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Abstract  

The soil sorption coefficient (Koc) is a key physicochemical parameter to assess the environmental risk of 

organic compounds. To predict the soil sorption coefficient in the more effective and economical way, here the 

QSAR model is applied to the set of 42 substituted phenols and anilines. This study was conducted using the 

principal component analysis (PCA), multiple linear regression (MLR), nonlinear regression (RNLM) and 

artificial neural network (ANN). We propose a quantitative model according to these analyses, and we 

interpreted the soil sorption coefficient of the compounds based on the multivariate statistical analysis. Density 

functional theory (DFT) with Beck’s three parameter hybrid functional using the LYP correlation functional 

(B3LYP/6-31G(d)) calculations have been carried out in order to get insights into the structure chemical and 

property information for the study compounds. This study shows that the MRA and MNLR have served to 

predict the soil sorption coefficient, but compared to the results of the ANN model, we conclude that the 

predictions fulfilled by the latter are more effective and better than other models. 

 

Keywords: QSAR model, DFT study, substituted anilines and phenols, soil sorption coefficient, artificial neural network (ANN). 

 

1. Introduction 

The soil sorption coefficient Koc, that determine the partitioning of an organic chemical between the soil/ 

sediment and aqueous solution, is an important environmental parameter. It is defined as the ratio of the 

concentration of a chemical adsorbed by the soil to the concentration of the chemical dissolved in the water, 

usually normalized to the organic carbon content. Thus, Koc is a frequently used parameter to indicate the 

physical movements of pollutants, chemical degradation, and biodegradation activity of a given species in 

environment [1-5], and it is of great use for the environmental risk assessment of organic chemicals. 

Halogenated aromatic compounds have been used for many years in chemical industry. They are used as 

solvents, propellants, additives, cooling agents and other polymers, for pesticides and organic syntheses [6]. 

Many of these chemicals were released into the environment and accumulated in nearly all environmental 

compartments, especially in aquatic systems, so it is beneficial to make a deep study of their potential hazard to 

aquatic organism. For these chemicals, quantitative structure–activity relationship (QSAR) modeling is a useful 

technique to correlate their physical, chemical, biological or environmental activities to their physicochemical 

property descriptors. With the rapid development of computer science and theoretical quantum chemical study, 

it can speedily and precisely obtain the quantum chemical parameters of compounds by computation. 

Moreover, these parameters, which have definite physical meaning, along with the introduction of the QSAR 

model can increase the interpretability. Nowadays, many QSAR models have been developed to predict the soil 

sorption coefficient of organic chemicals [7-9]. 

The objective of this study is to develop predictive QSAR models of the soil sorption coefficient (log Koc) of 

substituted phenols and anilines using several statistical tools, such as principal components analysis (PCA), 
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multiple linear regression (MLR), nonlinear regression (RNLM) and artificial neural network (ANN) 

calculations. To test the performance and the stability of this model we have used the method validation. 

 

2. Material and methods 
2.1. Data sources 
The observed soil sorption coefficients log Koc for 42 substituted phenols and anilines was taken from a 

literature [10]. The table 1 shows the chemical compounds studied and their soil sorption coefficients. For the 

proper validation of our data set with a QSAR model, the 42 compounds data were divided into training and test 

sets. 33 molecules are considered as training set to build QSAR models while remaining 9 molecules is taken as 

test set. The division was performed by random selection. 
 

