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1. Introduction 

Viscous interaction is one of the major aspects of supersonic flows .The interaction between a shock wave and a 

boundary layer can produce a region of separated flow [1]. 

Mac Cormack method was one of the most popular of the central schemes [2]. Space-centered schemes of 

second order accuracy in space where initially introduced with implicit linear multi-step time integration 

methods by Brily and McDonald [3], and Beam and Warming [4]. Due to the oscillations that are created in 

central algorithm, Up wind schemes were introduced to prevent these oscillations. 

The first explicit Up wind scheme was introduced by Courant, Isaacson and Reeves (1952), since this date there 

has been considerable effort aimed at constructing and analyzing high order accurate, non-oscillatory 

approximations to hyperbolic conservation laws [5-6]. First Van Leer published his work on the "Ultimate 

difference schemes" in a series of traditional papers [7-11]. This work represented a complete extension of the 

idea of Godunov to high order schemes. Currently, one of the most popular solvers is due to Roe [12], who 

proposed a linearized Riemann solver for the Euler equations, where the thermodynamic properties are 

represented by the perfect gas law. Since 1981, several generalizations of the Roe solver were proposed in order 

to include the effects real gases [13-15]. More recently, Gallout and Masella [16], presented a numerical 

scheme, VFRoe, of finite volume type for the system of nonlinear one-dimensional hyperbolic equations. 

Flat plate and compression corner flows appear in many supersonic aircraft configurations and particularly 

interesting feature is the interaction of a boundary layer with shock waves. Within this framework several works 

was completed knowing that the work of Carter J. [17] is the reference of all work since 1972. Rizzetta D. [18]; 

Tenaud C. [19]; Mallinson S. G. [20]; Fang J. [21]; Jammalamadaka et al. [22]; Yang G., Yao Y., Fang J., Gan 

T. [23] are considered as members of the same subgroup who treat the compressible supersonic flows on a 

compression corner with different methods. 

In this work, a second order finite volume method is used for the resolution of a supersonic laminar flow over 

compression corner, on a general quadrilateral meshes. The paper is organized as follows: the governing 

equations are given in section 2; section 3 describes the finite volume approach and the numerical flux 

approximation. The numerical tests and comparisons with others results are showed in section 4. 
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2. Presentation 

The compressible viscous flow is described by the conservation laws of total mass, momentum and energy. This 

system of conservation equations can be written in a general integral form, which is the basis of the finite 

volume method, described later [1]. For an arbitrary control volume Ω, surrounded by the surface S, the 

equations write 

                                                                       C d
S S

U d  + F .dS + F .dS = 0
t 




                                                        (1) 

Where U is the vector of conservative variables, 
CF  and 

dF  are the flux vectors of the inviscid and viscous 

contributions, respectively. 

C d

ρ ρV 0

U = ρV                    F  = ρV V + P I                   F  = 

ρE ρHV .V - k T








 

V is the velocity vector, ρ  is the mass density, P the pressure, T the temperature, E the total energy per mass 

and k is the thermal conductivity. The components of the shear stress are given by 

ji
ij ij

j i

vv 2
 =  (  + ) -   ( .V)δ

x x 3
  




 
 

 is the dynamic viscosity of the flow, 

ijδ is the symbol of Kronecker. 

To close this system, the equation of state for the pressure has to be added: 

                                                                   
1

P T






                                                                                    (2) 

γ is the ratio of specific heats. 

The variables in equations (1) and (2) may be nondimensionalized as follows: 

x y
x  =                  y  = 

L L

 
 

*u v t.L
u  =                v  =                  t

U U U

 

  

  

p

2 2

c TP
 =                P  =              T  = 

U U




 

  

   

 

2

E μ
E  =            μ  = 

U μ

 

  

 

Where: 

pc  is the specific heat at constant pressure, L is the length of the plate. U  is the reference velocity, ρ  is the 

reference density, μ  is the reference viscosity and   is the free stream symbol. 

The resulting system of nondimensionalized differential equations may be conveniently as: 

                                                     C d* S S
U  d  + F .dS + F .dS = 0

t









                                                       (3) 

C d

,L

ρ ρ V 0

1
U  = ρ V                F  = ρ V V  + P  I          F  = 

Re
ρ E μρ H V .V  -  T

Pr






 

        

   
   




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With: 

,LRe  is the Reynolds number, ,L

ρ U L
Re  = 

μ

 




, Pr  is the Prandtl number. 

