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1. Introduction 
Heterogeneous phenols have been used in chemical industry for many years ago. They are used as solvents, 

propellants, additives, cooling agents, insecticide, herbicides and organic syntheses [1-2]. Many of these 

chemicals were released into the environment and accumulated in nearly all natural environments, especially in 

aquatic systems, so it is beneficial to study seriously their potential hazard to aquatic organism. 

Experiment is a direct way to obtain the toxicity data of organic compounds, but it has many deficiencies, such 

as requirement of enormous number of trial organisms, expensive cost, long time, the difference in measured 

value between different researchers. Consequently, it would be very difficult to obtain the toxicity data of all 

organic compounds by experiment, as new compounds are springing up, other difficulties will follow. So it is 

necessary to use the theoretical research to make up for disadvantages of the experiment and to predict the 

toxicity data of compounds quickly and exactly. 

With the rapid development of computational science and theoretical chemistry, it can quickly and precisely 

obtain the quantum chemical parameters of organic compounds. Quantitative structure-activity relationship 

(QSAR) can predict the bioactivity such as toxicity, mutagenicity and carcinogenicity based on structural 

parameters of compounds and appropriate mathematical models.  

At present, there are a large number of molecular descriptors that can be used in QSAR studies [3-4]. Once 

validated, the findings can be used to predict activities of untested compounds. 

The aim of this study is to develop predictive QSTR models for the acute toxic effects of phenol compounds 

toward Tetrahymena pyriformis using several statistical tools, principal components analysis (PCA), multiple 

linear regression (MLR), multiple non-linear regression (MNLR) and artificial neural network (ANN) methods. 
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Abstract 

Quantitative structure–toxicity relationship (QSTR) models are useful to understand how 

chemical structure relates to the toxicity of natural and synthetic chemicals. The chemical 

structures of 70 heterogeneous phenols have been characterized by electronic and physic-

chemical descriptors. Density functional theory (DFT) with Beck’s three parameter 

hybrid functional using the LYP correlation functional (B3LYP/6-31G(d)) calculations 

have been carried out in order to get insights into the structure chemical and property 

information for the study compounds. The present study was performed using principal 

component analysis (PCA) method, multiple linear regression method (MLR), multiple 

non-linear regression (MNLR) and artificial neural network (ANN). The quantitative 

model of the toxicity of these compounds was accordingly proposed and interpreted based 

on the multivariate statistical analysis. The statistical quality of the MLR and MNLR 

models was found to be efficient for the predicting of the toxicity, but when compared to 

the obtained results by ANN model, we realized that the predictions achieved by this 

latter one were more effective. This model provided statistically significant results and 

showed good internal stability and powerful predictability. The squared correlation 

coefficients were 0.801, 0.802 and 0.824 for MLR, MNLR and ANN models respectively. 
The obtained results suggested that the proposed descriptors could be useful to predict the 

toxicity of heterogeneous phenols to Tetrahymena pyriformis. 
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2. Material and Methods 
2.1. Data sources 

Acute toxicity data of 70 heterogeneous phenols to Tetrahymena pyriformis were taken from a literature [5]. 

IC50 here means the millimolar concentration causing 50% inhibition of growth about heterogeneous phenols to 

Tetrahymena pyriformis. The bigger the value of –log IC50 (pIC50), the higher is toxicity of compounds, and 

vice versa. For the proper validation of our data set with a QSTR model, the 70 substituted phenols were divided 

into training and test sets. A total of 60 molecules were placed in the training set to build the QSTR models, 

whereas the remaining 10 molecules composed the test set. The division was carried out by random selection. 

The following table shows the studied compounds and the corresponding experimental toxicties pIC50 (table 1). 

The range of the toxicity data varies between -1.50 and 2.63 (µM).  
 

Table 1: heterogeneous phenol derivatives and their observed toxicities against Tetrahymena pyriformis 

N° Name (IUPAC) pIC50 N° Name (IUPAC) pIC50 

1
*
 4-Hydroxyphenylacetic acid  − 1.50 36 Salicylaldoxime  0.25 

2 3-Hydroxybenzyl alcohol  − 1.04 37
*
 2-Hydroxy-5-methylacetophenone  0.31 

3 4-Carboxyphenol  − 1.02 38 3-Methoxysalicylaldehyde  0.38 

4 3-Hydroxy-4-methoxybenzyl alcohol − 0.99 39
*
 Salicylhydroxamic acid  0.38 

5 4-Hydroxy-3-methoxybenzyl amine  − 0.97 40 4-Allyl-2-methoxyphenol  0.42 

6 4-Hydroxyphenethyl alcohol  − 0.83 41 2-Hydroxybenzaldehyde  0.42 

7 3-Carboxyphenol  − 0.81 42 Ethyl-3-hydroxybenzoate  0.48 

8 4-Hydroxybenzamide  − 0.78 43 4-Cyanophenol  0.52 

9 4-Hydroxy-3-methoxybenzylalcohol−  0.70 44 4-Propyloxyphenol  0.52 

10 2,6-Dimethoxyphenol  − 0.60 45 Ethyl-4-hydroxybenzoate  0.57 

11 2,4,6-Tris(dimethylaminomethyl) phenol  − 0.52 46 5-Methyl-2-nitrophenol  0.59 