Table 1: Substituted phenols and anilines their soil sorption coefficients 

N° Name (IUPAC) log Koc N° Name (IUPAC) log Koc 

1 phenol 1.430 22 Catechol 2.030 

2 2,3-dichlorophenol 2.650 23 Aniline 1.410 

3 2,4-dichlorophenol 2.750 24 3-methylaniline 1.650 

4 2,4,6-trichlorophenol 3.020 25 4-methylaniline 1.900 

5 2,4,5-trichlorophenol 3.360 26 4-chloroaniline 1.960 

6 3,4,5-trichlorophenol 3.560 27 4-bromoaniline 1.960 

7 2,3,4,6-tetrachlorophenol 3.350 28 3-trifluoromethylaniline 2.360 

8 Pentachlorophenol 3.730 29∗ 3-chloro-4-methoxyaniline 1.930 

9 4-bromophenol 2.410 30 3-methyl-4-bromoaniline 2.260 

10 4-nitrophenol 2.370 31 2,4-dichloroaniline 2.720 

11∗ 2-chlorophenol 2.600 32 2,6-dichloroaniline 3.250 

12 3-chlorophenol 2.540 33 3,5-dichloroaniline 2.110 

13 3,4-dichlorophenol 3.090 34 3,4-dichloroaniline 2.290 

14∗ 3,5-dimethylphenol 2.830 35 2,3,4-trichloroaniline 2.600 

15∗ 2,3,5-trimethylphenol 3.610 36 2,3,4,5-tetrachloroaniline 3.030 

16 4-methylphenol 2.700 37 2,3,5,6-tetrachloroaniline 3.940 

17∗ 2-methoxyphenol 1.560 38∗ Pentachloroaniline 4.620 

18 3-methoxyphenol 1.500 39 3,5-dinitroaniline 2.550 

19 3-hydroxyphenol 0.980 40∗ N-methylaniline 2.280 

20 4,5,6-trichloroguaiacol 2.800 41∗ N,N-dimethylaniline 2.260 

21 Tetrachloroguaiacol 2.850 42∗ Diphenylamine 2.780 
              ∗ Test set 

2.2. Molecular descriptors 

Currently, there are a large number of molecular descriptors used in QSAR studies. After validation, the 

findings can be used to predict the activity of untested compounds. 
The computation of electronic descriptors was performed using the Gaussian03W package [11]. The geometries 

of the 42 substituted phenols and anilines were optimized with DFT method with the B3LYP functional and 6-

31G (d) base set. Then, several related structural parameters were selected from the results of quantum 

computation as follows: highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular 

orbital energy (ELUMO), dipole moment (µ), total energy (ET), absolute hardness (η), absolute electronegativity 
(χ) and reactivity index (ω) [12]. 
The η, χ and ω were determined using the following equations: 

 
η = (ELUMO - EHOMO)/2        χ = (ELUMO + EHOMO)/2        ω = χ

2
/2η 

ACD/ChemSketch program [13] was used to calculate the topological descriptors, as follows: molar volume 

(MV), molecular weight (MW), molar refractivity (MR), parachor (Pc), density (D), refractive index (n) and 

surface tension ().Thus, in order to improve the estimate quality for these compounds, molecular descriptor 

which reflect other specific interactions should be also included as octanol/water partition coefficient (log P). 

The hydrophobic parameter, octanol/water partition coefficient is commonly used to predict the soil sorption 

coefficient [14, 15]. 
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2.3. Statistical analysis 

The objective of quantitative structure-activity relationship (QSAR) analysis is to derive empirical models that 

relate the biological activity of compounds to their chemical structure. In this QSAR analysis, quantitative 

descriptors are used to describe the chemical structure and analysis results in a mathematical model describing 

the relationship between the chemical structure and soil sorption coefficient log Koc. To explain the structure-

activity relationship, these 15 descriptors are calculated for the 42 molecules using the Gaussian03W and 

ChemSketch programs. 

The quantitative descriptors of the substituted phenols and anilines are studied using statistical methods based 

on the principal component analysis (PCA) [16] with the software XLSTAT version 2013 [17]. PCA is a useful 

statistical technique for summarizing all of the information encoded in the structures of the compounds. It is 

also helpful for understanding the distribution of the compounds [18]. This is an essentially descriptive 

statistical method that aims to present, in graphic form, the maximum information contained in the data, as 

shown in table 2. 

Multiple linear regression (MLR) analysis with descendent selection and elimination of variables was used to 

model the structure-activity relationships. It is a mathematical technique that minimizes the difference between 

actual and predicted values. Additionally, it selects the descriptors used as the input parameters in the multiple 

nonlinear regression (MNLR) and artificial neural network (ANN). MLR and MNLR are generated using the 

software XLSTAT version 2013. To predict the log Koc, equations are justified by the coefficient of 

determination (R
2
), the mean squared error (MSE), Fisher’s criterion (F) and the significance level (P).  

The ANN analysis is performed using the Matlab software version 2009a Neural Fitting tool (nftool) toolbox on 

a data set of our compounds [19]. A number of individual models of ANN were designed, built and trained. 

Three components constitute a neural network, the processing elements or nodes, the topology of the 

connections between the nodes, and the learning rule by which new information is encoded in the network. 