And: 

ji
ij ij

j i p

vv 2 γ - 1
 =  (  + ) -   ( .V )δ                              P  = T

x x 3 c γ
   




     

 




 
 

3. Finite volume discretization 

The basic idea of a finite volume method is to use a finite set of control volumes to describe the equation and 

restrict the unknown to be in a finite dimensional space [24]. 

Within this approach the integral conservation laws are written for a discrete 2D control volume (ABCD), called 

cell (i, j) (figure 1). 

Equation (3) is replaced by the discretized form: 

                                                   ABCD ABCD c d*
sides

(U . ) + (F  + F ).S = 0
t

  



                                                        (4) 

Where the sum of the flux terms refers to all the external sides of the control cell (ABCD). We would identify 

ABCDU
with

i,jU
, ABCD  with the area of (ABCD). 

                                                      
i,j

c d*
4 facesABCD

U 1
 = -  (F  + F ).S = 0

t



 


 
                                                         (5) 

 

                                                         
2
1j

S


                

                               y                                    

                                                                    

                                                            B  

                                 C                                              

                                                 y
ij                    

2
1i

S


      

          j    

                                                            A    

                                  D                                                                  

   

                                                                              

                                                                                          x 

                                               i     
Figure 1: Two dimensional control volumes 

The evaluation of the term 
i,j

*

U

t




 in equation (5) determines whether the scheme is explicit or implicit and fixes 

the time accuracy. 

3.1 Convective flux 

There are several ways to carry out the convection flux [25-26]. Here we present an upwind scheme based on 

the "Flux Vector Splitting" method of Steger and Warming [27]. The idea is to seek the characteristic lines of 

the flow on which the physical information is propagated and to discretize the flux according to this direction. 

The flux is decomposed into a positive part and a negative part according to the direction of the transport on 

these characteristic lines. 

The positive fluxes are evaluated using available information in the cells upstream of the normal S = S.n , and 

vice versa for the negative fluxes. 

This splitting of the convective flux is based on the sign of the eigenvalues of the jacobian A.n  we write: 
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                                             -1
c

sideside side

F .n  = A.n U  = P(n).D(n).P (n) U


     
       

                                   (6) 

Where P(n)  and D(n) are respectively, the transformation matrix and the diagonal matrix. The eigenvalues of 

the Jacobian matrix of the system are: 

1 2 3 4 =  = V .n;       = V .n + c;      = V .n - c     
 

Where c is the speed of the sound: 
2 γP

c  = 





 

We decompose the diagonal matrix D as:      D = D+ + D- 

The matrix D+ contains only the positive terms 
j


and vice versa for the matrix D- : 

+,-

j j j

, , ,

1 3 4

1
 = (   )

2

 = 2(γ - 1)

  

        



 

 

What gives: 

                            
   

 

-1 + -1
c

side sideside

- -1
c c

side side side

F .n  = P(n).D(n).P (n) U  = P(n).D (n).P (n) U

                   P(n).D (n).P (n) U  = F .n  F .n


 

 
 



      
     

     
            

                        (7) 

In the 2D the following expressions are obtained from the split convective fluxes: 

                           

, ,

x 3 4,
, ,

c y 3 4
side

2 2 2
, , , ,

3 4 3 4

u cn ( )

F .n  = v cn ( )
2γ

u v c
( ) c(V .n)( )

2 γ-1



  


  

    

    

 


    

 
        

 

   
  


   

                           (8) 

where: 
+,- +,- +,-

1 3 4 = 2(γ - 1)  +  +      

x yn = (n , n ) is the outward unit normal vector of the calculation face. 

The spatial accuracy 

The simplest upwind scheme results if a zero-order extrapolation of the conservative variables is used: 

c c
1

i + , i , 
2

c c
1

i + , i + 1 , 
2

F .n  = F .n

F .n  = F .n

j j

j j

 
 

 
 

   
      

   
      

 

The resulting scheme is only first-order accurate in space. 

Higher order schemes can be obtained using a linear extrapolation of the conservative variables. 

This linear extrapolation is performed by using a quasi-1D approach. 

For example, the conservative variables on the boundary surface (i+1/2, j) will be obtained by extrapolating the 

conservative variables in the nodes (i-1,j), (i, j), (i+1, j) and (i+2, j). 

The conservative variables used in the positive split fluxes are denoted 1
i+ ,j

2

U
 whereas 1

i+ ,j
2

U
 stands for the 

values used in the negative split fluxes. 