12 Salicylic acid  − 0.51 47 Methyl-4-methoxysalicylate  0.62 

13 2-Methoxyphenol  − 0.51 48 4-Butoxyphenol  0.70 

14 5-Methylresorcinol  − 0.39 49
*
 2-Methoxy-4-propenyIphenol  0.75 

15 3-Hydroxyacetophenone  − 0.38 50 2,2'-Biphenol  0.88 

16 2-Ethoxyphenol  − 0.36 51 2,2',4,4'-Tetrahydroxybenzophenone  0.96 

17 4-Acetylphenol  − 0.30 52 4-sec-Butylphenol  0.98 

18 3-Ethoxy-4-methoxyphenol  − 0.30 53 3-Hydroxydiphenylamine  1.01 

19
*
 2-Hydroxybenzamide  − 0.24 54 4-Hydroxybenzophenone  1.02 

20 4-Hydroxy-3-methoxyphenethylalcohol  − 0.18 55 Benzyl-4-hydroxyphenyl ketone  1.07 

21
*
 3-Acetamidophenol  − 0.16 56 2-Phenylphenol  1.09 

22 3-Hydroxy-4-methoxybenzaldehyde  − 0.14 57 2-Hydroxybenzophenone  1.23 

23 4-Hydroxy-3-methoxyacetophenone  − 0.12 58 2-Hydroxydiphenylmethane  1.31 

24 3,5-Dimethoxyphenol  − 0.09 59
*
 Butyl-4-hydroxybenzoate  1.33 

25 2-Hydroxyethylsalicylate  − 0.08 60 n-Pentyloxyphenol  1.36 

26 3-Methoxy-4-hydroxybenzaldehyde  − 0.03 61 2-Hydroxy-4-methoxybenzophenone  1.42 

27 4-Hydroxy-3-methoxybenzonitrile  − 0.03 62 Isoamyl-4-hydroxybenzoate  1.48 

28 3-Ethoxy-4-hydroxybenzaldehyde  0.01 63
*
 4-Heptyloxyphenol  2.03 

29 2-Cyanophenol  0.03 64 Nonyl-4-hydroxybenzoate  2.63 

30 2-Hydroxyacetophenone  0.08 65 2,4,6-Trinitrophenol  − 0.16 

31 Methyl-4-hydroxybenzoate  0.08 66 3,4-Dinitrophenol  0.27 

32
*
 4'-Hydroxypropiophenone  0.12 67 2,6-Dinitrophenol  0.54 

33 Syringaldehyde  0.17 68
*
 2,5-Dinitrophenol  0.95 

34 Salicylhydrazide  0.18 69 2,4-Dinitrophenol  1.08 

35 4-Hydroxy-2-methylacetophenone  0.19 70 2,6-Dinitro-4-cresol  1.23 
            * 

Test set 

 

2.2. Molecular descriptors 

The computation of electronic descriptors was performed using the Gaussian 03W program [6]. The geometries 

of all 70 theoretically heterogeneous phenols were optimized with DFT method at the B3LYP functional and 6-

31G (d) base set. Then some related structural descriptors from the results of quantum computation were 

chosen: the highest occupied molecular orbital energy EHOMO (eV), the lowest unoccupied molecular orbital 

energy ELUMO (eV), the energy gap ΔE (eV), the dipole moment µ (Debye), the total energy ET (eV).  

ChemSketch program [7] was employed to calculate the others molecular descriptors such as: the molar volume 

MV (cm
3
), the molecular weight MW (g/mol) , the molar refractivity MR (cm

3
), the parachor Pc (cm

3
), the 

density D (g/cm
3
), the refractive Index n, the surface tension γ (Dyne/cm) and the polarizability α (cm

3
). To 
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improve the estimate quality of toxicity of these compounds, molecular descriptor which reflect other specific 

interactions should be also included as octanol/water partition coefficient (log P). 

 
2.3. Statistical analysis 

The structures of 70 heterogeneous phenols toward Tetrahymena pyriformis were studied by statistical methods 

based on the principal component analysis (PCA) [8] using the software XLSTAT version 2013 [9]. PCA is a 

statistical method useful to summarize all the information encoded in the structures of the compounds. It is also 

very helpful for understanding the distribution and classification of the data set [10]. This is an important 

descriptive statistical method which aims to present, in graphic forms, the maximum of information contained in 

the data table 1 and table 2. 

The multiple linear regression (MLR) analysis with backward selection was employed to model the structure 

toxicity relationships. It is a mathematic technique that minimizes differences between actual and predicted 

values. It has served also to select the descriptors that will be exploited as input parameters in the multiples 

nonlinear regression (MNLR) and artificial neural network (ANN). 