Although there many different ANN models, the most frequently used type of ANN in QSAR is the three-

layered feed forward network [20]. In this type of network, the neurons are arranged in layers as an input layer, 

one hidden layer and an output layer. Each neuron in any layer is fully connected with the neurons of a 

succeeding layer and no connections are between neurons belonging to the same layer. 

According to the supervised learning adopted here, the networks are taught by providing them examples of 

input patterns and the corresponding target outputs. Through an iterative process, the connection weights are 

modified until the network gives the desired results for the training set of data. A backpropagation algorithm is 

used to minimize the error function. This algorithm was described previously with a simple example of an 

application [21] and the details of this algorithm are provided elsewhere [22]. 

Testing the stability, predictive power and generalization ability of the models is a very important step in a 

QSAR study. For the validation of the predictive power of a QSAR model, two basic principles, internal 

validation and external validation, are available. Cross-validation is one of the most popular methods for 

internal validation. In this study, the internal predictive capability of the model was evaluated using leave-one-

out cross-validation (R
2

cv). A good R
2

cv often indicates a good robustness and high internal predictive power of 

a QSAR model. However, recent studies [23] indicate that there is no evident correlation between the value of 

R
2

cv and actual predictive power of a QSAR model, suggesting that the R
2

cv remains inadequate as a reliable 

estimate of the model’s predictive power for all new chemicals. To determine both the generalizability of 

QSAR models for new chemicals and the true predictive power of the models, statistical external validation is 

applied during the model development step by properly employing a prediction set for validation. 

 

3. Results and discussion 
3.1. Data set for analysis  

A QSAR study was performed for a series of 42 substituted phenols and anilines, as reported previously [10], to 

determine a quantitative relationship between the structure and soil sorption coefficient log Koc. The values of 

the 15 chemical descriptors are shown in table 2. 

 
3.2. Principal component analysis 

The total of the 15 descriptors coding the 42 molecules was submitted to principal components analysis (PCA) 

[24]. The first three principal axes are sufficient to describe the information provided by the data matrix. 

Indeed, the percentages of the variance are 53.90%; 20.09% and 10.09% for the axes F1, F2 and F3, 

respectively. The total information is estimated as 84.08%. 
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Table 2: Values of the obtained parameters of the studied substituted phenols and anilines 

N log Koc ET EHOMO ELUMO µ 𝜔 𝜂 𝜒 MW MR MV Pc n  D log P 

1 1.430 -8372.091 -6.481 0.003 1.598 1.618 3.242 -3.239 94.111 28.130 87.800 222.200 1.553 40.900 1.071 1.475 

2 2.650 -33401.772 -6.491 -0.668 1.328 2.201 2.911 -3.580 163.001 37.920 111.700 294.000 1.593 47.800 1.458 2.852 

3 2.750 -33401.857 -6.357 -0.756 1.070 2.258 2.800 -3.556 163.001 37.920 111.700 294.000 1.593 47.800 1.458 2.972 

4 3.020 -45916.494 -6.573 -1.054 1.421 2.635 2.759 -3.813 197.446 42.810 123.700 329.800 1.608 50.500 1.596 3.391 

5 3.360 -45916.480 -6.559 -1.031 2.045 2.605 2.764 -3.795 197.446 42.815 123.700 329.800 1.608 50.500 1.596 3.601 

6 3.560 -45916.139 -6.946 -1.007 2.984 2.662 2.969 -3.976 197.446 42.815 123.700 329.800 1.608 50.500 1.596 3.811 

7 3.350 -58430.997 -6.681 -1.260 1.002 2.908 2.710 -3.971 231.891 47.710 135.600 365.700 1.620 52.800 1.709 3.997 

8 3.730 -70945.451 -6.820 -1.446 1.906 3.179 2.687 -4.133 266.337 52.605 147.600 401.600 1.631 54.700 1.804 4.714 

9 2.410 -78383.265 -6.436 -0.428 2.136 1.960 3.004 -3.432 173.007 35.827 104.000 272.700 1.604 47.200 1.662 2.635 

10 2.370 -13940.916 -6.925 -2.223 5.341 4.449 2.351 -4.574 139.109 34.666 99.700 277.700 1.612 60.200 1.395 -0.285 

11∗ 2.600 -20887.116 -6.255 -0.356 0.933 1.852 2.950 -3.305 128.556 33.026 99.800 258.100 1.575 44.700 1.287 2.155 

