It’s defined as follows: 

 

𝜌 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡𝑕𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

𝑆𝑢𝑚 𝑜𝑓 𝑡𝑕𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡𝑕𝑒 𝑁𝑁
 

 

Therefore, in order to avoid overfitting or underfitting, it’s recommended to take into account the ρ value; 

1.8 < 𝜌 < 2.3 [30]. Thus, the ANN used in this work is formed by three hidden neurons, and the output layer 

represents the calculated activity values logK0.5. 

So, the final ANN architecture is [4-3-1], it’s depicted in figure 1. 
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Figure 1: Schematic representation of the three-layer neural network architecture [4-3-1] 

2.3.3. Cross-validation technique 

Cross-validation is a popular technique used to explore the reliability of statistical models. Based on this 

technique, a number of modified data sets are created by deleting in each case one or a small group of 

molecules, these procedures are named respectively “leave-one-out” and “leave-some-out” [31, 32]. For each 

data set, an input-output model is developed. The model is evaluated by measuring its accuracy in predicting the 

responses of the remaining data (those that were not used in the development of the model). In this study we 

used, the leave-one-out (LOO) procedure. 

Table 3 summarized handpicked descriptors values, observed activities, and MLR, ANN and CV predicted 

activities. 

Table 3: Values of the selected descriptors, and the observed/predicted logK0.5 values 
Coumpound Log(-E) ClsC SVDe Dp LogK0.5(obs) LogK0.5(calc) 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

 

6.5757 

6.7738 

6.7738 

6.6290 

6.6290 

6.6290 

6.6290 

6.6290 

6.6290 

6.7237 

6.7237 

6.6797 

6.7264 

6.7278 

6.7278 

6.6753 

6.6290 

6.8264 

6.6753 

6.6754 

6.6753 

6.7237 

6.8527 

6.7699 

6.7699 

6.7699 

6.7699 

6.9452 

6.9824 

6.9824 

7.0862 

7.0862 

6.9824 

6.9824 

7.0151 

6.9440 

7.0831 

 

18 

22 

22 

19 

19 

19 

19 

19 

19 

20 

20 

20 

21 

21 

21 

19 

19 

21 

19 

19 

19 

20 

22 

21 

21 

21 

21 

17 

18 

18 

21 

21 

18 

18 

18 

17 

21 

 

48 

56 

56 

50 

50 

50 

50 

50 

50 

56 

56 

52 

56 

54 

54 

54 

50 

66 

54 

54 

54 

56 

64 

58 

58 

58 

58 

42.6667 

44.6667 

44.6667 

50.6667 

50.6667 

44.6667 

44.6667 

44.6667 

44.6667 

56.6667 

 

0.3496 

0.3802 

0.3478 

0.3244 

0.3657 

0.4092 

0.2950 

0.3178 

0.4110 

1.5853 

1.4802 

0.3680 

0.8749 

0.3824 

0.2818 

2.3809 

0.3063 

5.3161 

1.7960 

1.7792 

1.8138 

1.9006 

2.8600 

1.6832 

1.6782 

1.2094 

1.2336 

0.8359 

0.7998 

1.0140 

0.8631 

0.8463 

0.8261 

0.8513 

2.4088 

0.6806 

2.1603 

 