The following extrapolation formulas are used: 

                                                

x

i,jx

AB i,j i,j i,j i-1,j x x

i-1,j i,j

x

i,j

AB i+1,j i+1,j i+2,jx x x

i+1,j i+1,j i+2,j

U  = U  + (R ) U  - U

1
U  = U  + ( ) U  - U

R





   

   


    




   

                                       (9) 
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Where the function   is defined as: 

x x

i,j i,j

1 - k 1 + k
(R ) =  +  R

2 2
  

x

i,jR  is the ratio of the gradients downstream and upstream of the cell (i, j) : 

x x

i+1,j i,j i,j i-1,jx

i,j x x

i,j i-1,j i,j i+2,j

U  - U  - 
R  = 

U  - U  - 

 

 

 

 
 

with: 
1

2 2 2

x

i,j 1 i, j 1 i, j
i+ , j i+ , j

2 2

 = x  - x  + y  - y   
    
     
     

 

The extrapolation ensures that the scheme is of second-order accuracy in space. 

The parameter defines different schemes. The most values currently used are k=-1 (fully upwind scheme), k=0 

(partially upwind scheme). 

It is clear that the higher order schemes are not monotonous. This may lead to oscillations into the solution 

especially in the vicinity of large gradients such as shocks. In order to restore monotonicity limiters which are 

introduced in the extrapolation formulas. 

This leads to a redefinition of the function : 

x x

i,j i,j

1 - k 1 + k
(R ) =  +  R   Lim

2 2


 
 

 
 

 

The following limiter of Minmod is used: 

 

                                                                

i,j

i,j i,j

i,j

0       if        R   0

Lim = R     if       0  R  1

1      if       R   1

 


 
 

                                                        (10) 

 

3.2 Diffusive flux 

Because of the elliptic character of the diffusive flux [1] (the physical information is propagated everywhere), 

the viscous and thermal diffusion terms are computed here by a second-order centered scheme. First, the flux is 

decomposed in the two directions as follow 

 

                                                     
x y

d d x d y

4 faces 4 faces 4 faces

(F ) = (F .n ) + (F .n )


                                                      (11) 

 

with : 

 

x

d

0

2 u v
(2  - )

3 x y

F  =  - u v
(  - )

y x

4 u 2 v u v T
u  - u  + v  + v  + k

3 x 3 y y xx





 
 

 


 

  


 

      
      

    




 
  


 
  


    
     

y

d

0

u v
(  + )

y x

F  =  - 2 v u
(2  - )

3 y x

4 v 2 u u v T
u  - v  + u  + u  + k

3 y 3 x y x y





 
 

 


 

  


 

      
      

    




 
  


 
  


    
     

 

 

The derivatives acquiring in the expressions for 
x

dF
 and 

y

dF
 are found by averaging the mean derivatives in the 

corner nodes of the cells. 
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                                             4                              3   

 

 

                                D                            A               

 

1 2  

 
Figure 2: The mesh for the discretization of the diffusion flux 

We calculate the gradient on the face AB of Figure 2 with: 

                                                                    
* * *

* * *

1
  + 
2

AB A B

u u u

x x x

     
    

      

                                                          (12) 

Then we compute the gradient at point A as the mean value of the one on the surrounded cell (1234): 

                                                         
ABCD 1234

* *
*

*

* *

1234 1234

* * * * * * * *

2 4 3 1 3 1 2 4

* * * * * * * *

2 4 3 1 3 1 2 4

1 1
 d  = d

( )( ) ( )( )
           

( )( ) ( )( )

S
AB

u u
u y

x x

u u y y u u y y

x x y y x x y y



 
 

   

    


    

 
                        (13) 

A similar relation is found for the derivative with respect to y: 

                                                        
ABCD 1234

* *
*

*

* *

1234 1234

* * * * * * * *

2 4 3 1 3 1 2 4

* * * * * * * *

2 4 3 1 3 1 2 4

1 1
 d  = d

( )( ) ( )( )
           

( )( ) ( )( )

S
AB

u u
u x

y y

x x u u x x u u

x x y y x x y y



 
 

   

    


    

 
                                    (14) 

3.3 Time integration 

We use a first-order explicit scheme for the discretization in time; therefore the Eq. (3) becomes: 

                                               

*
n+1 n 

i,j i,j c d

4sides 4sidesABCD

t
U  = U  -  (F .S) + (F .S)     

   
                                             (15) 

Stability analysis  

The scheme (15) described above is applied to the 2D linear convection-diffusion equation: 

                                                  
2 2

* 2 2

u u u u u
 + a  +  =   + 

t x xy y


 

    

 

      
           

                                             (16) 

  is the kinematic viscosity of the flow. 