12 2.540 -20887.070 -6.290 -0.371 1.109 1.874 2.960 -3.331 128.556 33.026 99.800 258.100 1.575 44.700 1.287 2.485 

13 3.090 -3339.788 -6.336 -0.705 2.606 2.201 2.816 -3.521 163.001 37.921 111.700 294.000 1.593 47.800 1.458 3.182 

14∗ 2.830 -10513.531 -5.786 0.123 1.348 1.357 2.954 -2.832 122.164 37.769 120.400 297.500 1.540 37.200 1.014 2.473 

15∗ 3.610 -11584.085 -5.665 0.203 1.635 1.271 2.934 -2.731 136.191 42.613 136.600 335.200 1.535 36.100 0.996 2.872 

16 2.700 -9442.881 -5.746 0.070 1.334 1.385 2.908 -2.838 108.138 32.950 104.100 259.900 1.545 38.800 1.038 1.974 

17∗ 1.560 -11490.758 -5.533 0.316 2.734 1.164 2.925 -2.609 124.137 34.817 111.800 278.900 1.534 38.600 1.109 1.324 

18 1.500 -11490.731 -5.735 0.221 1.743 1.276 2.978 -2.757 124.137 34.817 111.800 278.900 1.534 38.600 1.109 1.574 

19 0.980 -10420.421 -5.781 0.197 1.356 1.304 2.989 -2.792 110.111 29.998 86.200 237.300 1.612 57.100 1.275 0.808 

20 2.800 -49034.733 -6.124 -0.625 5.404 2.071 2.749 -3.375 227.472 49.501 147.700 386.500 1.584 46.800 1.539 3.470 

21 2.850 -61549.174 -6.563 -1.139 3.698 2.734 2.712 -3.851 261.917 54.396 159.600 422.400 1.596 48.900 1.640 3.952 

22 2.030 -10420.421 -5.627 0.220 2.518 1.250 2.923 -2.704 110.111 29.998 86.200 237.300 1.612 57.100 1.275 0.878 

23 1.410 -7831.149 -6.546 0.035 1.354 1.611 3.290 -3.256 93.126 30.478 91.700 233.100 1.579 41.700 1.015 0.915 

24 1.650 -8901.774 -6.359 0.038 1.644 1.561 3.199 -3.160 107.153 35.297 107.900 270.700 1.567 39.500 0.992 1.414 

25 1.900 -8902.005 -5.233 0.268 1.512 1.120 2.751 -2.483 107.153 35.297 107.900 270.700 1.567 39.500 0.992 1.414 

26 1.960 -20345.952 -6.573 -0.379 2.402 1.951 3.097 -3.476 127.572 35.372 103.600 268.900 1.598 45.300 1.230 1.908 

27 1.960 -77842.335 -6.470 -0.387 2.315 1.933 3.041 -3.429 172.023 38.173 107.800 283.600 1.625 47.700 1.594 2.058 

28 2.360 -17008.960 -5.846 -0.513 3.759 1.895 2.666 -3.179 161.124 35.473 125.200 290.300 1.478 28.800 1.286 2.288 

29∗ 1.930 -23464.313 -5.982 -0.256 1.546 1.699 2.863 -3.119 157.598 42.058 127.600 325.600 1.572 42.300 1.234 1.699 

30 2.260 -78913.253 -5.472 -0.041 3.253 1.399 2.716 -2.756 186.049 42.992 124.100 321.200 1.609 44.700 1.498 2.557 
31 2.720 -32860.748 -6.823 -0.703 1.106 2.313 3.060 -3.763 162.017 40.267 115.600 304.800 1.613 48.300 1.401 2.719 

32 3.250 -32860.660 -6.805 -0.663 1.918 2.270 3.071 -3.734 162.017 40.267 115.600 304.800 1.613 48.300 1.401 2.719 

33 2.110 -32860.717 -6.891 -0.739 2.356 2.366 3.076 -3.815 162.017 40.267 115.600 304.800 1.613 48.300 1.401 2.719 

34 2.290 -32860.614 -6.747 -0.693 2.535 2.286 3.027 -3.720 162.017 40.267 115.600 304.800 1.613 48.300 1.401 2.599 

35 2.600 -45375.259 -6.968 -0.936 1.975 2.589 3.016 -3.952 196.462 45.162 127.500 340.700 1.626 50.800 1.540 3.226 