-0.6021 

2.0000 

2.0170 

-0.3010 

-0.8861 

-0.2218 

-0.2218 

-0.9208 

0.2041 

0.6989 

-0.0809 

0.6989 

0.6721 

0.7993 

1.0000 

0.3424 

-0.7959 

1.0607 

1.3010 

-1.5229 

-0.1249 

-1.0458 

0.9777 

0.6812 

0.3424 

-0.3565 

-1.2366 

-1.5850 

-1.3979 

0.0000 

2.0000 

2.5682 

0.0000 

-0.8538 

0.9031 

-1.7696 

0.8325 

MLR ANN LOO 

-1.0165 

1.7752 

1.7369 

-0.3714 

-0.3227 

-0.2713 

-0.4061 

-0.3792 

-0.2692 

-0.1668 

-0.2909 

0.3648 

0.7598 

1.0757 

0.9569 

0.0795 

-0.3928 

1.1191 

-0.6112 

-0.6311 

-0.5902 

0.2055 

0.7997 

0.6501 

0.6442 

0.0906 

0.1192 

-1.1797 

-0.4875 

-0.2346 

1.8198 

1.7999 

-0.4565 

-0.4268 

1.2909 

-2.2616 

0.6546 

-0.6019 

1.9954 

1.9804 

-0.5497 

-0.5043 

-0.4569 

-0.5817 

-0.5573 

-0.4549 

0.6977 

-0.2477 

0.5670 

0.8455 

1.3872 

1.3241 

0.3400 

-0.5695 

1.1132 

0.4877 

-1.3393 

0.5254 

-0.5853 

0.9775 

0.3241 

0.3197 

-0.3391 

-1.2608 

-1.9076 

-0.4859 

-0.2583 

2.0908 

2.0834 

-0.4573 

-0.4301 

0.8729 

-1.6785 

0.5105 

-0.8289 

2.0251 

1.8432 

-0.4468 

-0.3656 

-0.2407 

-0.6329 

-.4371 

-0.1829 

-0.0670 

-0.0360 

0.7521 

0.6655 

1.0798 

0.9516 

0.3258 

-0.6495 

1.1036 

-0.4680 

-0.0770 

-0.1243 

-0.0061 

1.0129 

0.9672 

0.2855 

-0.6796 

-0.4895 

-1.6796 

-0.6138 

-0.1362 

2.4819 

2.1433 

-0.6461 

-0.6880 

0.9582 

-1.6407 

0.8451 
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2.3.4. Docking method 

Molecular docking is performed with Hex8.0.0 software [33]. The native structure of NMDA receptor (figure 2) 

was retrieved from Brookhaven protein data bank (2HQW.PDB) [34]. Ligands are built and optimized with 

chem3D Ultra 8.0 software and the docked conformations were viewed using PyMOL software package [35]. 

PCP molecule is explored with two configurations, axial and equatorial positions of phenyl ring (figure 3), and 

default parameters are used for docking process used for docking process. 

 

Figure 2: Structure of N-methyl-D-aspartate receptor (NMDA) 

 

Figure 3: Structure of PCP with phenyl in axial (a) and equatorial (b) position 

3. Results and discussion 
3.1. Multiple Linear Regressions 

Many attempts have been made to develop a relationship with the indicator variable of inhibitory activity 

logK0.5, but the best relationship obtained by this method is only one corresponding to the linear combination of 

several descriptors: the total energy (-logE), the dipole moment (Dp), cluster count (ClsC) and sum of valence 

degrees (SVDe). The QSAR model built using multiple linear regression (MLR) method is represented by the 

following equation: 

logK0.5 = 12.656 – 3.707 (-logE) + 1.775 (ClsC) – 0.451 (SVDe) + 1.181 (Dp) 

N = 37  R = 0.832 R
2
 = 0.693 RMSE = 0.644    F-ratio = 18.055 

Where N is the number of compounds, R is the correlation coefficient, RMSE is the standard error of estimate 

and F is the Fisher F-statistic. 

For the 37 compounds series, the correlation between observed inhibitory activities and calculated ones based 

on this model are quite significant as indicated by statistical values. 

The correlation of the observed activities with the MLR calculated ones is illustrated in figure 4. Figure 4 shows 

a very regular distribution of inhibitory activities values depending on the observed values. 

3.2. Artificial neural networks (ANNs) 
In order to increase the probability of good characterization of studied compounds, neural networks (ANN) used 

to generate predictive models of quantitative-activity relationships (QSAR) between the set of MLR selected 

molecular descriptors and observed activities. The correlation between observed inhibitory activities and ANN 

calculated values are illustrated in figure 5.  
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Figure 4: Plot of observed versus (MLR) predicted inhibitory activities 

 
Figure 5: Plot of observed versus (ANN) predicted inhibitory activities 

N = 37    R = 0.9436  R
2
 = 0.8904  RMSE = 0.8133 

 

The correlation coefficient and standard error of estimate obtained with the neural network, show that the 

selected descriptors by MLR are pertinent and that the model proposed to predict activity is relevant. 