The MLR and MNLR were performed using the software XLSTAT version 2013 [9], to predict toxic effects 

pIC50. Equations were justified by the determination coefficient (R
2
), mean squared error (MSE), Fisher’s 

criterion (F) and significance level (P) [9]. The ANN is an artificial system that is simulating the function of the 

human brain. Three components form a neural network: the processing elements or nodes, the topology of the 

connections between the nodes, and the learning rule by which new information is encoded in the network. 

While there are a many different ANN types, the most commonly used in QSAR is the three-layered feed 

forward network [11]. In this type of network, the neurons are arranged in layers (an input layer, one hidden 

layer and an output layer). Each neuron in any layer is fully connected with the other neurons of a next layer and 

no connections are between neurons belonging to the same layer. 

According to the supervised learning adopted, the networks are taught by giving them examples of input 

patterns and the corresponding target outputs. Through an iterative procedure, the connection weights are 

modified until the network gives the desired results for the training set of data. A back propagation algorithm is 

used to minimize the error function. This algorithm has been described previously with a simple example of 

application [12] and a detail of this algorithm is given elsewhere [13]. 

The ANN analysis was performed using Matlab software version 2009a Neural Fitting tool (nftool) toolbox [14-

15]. 

Cheking the stability, predictibility and generalization ability of the proposed models are very important steps in 

a QSTR study. For the validation of the prediction ability of a QSTR model, two principal methods, internal and 

external validations are available. Cross-validation is one of the most common methods that are carried out for 

internal validation. In this study, the internal predictive ability of every model was evaluated using leave-one-

out cross-validation (R
2
cv). A good R

2
cv often indicates good robustness and high internal predictive capacity 

of a QSTR model. However, recent studies [16] indicate that there is no evident correlation between the value of 

R
2
cv and the actual predictive capacity of a QSTR model, suggesting that the R

2
cv remains inadequate as a 

reliable estimate of the model predictive ability for all new chemicals. To determine both the generalizability of 

QSTR models for new chemicals and the true predictive ability of the models, statistical external validation is 

used during the model development step by properly using a prediction set for validation. 

 
3. Results 
3.1. QSTR models and analysis 

QSTR analysis was performed using the pIC50 of 70 heterogeneous phenols to Tetrahymena pyriformis as 

reported in [5], the values of the 14 chemical descriptors are shown in table 2. 

The principle objective is to perform in the first time, a principal component analysis (PCA), which allows us to 

eliminate descriptors that are highly correlated (dependent), then an MLR analysis was performed on the 

remaining descriptors using the backward method until a valid model. 

 
1.1. Principal component analysis  

The set of descriptors coding the 70 heterogeneous phenols, electronic and physico-chemical descriptors are 

submitted to PCA analysis [17]. The first three principal axes are sufficient to encode the information provided 

by the data matrix. Indeed, the percentages of variance are 44.66%, 29.29% and 11.96% for the axes F1, F2 and 

F3, respectively. The total information is estimated to a percentage of 85.92%. 
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Table 2: The values of the fourteen chemical descriptors 
N pIC50 MW MR MV Pc n  D  ET EHOMO ELUMO E  log P 

1* -1.50 152.14 39.24 115.30 320.60 1.60 59.80 1.32 15.55 -14577.48 -5.99 -0.14 5.84 2.79 1.31 

2 -1.04 124.14 34.58 101.60 275.80 1.60 54.10 1.22 13.71 -11490.68 -6.01 -0.14 5.87 1.72 0.90 

3 -1.02 138.12 35.06 100.30 284.40 1.62 64.40 1.38 13.90 -13507.18 -6.42 -1.04 5.38 1.85 1.33 

4 -0.99 154.16 41.26 125.60 332.40 1.57 48.90 1.23 16.35 -14608.89 -5.60 -0.24 5.36 1.90 0.74 

5 -0.97 153.18 43.26 131.80 344.80 1.57 46.70 1.16 17.15 -14068.26 -5.48 0.21 5.69 2.30 0.64 

6 -0.83 138.16 39.21 118.10 315.60 1.58 50.80 1.17 15.54 -12561.18 -5.68 0.19 5.87 2.46 1.19 

7 -0.81 138.12 35.06 100.30 284.40 1.62 64.40 1.38 13.90 -13507.13 -6.34 -1.33 5.01 0.64 1.33 

8 -0.78 137.14 37.06 106.50 296.70 1.61 60.10 1.29 14.69 -12966.07 -6.26 -0.74 5.52 2.79 0.52 

9 -0.70 154.16 41.26 125.60 332.40 1.57 48.90 1.23 16.35 -14609.19 -5.78 0.14 5.92 2.66 0.74 

10 -0.60 154.16 41.49 135.80 335.60 1.52 37.20 1.13 16.44 -14609.04 -5.26 0.57 5.83 2.22 1.35 

11 -0.52 265.39 81.84 257.50 648.40 1.55 40.10 1.03 32.44 -22519.75 -3.06 -2.28 0.78 14.91 1.49 

12 -0.51 138.12 35.06 100.30 284.40 1.62 64.40 1.38 13.90 -13507.16 -6.43 -1.60 4.84 4.27 1.98 