36 3.030 -57889.853 -7.019 -1.185 2.138 2.884 2.917 -4.102 230.907 50.056 139.500 376.500 1.636 53.000 1.655 3.831 

37 3.940 -57889.877 -6.920 -1.214 1.359 2.899 2.853 -4.067 230.907 50.056 139.500 376.500 1.636 53.000 1.655 3.951 

38∗ 4.620 -70404.319 -7.061 -1.402 1.946 3.164 2.830 -4.232 265.352 54.951 151.400 412.400 1.645 54.900 1.751 4.549 

39 2.550 -18967.534 -7.735 -2.489 4.279 4.981 2.623 -5.112 183.122 43.572 115.300 344.000 1.679 79.000 1.586 -2.605 

40∗ 2.280 -8901.749 -5.178 0.311 1.774 1.079 2.744 -2.433 107.153 35.852 108.800 266.100 1.572 35.600 0.984 1.641 

41∗ 2.260 -9972.040 -5.019 0.366 1.857 1.005 2.693 -2.327 121.180 40.570 127.400 309.300 1.549 34.700 0.950 2.307 

42∗ 2.780 -14122.889 -5.086 -0.120 0.872 1.365 2.483 -2.603 169.222 55.632 155.400 400.600 1.634 44.000 1.088 3.620 
∗ Test set 

The principal component analysis (PCA) [25] was conducted to identify the link between the different 

variables. Correlations between the fourteen descriptors are shown in table 3 as a correlation matrix.  

The obtained matrix provides information on the high or low interrelationship between variables. In general, the 

co-linearity (r>0.5) was observed between most of the variables, and between the variables and log Koc. A high 

interrelationship was observed between MR and Pc (r = 0.991), and a low interrelationship was observed 

between log Koc and  (r = -0.013). Additionally, to decrease the redundancy existing in our data matrix, the 

descriptors that are highly correlated (R ≥ 0.9), were excluded. 

 
3.3. Multiple linear regressions (MLR) 

Many attempts have been made to develop a relationship with the indicator variable of soil sorption coefficient, 

log Koc, but the best relationship obtained using this method is only one corresponding to the linear combination 

of several descriptors selected, the energy ELUMO, the octanol/water partition coefficient (log P). 

The resulting equation is as follows: 

log Koc = 1.365 – 0.645×ELUMO + 0.305×log P     (1) 
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 = 0.763       R

2
cv = 0.660      MSE = 0.125       F = 48.176       P < 0.0001 

 

In the equation, N is the number of compounds, R
2
 is the coefficient of determination, MSE is the mean 

squared error, F is the Fisher’s criterion and P is the significance level. 

 
Table 3: Correlation matrix between different obtained descriptors 

 
log Koc ET EHOMO ELUMO µ 𝜔 𝜂 𝜒 MW MR MV Pc n  D 

ET -0.493 1 

             EHOMO -0.376 0.432 1 

            ELUMO -0.542 0.459 0.830 1 

           µ -0.013 -0.135 -0.212 -0.424 1 

          𝜔 0.471 -0.391 -0.845 -0.989 0.441 1 

         𝜂 -0.344 0.106 -0.167 0.412 -0.402 -0.367 1 

        𝜒 -0.483 0.466 0.953 0.960 -0.337 -0.962 0.140 1 

       MW 0.729 -0.814 -0.520 -0.691 0.251 0.610 -0.372 -0.637 1 

      MR 0.710 -0.609 -0.273 -0.509 0.135 0.432 -0.453 -0.414 0.879 1 

     MV 0.675 -0.505 -0.100 -0.357 0.145 0.272 -0.466 -0.244 0.802 0.954 1 

    Pc 0.718 -0.588 -0.289 -0.541 0.197 0.467 -0.484 -0.439 0.894 0.991 0.964 1 

   n 0.363 -0.532 -0.613 -0.655 0.078 0.649 -0.155 -0.663 0.558 0.503 0.224 0.451 1 

   0.258 -0.333 -0.687 -0.769 0.301 0.799 -0.236 -0.763 0.452 0.292 0.043 0.302 0.857 1 

 D 0.578 -0.840 -0.698 -0.775 0.273 0.714 -0.229 -0.772 0.876 0.583 0.427 0.594 0.686 0.660 1 

log P 0.662 -0.573 -0.075 -0.090 -0.263 -0.031 -0.036 -0.086 0.649 0.630 0.662 0.606 0.111 -0.191 0.451 