Neumann analysis on the stability of the scheme described before give the following stability condition: 

                                                             ,L*

2 2

0.5 Pr Re
t   

1 1
γ  + 

x y







 

 
  
  
   

                                                          (17) 

where 
*t is time step, and 

*x and 
*y are the spatial steps. 

4. Results and discussion: Supersonic flow over a compression corner with angles of 5, 7.5 and 10 
In this Navier-Stokes problem, a Mach 3 flow passes over a compression corner at an angle of 5°, 7.5° and 10°. 

The Reynolds number, based on the free-stream values and the distance from the leading edge of the flat to the 
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corner, is 16800. The geometry of the physical domain and the way of grid used are shown in the figure 3 

below. 
 

                                         the same conditions to the Upstream         

 

3.0M   

1.0                                                                                   free surface 

 
1.0u                                                                           

 
0.0v                                                                             

21/(( 1) )T M   
                                                          

                                                                                                                           5°, 7.5°, 10° 

Upstream conditions  

  Wall conditions:        0.0vu     ; 2

0, 2

1 1
(1 )

( 1) 2
wallT T M

M




 




  


   

Figure 3: The Mach 3 flow over compression corner with angles of 5°, 7.5° and 10° 

The computational domain covers the area 0  x   2.0  , 0  y   0.575  on the plate, and a height of 

0.575above the wall past the corner. The leading-edge of the plate is placed at x  = 0
and the corner at x  = 1

. 

The total number of grid points used was 2156, thereby a constant grid spacing in the x
 and y

directions. 

Figure 4 shows the wall pressure distribution for ramp angles of 5, 7.5 and 10. It is seen that the pressure is a 

decreasing function on 

c

x
0   0.7

x
  and it is an increasing function on

c

x
0.7   2

x
  . The profiles possess 

discontinuities at the corner

c

x
 = 1

x
. 

 
Figure 4: Comparison of wall pressure distribution for Ramp angles of 5°, 7.5° and 10° 

 
Figure 5: Comparison of the displacement thickness measured normal to the surface distribution  

for different ramp angles 



Bahia and Salhi, JMES, 2017, 8 (11), pp. 3993-4001 4000 

 

Figure 5 presents the displacement thickness distribution. The profiles are composed of two parts, the first part 

is an increasing function and the second one is a decreasing function. The profiles possess a maximum at the 

corner. This maximum value is more important for ramp angle 10°. 

  
Figure 6: Comparison of wall skin-friction distribution for different ramp angles 

Figure 6 presents the skin-friction distribution. Here also, the profiles are composed of two parts, the first part is 

a decreasing function and the second is an increasing function. The profiles possess a minimum at the corner. 

This minimum value is more important for the ramp angle 10°. 

These results show good agreement with the results of Carter J. [17], Fang J. [21] and Babinsky H. [31]. 

 
Figure 7: Comparison of the results of present calculation and the results of  

Carter J. and Hung & Mac Cormack 

 

Figure 7 presents the profiles of the friction coefficient, heat-flux coefficient and pressure coefficient along the 

wall, the results of present calculation show good agreement with the results of Carter J. [17], Hung C. M., Mc 

Cormack R. W. [26] and Jammalamadaka A. [22]. 

                Graph of Density                          Graph of Pressure                     Graph of Temperature 

 
 

Figure 8: Solution of the Mach 3 compression corner problem 

Figure 8 shows the profiles of adiabatic and isotherm contours, this figure demonstrates the ability of the 

method to capture the leading-edge shock, the results of present calculation show good agreement with the 

results of Carter J. [17], Yang G. [23], WU M. & Martin M. P. [28], Babinsky H. & Harvey J. K. [29] and 

Zapryagaev V. I., Kavun I. N. & Lipatov I. I. [30]. 

The number of cycle required for convergence of the calculations discussed was 500. However for the 

calculation carried out by J. Carter there is 1500 to 3000. 
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Conclusions 
This paper presents a numerical simulation of the Navier -Stokes equations that govern a supersonic laminar 

flow over a compression corner. 

An upwind second order finite volume scheme is used for the discretization of the convective fluxes, on general 

quadrilateral meshes, whereas the diffusive contributions are computed with a centered scheme. 

The results of the test case considered here and the comparisons made with the results of Fang J. [21], 

Jammalamadaka A. [22], Yang G. [23], WU M. [28], Babinsky H. [29] and Zapryagaev V. I. [30] show the 

good performance of the algorithms employed. 
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