13 -0.51 124.13 34.81 111.80 278.90 1.53 38.60 1.11 13.80 -11490.76 -5.53 0.32 5.85 2.73 1.51 

14 -0.39 124.14 34.84 102.50 274.90 1.59 51.60 1.21 13.81 -11491.06 -5.71 0.26 5.97 1.37 1.88 

15 -0.38 136.14 38.16 119.30 307.40 1.55 43.90 1.14 15.12 -12528.88 -6.32 -1.51 4.81 1.74 1.23 

16 -0.36 138.16 39.44 128.30 318.70 1.53 38.00 1.08 15.63 -12561.37 -5.49 0.30 5.79 2.87 1.87 

17 -0.30 136.15 38.16 119.30 307.40 1.55 43.90 1.14 15.12 -12528.92 -6.35 -1.23 5.12 2.61 1.23 

18 -0.30 168.19 46.12 152.30 375.40 1.52 36.80 1.10 18.28 -15679.57 -5.32 0.14 5.46 3.07 1.71 

19* -0.24 137.14 37.06 106.50 296.70 1.61 60.10 1.29 14.69 -12966.42 -6.06 -1.19 4.87 3.99 1.17 

20 -0.18 168.19 45.89 142.10 372.20 1.56 46.90 1.18 18.19 -15679.62 -5.39 0.49 5.88 1.45 1.03 

21* -0.16 151.16 42.40 120.90 326.00 1.62 52.80 1.25 16.81 -14036.43 -6.02 -0.40 5.62 4.47 0.91 

22 -0.14 152.14 41.56 123.50 324.00 1.59 47.30 1.23 16.47 -14576.64 -6.05 -1.40 4.65 6.43 1.22 

23 -0.12 166.17 44.84 143.30 364.10 1.54 41.50 1.16 17.77 -15647.31 -6.08 -1.01 5.07 4.01 1.07 

24 -0.09 154.16 41.49 135.80 335.60 1.52 37.20 1.13 16.44 -14609.17 -5.56 0.62 6.17 2.09 1.35 

25 -0.08 182.17 46.07 139.70 383.60 1.57 56.70 1.30 18.26 -17696.24 -6.27 -1.47 4.79 2.05 1.63 

26 -0.03 152.15 41.56 123.50 324.00 1.59 47.30 1.23 16.47 -14576.66 -6.05 -1.39 4.65 5.05 1.22 

27 -0.03 149.15 39.21 119.70 326.80 1.57 55.40 1.24 15.54 -14002.61 -6.19 -1.02 5.17 5.02 1.37 

28 0.01 166.17 46.19 140.00 363.70 1.57 45.50 1.19 18.31 -15647.33 -6.02 -1.38 4.64 2.82 1.58 

29 0.03 119.12 32.84 97.20 268.20 1.59 57.80 1.22 13.02 -10884.03 -6.64 -1.30 5.34 5.75 1.53 

30 0.08 136.15 38.16 119.30 307.40 1.55 43.90 1.14 15.12 -12529.25 -6.41 -0.95 5.46 3.17 1.88 

31 0.08 152.15 39.90 125.70 327.10 1.55 45.70 1.21 15.82 -14576.96 -6.41 -0.95 5.46 4.35 1.67 

32* 0.12 150.17 42.79 135.90 347.20 1.54 42.60 1.10 16.96 -13599.44 -6.33 -1.21 5.12 2.46 1.93 

33 0.17 182.17 48.24 147.50 380.60 1.57 44.30 1.23 19.12 -17694.98 -5.77 -1.36 4.42 3.64 1.07 

34 0.18 152.15 40.65 115.30 324.60 1.62 62.70 1.32 16.11 -14472.69 -6.12 -1.26 4.86 2.56 0.87 

35 0.19 150.17 42.98 135.60 345.10 1.55 41.80 1.11 17.04 -13599.24 -6.52 -2.61 3.91 4.68 1.74 

36 0.25 137.14 37.01 115.80 300.90 1.55 45.50 1.18 14.67 -12963.71 -6.37 -1.47 4.91 3.32 1.39 

37* 0.31 150.17 42.98 135.60 345.10 1.55 41.80 1.11 17.04 -13599.87 -5.99 -1.65 4.35 3.48 2.39 

38 0.38 152.15 41.56 123.50 324.00 1.59 47.30 1.23 16.47 -14576.58 -6.02 -1.43 4.59 6.16 1.87 

39* 0.38 153.14 38.65 109.20 312.30 1.63 66.90 1.40 15.32 -15012.64 -6.08 -1.16 4.92 5.24 1.17 

40 0.42 164.20 48.72 156.20 384.30 1.54 36.50 1.05 19.31 -14668.48 -5.69 0.06 5.75 2.00 2.61 

41 0.42 122.12 34.88 99.50 267.30 1.62 52.00 1.23 13.83 -11458.08 -6.50 -1.58 4.92 4.77 2.03 