 

A higher correlation coefficient and lower mean squared error indicates that the model is more reliable. A P that 

is smaller than 0.05 indicates that the regression equation has statistically significant. The QSAR model 

expressed by Eq. (1) is cross validated by its noticeable R
2

cv value (R
2

cv = 0.660) obtained by the leave-one-out 

(LOO) method. A value of R
2

cv is greater than 0.5 is the essential condition for qualifying a QSAR model as 

valid [23]. The correlation coefficients between variables in the model were calculated by variance inflation 

factor (VIF) as shown in table 4. The VIF was defined as 1/(1-R
2
), where R was the multiple correlation 

coefficients for one independent variable against all the other descriptors in the model. Models with a VIF 

greater than 5 were unstable and were eliminated, models with a VIF values between 1and 4 means the models 

can be accepted. As can be seen from table 4, the VIF values of the two descriptors are all smaller than 5.0, 

indicating that there is no collinearity among the selected descriptors and the resulting model has good stability. 

 
Table 4: the variance inflation factors (VIF) of descriptors in QSAR model 

Statistic ELUMO log P 

Tolerance 1.000 1.000 

VIF 1.000 1.000 

 

The elaborated QSAR model reveals that the soil sorption coefficient may be explained by a number of 

molecular descriptors. The negative correlation of the energy ELUMO with the log koc shows that an increase in 

the value of this factor indicate a decrease in the value of the log koc, whereas a positive correlation of the 

octanol/water partition coefficient (log P) with the log koc reveals that an increase in the value of log Koc.  

The correlations of the predicted and observed log Koc and the residual graph of the absolute numbers are 

illustrated in figure 1 (a) and (b) respectively.  

The descriptors proposed in Eq. (1) by MLR are, therefore, used as the input parameters in the multiple 

nonlinear regressions (MNLR) and artificial neural network (ANN). 
 

 
 
 
 
 
 
 
 

Figure 1: (a) Graphical representation of calculated and observed log Koc; (b) The residual graph calculated by MLR 
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 3.4. Multiple nonlinear regressions (MNLR) 

We also used the nonlinear regression model to improve the soil sorption coefficient in a quantitative manner, 

taking into account several parameters. This is the most common tool for the study of multidimensional data. 

We applied this to the data matrix constituted from the descriptors proposed by the MLR corresponding to the 

33 compounds training set.  

The resulting equation is as follows:     

 

log Koc = 1.405  – 0.273×ELUMO + 0.208×log P + 9.323 10
-2

×E
2
LUMO + 4.601 10

-2
×(log P)

2      
     (2) 

 

N = 33       R
2 
= 0.786       R

2
cv = 0.707       MSE = 0.121 

The QSAR model expressed by Eq. (2) is cross validated by its appreciable R
2
cv values (R

2
cv =0.707) obtained 

by the leave-one-out (LOO) method. A value of R
2

cv greater than 0.5 is the basic requirement for qualifying a 

QSAR model as valid [23]. 

The correlations of the predicted and observed log Koc and the residual graph of the absolute numbers are 

illustrated in figure 2 (a) and (b) respectively. 

 

 

 

 

 

 

 

 

 

 
Figure 2: (a) Graphical representation of calculated and observed log Koc; (b) The residual graph calculated by MNLR    

3.5. Artificial neural networks (ANN) 

Neural networks (ANN) can generate predictive models of the quantitative structure–activity relationships 

(QSAR) between a set of molecular descriptors obtained from the MLR and observed soil sorption coefficients. 

The ANN calculated log Koc model was developed using the properties of several studied compounds. The 

correlation of the predicted and observed log Koc and the residual graph of the absolute numbers are illustrated 

in figure 3 (a) and (b) respectively. 
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Figure 3: (a) Graphical representation of calculated and observed log Koc; (b) The residual graph calculated by ANN 

The obtained coefficient of determination (R
2
) value is 0.868 for this data set of substituted phenols and 

anilines. This confirms that the artificial neural network (ANN) results were the best to build the quantitative 

structure-activity relationship model. Furthermore, the high R
2
cv value (R

2
cv = 0.718) observed also supports the 

suitability of the QSAR model for soil sorption coefficients of chemicals. 