3.3. Cross validation (CV) 
Before using a QSAR model to predict the activity of new compounds, we should validate it using a validation 

method. In this paper we validate our model (NN model) obtained with neural network method, with cross 

validation using LOO procedure. The correlation of the observed activities with the CV calculated ones is 

illustrated in figure 6. 

 
Figure 6: Plot of observed versus CV predicted inhibitory activities 

N = 37   R = 0.8751  R
2
 = 0.7659 
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Compound 19 is considered as an outlier point in this series, in fact the elimination of this compound in the 

calculation of the correlation coefficient shows a significant improvement in the correlation. The correlation of 

the observed activities with the CV calculated ones without atypical point is illustrated in figure 7. 

 
Figure 7: Plot of observed versus (CV) predicted inhibitory activities without atypical point 

N = 36   R = 0.9149         R
2
 = 0.837 

 
The good correlation obtained in cross-validating the model with the full set Rcv = 0.8751 and that without 

atypical point Rcv = 0.9149 show that the predictive power of this model is very significant. So, the most 

important result of this investigation is that in vitro inhibitory activities could be predicted using QSAR model. 

In fact, the model proposed in this study shows high predictive power. One of the most important observations 

that can be drawn from this study is that different descriptors representing the majority of descriptors proposed 

to build a QSAR model were selected. 
 

3.4. Docking 
The fact that the non active compound 19, having a hydroxyl group in para position, is considered as an outlier 

point in MLR and CV investigations, prompted us to the docking of this molecule with the NMDA receptor in 

the order to understand how it interacts with the binding site. We proceed the same with compound 20 and 21 

having an hydroxyl in meta and ortho positions, respectively. The docking of compounds 19, 20 and 21 with 

NMDA receptor is illustrated in figures 8, 9 and 10. Schemas in the right of the figures illustrate the zoom of the 

interaction between the ligand and the binding site. 

 

 
Figure 8: Docking of compound 19 with NMDA receptor  
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Figure 9: Docking of compound 20 with NMDA receptor 

 

  
  

Figure 10: Docking of compound 21 with NMDA receptor 
 

We observe that Compounds 19 and 21 don’t form hydrogen bonding through N atom when docked to NMDA 

protein; moreover these compounds could not penetrate into the binding site, which could be explained by the 

steric effect caused by ortho and para-substituants. However compound 20 shows hydrogen bonding between 

nitrogen and hydroxyl group which explain the potential activity of this compound. The docking of PCP, with 

phenyl in axial and equatorial positions, with NMDA receptor is illustrated respectively in figures 11 and 12.  

 

  
Figure 11: Docking of PCP with phenyl in axial position 
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Figure 12: Docking of PCP with phenyl in equatorial position  

 

Schemas in the right of the figures illustrate the zoom of the interaction between the ligand and the binding site. 

The docking of PCP with the NMDA receptor reveals that the appropriate conformation of PCP is that with 

phenyl in position axial, in fact with this conformation the nitrogen is able to make hydrogen bonding with 

sulfur atom (figure 11) however with the equatorial position we don’t observe this hydrogen bonding (Figure 

12).  

 

Conclusion 

 
In this work, we have explored a set of 37 compounds of PCP and TCP derivatives using QSAR tools. The 

analysis methods, multiple linear regression (RLM), neural network (NN) and cross validation using LOO 

procedure (CV) applied to the series of PCP and TCP derivatives, allowed us to select the relevant descriptors 

that could have influence on the activity. The analysis of the Inhibitory activities model suggests that the 

descriptors representing high interest for activity are total energy, dipole moment, cluster count and sum of 

valence degrees. Artificial neural network (ANN) techniques, considering the relevant descriptors obtained from 

the MLR, showed good agreement between the observed and the predicted values. To test the performance of 

this model, we have used leave-one-out method (Rcv=0.9149) which showed that the model proposed in this 

work is able to accurately predict the activity. Molecular docking of PCP and derivatives with NMDA receptor 

reveals that axial position of phenyl ring is preferable to interact with the binding site, in the other hand the 

substitution of ortho and para-positions decreases the activity of molecule which was explained in this work by 

the steric effect, however substitution in meta position enhances the activity, finally the bonding hydrogen 

formed with nitrogen atom seems to be essential for activity at NMDA receptor. 
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