42 0.48 166.17 44.54 142.20 366.90 1.54 44.20 1.17 17.65 -15648.09 -6.22 -1.18 5.04 2.56 2.03 

43 0.52 119.12 32.84 97.20 268.20 1.59 57.80 1.22 13.02 -10884.10 -6.60 -1.09 5.51 5.19 1.53 

44 0.52 152.19 44.07 144.80 358.50 1.52 37.50 1.05 17.47 -13631.83 -5.33 0.03 5.37 2.39 2.39 

45 0.57 166.17 44.54 142.20 366.90 1.54 44.20 1.17 17.65 -15647.63 -6.38 -0.94 5.44 4.18 2.03 

46 0.59 153.14 39.50 115.90 315.40 1.60 54.70 1.32 15.66 -15008.17 -5.60 -2.60 3.00 3.20 2.12 

47 0.62 182.17 46.58 149.70 383.80 1.53 43.10 1.22 18.46 -17696.16 -6.00 -0.93 5.07 2.25 2.17 

48 0.70 166.22 48.71 161.30 398.30 1.52 37.10 1.03 19.31 -14702.27 -5.30 0.00 5.30 0.61 2.84 

49* 0.75 166.22 48.99 161.10 395.30 1.52 36.10 1.03 19.42 -14702.40 -5.39 0.33 5.72 2.76 2.91 

50 0.88 186.21 54.60 151.50 410.60 1.64 53.80 1.23 21.64 -16712.14 -5.98 -0.76 5.21 1.84 3.01 

51 0.96 246.21 63.57 161.20 486.90 1.72 83.10 1.53 25.20 -23894.67 -5.89 -1.46 4.43 3.17 3.52 

52 0.98 150.22 46.95 154.40 377.10 1.52 35.50 0.97 18.61 -12651.02 -4.68 -2.14 2.55 4.92 3.36 

53 1.01 185.22 57.50 153.90 415.60 1.67 53.10 1.20 22.79 -16171.04 -5.08 -0.11 4.97 0.87 3.11 

54 1.02 198.22 57.92 165.90 441.90 1.62 50.20 1.19 22.96 -17749.89 -6.27 -1.54 4.73 2.34 3.13 

55 1.07 212.24 62.64 180.00 479.60 1.61 50.20 1.18 24.83 -18820.33 -6.34 -1.28 5.06 2.68 3.06 

56 1.09 170.21 52.72 153.10 395.60 1.60 44.50 1.11 20.90 -14663.98 -5.81 -0.69 5.12 1.74 3.32 

57 1.23 198.22 57.92 165.90 441.90 1.62 50.20 1.19 22.96 -17750.19 -6.14 -1.93 4.21 3.48 3.78 

58 1.31 184.23 57.44 167.20 433.30 1.60 45.00 1.10 22.77 -15734.31 -5.82 -0.15 5.66 1.81 3.76 

59* 1.33 194.23 53.80 175.20 446.40 1.53 42.10 1.11 21.33 -17789.18 -6.30 -0.89 5.40 1.36 3.00 

60 1.36 166.21 48.71 161.30 398.30 1.52 37.10 1.03 19.31 -14702.30 -5.35 0.03 5.39 2.36 3.28 

61 1.42 228.24 64.60 189.90 498.50 1.60 47.40 1.20 25.61 -20868.75 -6.00 -1.69 4.31 2.70 3.62 

62 1.48 208.25 58.39 192.10 483.60 1.52 40.10 1.08 18.91 -18874.09 -6.33 -1.57 4.75 1.40 3.28 

63* 2.03 208.30 62.61 210.90 517.60 1.51 36.20 0.99 24.82 -17913.77 -5.81 -1.10 4.71 2.08 4.17 

64 2.63 264.36 76.97 257.80 645.40 1.51 39.20 1.03 30.51 -23141.55 -6.28 -0.87 5.41 1.15 5.22 

65 

66 

-0.16 

0.27 

229.10 

184.10 

47.77 

41.22 

123.30 

111.50 

388.70 

333.20 

1.70 

1.66 

98.50 

79.60 

1.86 

1.65 

18.93 

16.34 

-25077.60 

-19508.85 

-8.24 

-7.43 

-3.90 

-2.95 

4.34 

4.48 

1.77 

6.61 

1.49 

1.55 

67 0.54 184.10 41.22 111.50 333.20 1.66 79.60 1.65 16.34 -19509.58 -7.63 -3.32 4.31 3.41 1.55 

68* 0.95 184.10 41.22 111.50 333.20 1.66 79.60 1.65 16.34 -19509.49 -7.49 -3.64 3.85 1.17 1.55 

69 1.08 184.10 41.22 111.50 333.20 1.66 79.60 1.65 16.34 -19509.58 -7.63 -3.32 4.31 3.41 1.55 

70 1.23 198.13 46.05 127.80 370.80 1.64 70.80 1.55 18.25 -20579.90 -7.27 -3.27 4.00 4.57 2.06 
*
Test set 

 

The principal component analysis (PCA) [18] was conducted to identify the link between the different 

descriptors. Bold values are different from 0 at a significance level of p= 0.05. Correlations between the 

fourteen descriptors are shown in table 3 as a correlation matrix. The Pearson correlation coefficients are listed 

in table 3. The obtained matrix provides information on the positive or negative correlation between descriptors. 