 
3.6. External validation 

To estimate the predictive power of MLR, MNLR and ANN models, we must use a set of compounds that 

have not been used as the training set to establish the QSAR model. The models established in the 

computation procedure using the 33 substituted phenols and anilines are used to predict the soil sorption 

coefficients of the remaining 9 compounds. The main performance parameters of the three models are 
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shown in table 5. As seen from this table, the statistical parameters of ANN model are better than the 

others. 

 
Table 5: Performance comparison between models obtained by MLR, RNLM and ANN 

Model 
Training set Test set 

R
2
 R

2
cv MSE R

2
 R

2
ext MSE 

MLR 0.763 0.660 0.125 0.763 0.732 0.510 

MNLR 0.786 0.707 0.121 0.786 0.785 0.457 

ANN 0.868 0.718 0.086 0.868 0.748 0.232 

 

We assessed the best linear QSAR regression equations established in this study. Based on this result, a 

comparison of the quality of the MLR and MNLR models shows that the ANN model has a significantly better 

predictive capability because the ANN approach yields better results than those of MLR and MNLR. ANN 

establishes a satisfactory relationship between the molecular descriptors and the soil sorption coefficients of the 

studied compounds. 

The accuracy and predictability of the proposed models were illustrated by the comparing key statistical 

indicators, such as R or R
2
 of different models obtained using different statistical tools and different descriptors, 

as shown in table 6. 

 
Table 6: Observed values and calculated values of log Koc according to different methods 

N° 
log Koc 

(obs.) 
log Koc (calc.) 

N° 
log Koc 

(obs.) 
log Koc (calc.) 

MLR NMLR ANN MLR NMLR ANN 
1 1.430 1.813 1.811 1.729 26 1.960 2.191 2.086 1.936 

2 2.650 2.665 2.596 2.854 27 1.960 2.242 2.147 2.178 

3 2.750 2.758 2.688 2.911 28 2.360 2.393 2.286 1.868 

4 3.020 3.078 3.030 2.776 30 2.260 2.171 2.249 2.564 

5 3.360 3.127 3.131 3.362 31 2.720 2.647 2.548 2.591 

6 3.560 3.176 3.235 3.500 32 3.250 2.621 2.532 2.693 

7 3.350 3.396 3.463 3.421 33 2.110 2.670 2.563 2.460 

8 3.730 3.734 3.997 4.065 34 2.290 2.604 2.490 2.354 

9 2.410 2.444 2.406 2.524 35 2.600 2.952 2.891 2.896 

10 2.370 2.710 2.416 2.431 36 3.030 3.297 3.331 3.339 

12 2.540 2.361 2.320 2.429 37 3.940 3.352 3.414 3.501 

13 3.090 2.789 2.771 2.997 39 2.550 2.175 2.431 2.572 

16 2.700 1.922 1.976 2.120 11∗ 2.280 2.251 1.794 2.310 

18 1.500 1.702 1.790 1.898 14∗ 2.260 2.040 2.042 2.767 

19 0.980 1.484 1.553 1.250 15∗ 2.780 2.110 2.795 3.087 

20 2.800 2.826 2.887 2.753 17∗ 2.600 1.565 2.175 1.747 

21 2.850 3.304 3.377 3.652 29∗ 2.830 2.048 2.168 2.291 

22 2.030 1.491 1.567 1.280 38∗ 3.610 3.655 2.330 3.982 

23 1.410 1.621 1.624 1.230 40∗ 1.560 1.665 1.684 2.218 

24 1.650 1.771 1.781 1.674 41∗ 1.930 1.833 1.967 2.983 

25 1.900 1.623 1.724 1.772 42∗ 4.620 2.546 3.868 3.118 
  ∗ Test set 

 

Conclusion  

In this study, we investigated the QSAR regression to predict the soil sorption coefficient of phenols and 

anilines.  

The studies regarding the quality of the three models constructed in the study have good stabilities and great 

predictive powers. Moreover, compared to the MLR, MNLR models, the ANN model is better and is an 

effective tool to predict the soil sorption coefficient of phenols and anilines. Furthermore, using the ANN 
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approach, we established a relationship between several descriptors and log Koc values of several organic 

compounds based on the substituted phenols and anilines in a satisfactory manner. 

Finally, we conclude that studied descriptors, which are sufficiently rich in chemical, electronic and topological 

information to encode the structural features may be used with other descriptors for the development of 

predictive QSAR models. 
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