In general, the co-linearity (r>0.5) was observed between most of the variables, and between the variables and 

pIC50. Additionally, to decrease the redundancy presented in our data matrix, the descriptors that are highly 

correlated (R ≥ 0.95), were removed. 
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Table 3: Correlation matrix between different obtained descriptors 

  pIC50 MW MR MV Pc N  D  ET EHOMO ELUMO E  log P 

pIC50 1               

MW 0.588 1 

 

            

MR 0.617 0.907 1             

MV 0.592 0.804 0.951 1            

Pc 0.618 0.913 0.988 0.971 1           

N -0.026 0.161 -0.068 -0.367 -0.152 1          

 -0.090 0.145 -0.199 -0.438 -0.218 0.891 1 

 

       

D -0.115 0.136 -0.252 -0.470 -0.264 0.831 0.963 1        

 0.600 0.897 0.991 0.936 0.975 -0.049 -0.189 -0.242 1       

ET -0.495 -0.948 -0.727 -0.588 -0.740 -0.336 -0.392 -0.421 -0.719 1      

EHOMO -0.133 0.022 0.333 0.444 0.313 -0.506 -0.679 -0.723 0.343 0.214 1 

 

   

ELUMO -0.281 -0.342 -0.082 0.058 -0.088 -0.508 -0.618 -0.644 -0.076 0.503 0.599 1    

E -0.235 -0.443 -0.385 -0.305 -0.375 -0.201 -0.190 -0.186 -0.386 0.443 -0.106 0.733 1   

 -0.131 0.098 0.112 0.094 0.107 0.044 0.035 0.027 0.128 -0.079 0.232 -0.327 -0.603 1 

 log P 0.845 0.576 0.709 0.701 0.699 -0.128 -0.248 -0.323 0.697 -0.404 0.116 -0.029 -0.134 -0.220 1 

 
1.2. Multiple Linear Regressions  

To generate the quantitative relationships between toxicity pIC50 and selected descriptors, our data set were 

subjected to the MLR and MNLR. Only variables with significant coefficients were retained. 

 
1.3. Multiple linear regression of the variable toxicity (MLR) 

Many attempts have been made to develop a relationship with the indicator variable of toxicity pIC50, but the 

best relationship obtained by this method is only one corresponding to the linear combination of two descriptors 

selected, the energy ELUMO and the octanol/water partition coefficient (log P). 

The resulting equation is: 

            pIC50 = -1,275 - 0,170×ELUMO + 0,675×log P             (1) 

 
Figure 1: Graphical representation of calculated and observed toxicity by MLR 

For our 60 compounds, the correlation between experimental toxicity and calculated on based on this model is 

quite significant (figure 1) as indicated by statistical values: 
 

N = 60     R
2 
= 0.801     R

2
CV = 0.777     MSE = 0.120     F = 114.457     P<0.0001 

The figure 1 shows a very regular distribution of toxicity values depending on the experimental values. 

In the equation, N is the number of compounds, R
2
 is the determination coefficient, MSE is the mean squared 

error, F is the Fisher’s criterion and P is the significance level.  

A higher correlation coefficient and lower mean squared error indicate that the model is more reliable. A P that 

is smaller than 0.05 exhibits that the regression equation is statistically significant. The QSTR model expressed 

by Eq. (1) is cross-validated by its noticeable R
2
cv value (R

2
cv =0.777) obtained by the leave-one-out (LOO) 

method. A value of R
2
cv is greater than 0.5 is the important criterion for qualifying a QSTR model as valid [16]. 

The correlation coefficients between descriptors in the model were calculated by variance inflation factor (VIF) 

as shown in table 4. The VIF was defined as 1/(1-R
2
), where R was the multiple correlation coefficients for one 
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independent variable against all the other descriptors in the model. If VIF greater than 5, it mean that models 

were unstable and must be rejected, models with a VIF values between 1 and 4 can be accepted. As can be seen 

from table 4, the VIF values of the two descriptors are all smaller than 5.0, resulting that there is no-collinearity 

between the selected descriptors and the obtained model has good stability. 

 
Table 4: The variance inflation factors (VIF) of descriptors in QSAR model 

 
ELUMO log P 

Tolerance 0.997 0.997 

VIF 1.003 1.003 

 
The elaborated QSTR model reveals that the toxicity of 60 heterogeneous phenols to Tetrahymena pyriformis 

may be explained by the two selected descriptors in Eq (1). The negative correlation of the energy ELUMO with 

the pIC50 shows that an increase in the values of this factor indicates a decrease in the value of the pIC50, 

whereas a positive correlation of the octanol/water partition coefficient (log P) with the pIC50 reveals an 

increase in the value of the pIC50. 

 
1.4. Multiple nonlinear regression of the variable toxicity (MNLR) 

The nonlinear regression method was also used to improve the structure toxicity in a quantitative way, taking 

into account several parameters. We have applied it to table 2 containing 60 molecules associated with fourteen 

variables. We used a pre-programmed function of XLSTAT following: 
 

Y = a + (b X1+ c X2 + d X3+ e X4 …) 

 

Where a, b, c, d...: represent the parameters and X1, X2, X3, X4,...: represent the variables. 

The resulting equation is: 

 

pIC50 = -1,195 - 0,151×ELUMO + 0,595×log P + 8,116 10
-3

×E
2

LUMO + 1,690   10
-2

×log
2
P     (2) 

 
The obtained parameters describing the topological and the electronic aspects of the studied molecules are: 

 

N = 60     R
2
 = 0.802     R

2
CV =0.751     MSE = 0.124 

The toxicity values pIC50 predicted by this model are almost similar to that observed. The figure 2 shows a very 

regular distribution of toxicity values based on the observed values. 

The obtained coefficient of determination in equation (2) is quite very interesting (0.802). The QSTR model 

expressed by Eq. (2) is cross-validated by its appreciable R
2
cv values (R

2
cv =0.751) obtained using the leave-

one-out (LOO) method. A value of R
2
cv is greater than 0.5 is the important criterion for qualifying a QSTR 

model as valid [16].  

To optimize the error standard deviation and to improve our model, we involve in the next part artificial neural 

networks (ANN). 

 
Figure 2: Graphical representation of calculated and observed toxicity by MNLR 
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1.5. Artificial neural networks ANN 

In order to increase the probability of good characterization of studied compounds, neural networks (ANN) can 

be used to establish predictive models of quantitative structure–toxicity relationships (QSTR) between a set of 

molecular descriptors obtained from the MLR and observed toxicity. The ANN calculated toxicity model was 

developed using the parameters of the studied compounds. The correlation between ANN calculated and 

experimental toxicity values are very significant as illustrated in figure 3. 

N = 60     R
2
 = 0.824     R

2
CV = 0.704     MSE = 0.100 

 
 

Figure 3: Correlations of observed and predicted activities calculated using ANN 

The obtained determination coefficient (R
2
) value is 0.824 for this data set of the heterogeneous phenol 

derivatives. This confirms that the artificial neural network (ANN) results are the best to predict the quantitative 

structure-activity relationship model. Furthermore, the R
2
cv value shows that the ANN model is the high 

predictive power. 

 
1.6. External validation 

To estimate the predictive power of the MLR, MNLR and ANN models, we must use a set of compounds that 

have not been used for training set to establish the QSTR model. The models established in the computation 

procedure by using the 60 heterogeneous phenols are used to predict the toxicity of the remaining 10 

compounds. The principal performance metrics of the three models are shown in table 5. As seen from this 

table, the statistical indictors of the ANN model are more significant than the other models. 

 
Table 5: Performance comparison between models obtained by MLR, RNLM and ANN 

Model 
Training set Test set 

R
2
 R

2
cv MSE R

2
 R

2
ext MSE 

       

MLR 0.801 0.777 0.120 0.801 0.708 0.132 

MNLR 0.802 0.751 0.124 0.802 0.716 0.115 

ANN 0.824 0.704 0.100 0.824 0.773 0.109 

 

We assessed the best linear QSTR regression equations developed in this study. Based on this result, a 

comparison of the quality of the MLR and MNLR models indicates that the ANN model has a significantly 

better predictive ability because the ANN approach gives better results than those of MLR and MNLR. ANN 

establishes a satisfactory relationship between the molecular descriptors and the toxicity of the studied 

compounds. 

The accuracy and predictability of the proposed models were illustrated by comparing key statistical parameters, 

such as the R or R
2
 of different models obtained using different statistical tools and different descriptors, as 

shown in Table 6. 
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Table 6: Observed values and calculated values of pIC50 according to different methods 

N° 
pIC50 

(obs.) 
pIC50 (calc.) pIC50 

(obs.) 
pIC50 (calc.) 

MLR NMLR ANN N° MLR NMLR ANN 

1
*
 − 1.50 -0.365 -0.365 -0.362 36 0.25 -0.087 -0.097 -0.043 

2 − 1.04 -0.642 -0.624 -0.530 37
*
 0.31 0.619 0.593 0.698 

3 − 1.02 -0.200 -0.208 -0.178 38 0.38 0.230 0.208 0.287 

4 − 0.99 -0.733 -0.708 -0.569 39
*
 0.38 -0.287 -0.290 -0.247 

5 − 0.97 -0.877 -0.838 -0.635 40 0.42 0.478 0.464 0.487 

6 − 0.83 -0.502 -0.491 -0.466 41 0.42 0.364 0.340 0.440 

7 − 0.81 -0.151 -0.159 -0.114 42 0.48 0.296 0.271 0.341 

8 − 0.78 -0.797 -0.764 -0.581 43 0.52 -0.057 -0.072 -0.038 

9 0.70 -0.799 -0.767 -0.606 44 0.52 0.334 0.318 0.317 

10 − 0.60 -0.459 -0.444 -0.454 45 0.57 0.256 0.231 0.282 

11 − 0.52 0.119 0.115 0.228 46 0.59 0.598 0.588 0.725 

12 − 0.51 0.333 0.310 0.409 47 0.62 0.348 0.322 0.383 

13 − 0.51 -0.308 -0.305 -0.341 48 0.70 0.643 0.630 0.686 

14 − 0.39 -0.049 -0.056 -0.113 49
*
 0.75 0.635 0.630 0.681 

15 − 0.38 -0.189 -0.192 -0.137 50 0.88 0.888 0.868 0.941 

16 − 0.36 -0.062 -0.068 -0.129 51 0.96 1.351 1.346 1.313 

17 − 0.30 -0.235 -0.240 -0.198 52 0.98 1.357 1.353 1.248 

18 − 0.30 -0.144 -0.149 -0.196 53 1.01 0.845 0.835 0.923 

19
*
 − 0.24 -0.283 -0.285 -0.241 54 1.02 1.101 1.084 1.100 

20 − 0.18 -0.662 -0.636 -0.559 55 1.07 1.009 0.989 1.036 

21
*
 − 0.16 -0.593 -0.578 -0.494 56 1.09 1.085 1.074 1.146 

22 − 0.14 -0.214 -0.218 -0.167 57 1.23 1.606 1.616 1.469 

23 − 0.12 -0.381 -0.379 -0.329 58 1.31 1.291 1.304 1.487 

24 − 0.09 -0.467 -0.451 -0.461 59
*
 1.33 0.903 0.882 0.952 

25 − 0.08 0.076 0.059 0.124 60 1.36 0.935 0.932 1.047 

26 − 0.03 -0.214 -0.218 -0.169 61 1.42 1.457 1.458 1.375 

27 − 0.03 -0.176 -0.186 -0.158 62 1.48 1.208 1.195 1.182 

28 0.01 0.026 0.010 0.066 63
*
 2.03 1.728 1.754 1.818 

29 0.03 -0.020 -0.035 0.012 64 2.63 2.399 2.507 2.646 

30 0.08 0.157 0.134 0.174 65 − 0.16 0.393 0.440 0.620 

31 0.08 0.015 -0.004 0.024 66 0.27 0.273 0.283 0.438 

32
*
 0.12 0.233 0.210 0.276 67 0.54 0.335 0.358 0.527 

33 0.17 -0.322 -0.320 -0.263 68
*
 0.95 0.389 0.423 0.600 

34 0.18 -0.474 -0.462 -0.383 69 1.08 0.335 0.358 0.527 

35 0.19 0.342 0.339 0.486 70 1.23 0.672 0.682 0.817 
* 
Test set 

1.7. Domain of applicability 
To estimate the reliability of any QSTR model and its ability to predict new compounds, the domain of 

applicability must be essentially defined. The predicted compounds that fall within this domain may be 

considered as reliable. The applicability domain was discussed with the Williams graph in figure 4, which the 

standardized residuals and the leverage values (hi) are plotted.  

 
Figure 4: Williams plot for the presented MLR model 
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It is based on the calculation of the leverage hi for each molecule, for which QSAR model is used to predict its 

toxicity: 

ℎ𝑖 =  𝑥𝑖  (𝑋
𝑇  𝑋)−1 𝑥𝑖

𝑇                  𝑖 = 1, … , 𝑛                    (3)  

Where xi is the row vector of the descriptors of compound i and X is the variable matrix deduced from the 

training set variable values. The index T refers to the matrix/vector transposed. The critical leverage h
*
 is, 

generally, fixed at 3(k+1)/N, where N is the number of training molecules, and k is the number of model 

descriptors. If the leverage value h of molecule is higher than the critical value (h
*
) i.e., h > h

*
, the prediction of 

the compound can be considered as not reliable. 

The Williams plot for the presented MLR model is shown in figure 4. From this plot, the leverage values (hi) of 

any molecule in the training and test sets are less than the critical value (h
*
 = 0.15) excepting the compounds 1 

and 55 as outliers. Also, the standardized residuals of all molecules in the training and test sets are less than 

three standard deviation units (±3σ). Thus, the predicted toxicity by the developed MLR model is reliable. 
 

Conclusion 

In this study, three different methods, MLR, MNLR and ANN were used to generate the QSTR models for 

predicting the toxicity of heterogeneous phenols to Tetrahymena pyriformis and the resulting models were 

compared. It was shown the artificial neural network (ANN) results have substantially better predictive ability 

than the MLR and MNLR, yields a regression model with improved predictive power, we have established a 

relationship between several descriptors and the pIC50 values of the studied the heterogeneous phenol 

derivatives in a satisfactory manner. 

Finally, we conclude that the studied descriptors, which are sufficiently rich in chemical, electronic and physic-

chemical information to encode the structural features, might be used with other descriptors for the development 

of predictive QSAR models. 
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