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Abstract 
The hydraulic jump is an interesting phenomenon in open channel flow that has been widely used for energy 

dissipation in hydraulic structures. The aim of this study is to investigate the applicability of teaching–learning 

based optimization (TLBO) algorithm for the first time in modeling hydraulic jump length over a smooth 

horizontal bed. Experimental data were selected from USBR reports and published literature. TLBO algorithm 

applied to four different regression forms: linear, quadratic, power and exponential. The TLBO method with 

quadratic function from among all models yielded better prediction with RMSE=0.164 m and R
2
=0.974. 

Comparison of developed model and existing empirical equations showed that, TLBO based models have higher 

accuracy in prediction of hydraulic jump length over a smooth horizontal bed. Therefore, the employment of the 

TLBO algorithm at hydraulic engineering problems recommended for future studies. 
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1-Introduction 
Hydraulic jump is a phenomenon caused by change in flow regime from supercritical to subcritical with high 

energy dissipation and rise in depth of flow.This phenomenon increases the flow depth in a short distance and 

increases the turbulence and consequently causes significant energy losses. Hydraulic jump have been broadly 

studied because of their frequent occurrence in nature and have been extensively used as energy dissipater for 

hydraulic structures. Classical hydraulic jump with a smooth bed has been studied broadly and it can be shown 

that the ratio of the sequent depths for a classical hydraulic jump is given by the well-known Belanger momentum 

equation:  

𝑦2

𝑦1
=

1

2
(−1 +  1 + 8𝐹𝑟1

2)                                                                                                         (1) 

Where 
𝑦2

𝑦1
 is the ratio of sequent depths and 𝐹𝑟1 is supercritical Froude number. Hydraulic jump length is one of 

the most important parameters in designing of the stilling basins. Obviously economical design of a stilling basin 

needs accurate estimation of hydraulic jump length. The length of the hydraulic jumps cannot be determined from 

theoretical approaches alone. Due to difficulty of locating of hydraulic jump end section (because of waves and 

turbulence) definition of hydraulic jump length in an actual experiment is hard[1]. Many researchers [2, 3] define 

the jump length as distance between the toe of jump and surface stagnation point (Figure 1). Measurement and 

observation of this length is relatively easier.   

Safranez [4] conducted the first systematic study on length of the hydraulic jump. His Froude number range 

was𝐹𝑟1 < 2.93. Many experimental researches were conducted in the subject of hydraulic jump characteristics 

and hydraulic jump length [2, 3, 5, 6]. 

mailto:m.karbasi@znu.ac.ir


J. Mater. Environ. Sci. 7 (8) (2016) 2947-2954                                                                                      Karbasi 

ISSN : 2028-2508 

CODEN: JMESC 

2948 
 

 
Figure 1: Sketch of hydraulic jump length over a horizontal bed [1] 

 

Silvester [7] using regression analysis obtained the following empirical equation for jump length prediction: 
𝐿𝑗

𝑦1
= 9.75 𝐹𝑟1 − 1 1.01    (2) 

Where 𝐿𝑗  is jump length, 𝐹𝑟1 is Froude number upstream of jump and 𝑦1 is flow depth before jump.Mohamed Ali 

[8] studied the effect of cubic roughness on hydraulic jump length over it. He concluded that cube roughness can 

clearly reduce the hydraulic jump length. Carollo, Ferro [1] obtained the following equation for classical and B-

jump length over smooth bed. 
𝐿𝑗

𝐻𝐿
=  7.965 + 20.72 𝑡𝑎𝑛𝛼 0.39  

𝐻𝐿

𝐻1
 

−0.534
𝑒𝑥𝑝  −

𝐻𝐿

𝐻1

1

0.168
 −  1 − 𝑒𝑥𝑝  −

𝐻𝐿

𝐻1

1

0.168
  4.124𝑙𝑛  

𝐻𝐿

𝐻1
        (3) 

Where 𝐿𝑗  is jump length, 𝐻𝐿 is head loss across the jump, 𝐻1 is total head at jump toe section and 𝛼  is angle of 

upstream sloping bed relative to horizontal. Gupta, Mehta [9] using experimental data developed a new empirical 

equation for hydraulic jump length in a horizontal prismatic channel: 
𝐿𝑗

𝑦1
= 4769.1  

𝐹𝑟1
2.1

𝑅𝑒1
 + 25.064 (4) 

Where 𝐹𝑟1 is Froude number upstream of jump, 𝑅𝑒1 is Reynolds number upstream of jump and 𝑦1 is flow depth 

before jump. 

Recently, the interest in the use of soft computing techniques such as artificial neural networks (ANNs), adaptive 

neuro-fuzzy inference system (ANFIS), genetic programming (GP) and decision trees (DT), has become common 

in hydraulic engineering problems [10-16]. Naseri and Othman [17] used artificial neural networks (ANN) to 

predict the hydraulic jump length over a horizontal smooth bed. Their results showed that ANN can predict the 

jump length with high accuracy. Comparison of empirical equations with ANN showed that ANN has higher 

accuracy. 

TLBO algorithm is a new optimization technique and has been already employed on a large number of 

constrained and unconstrained benchmark problems in different engineering fields, namely thermal engineering 

[18, 19], computer engineering [20], environmental engineering [21], electrical engineering [22, 23], civil 

engineering [24-26], mechanical engineering [27, 28], and energy [29].This algorithm shows its excellent ability 

to find optimum solution. TLBO algorithm proved to be better than other advanced meta-heuristic optimization 

techniques like particle swarm optimization (PSO) and differential evolution [30]. More application of TLBO 

algorithm applications can be found in Rao [31]. 

The purpose of the present study is to develop new equations being quadratic, exponential, linear, and power 

functions to predict hydraulic jump length over a smooth horizontal by using TLBO method. 

 

2-Materials and Methods 
2-1-Theoretical background 

Hydraulic jump length over a smooth horizontal bed is dependent on fluid properties and hydraulic state of flow. 

The hydraulic jump length over a smooth horizontal bed depends acceleration due to gravity 𝑔, depth of upstream 

flow 𝑦1, average velocity of upstream flow 𝑢1, depth of downstream flow 𝑦2 and cinematic viscosity of fluid 𝜈.  
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𝐿𝑗 = 𝑓(𝑦1 , 𝑢1 , 𝑔, 𝑦2 , 𝜈)                                                       (5) 

By applying the principles of dimensional analysis (Buckingham 𝜋 theorem), the following relationship is 

obtained:  
𝐿𝑗

𝑦1
= 𝜙(

𝑢1𝑦1

𝜈
,

𝑢1

 𝑔𝑦1
,
𝑦2

𝑦1
)   (6) 

Where 
𝑢1

 𝑦1𝑔
 is upstream Froude number at the beginning of the hydraulic jump and 

𝑢1𝑦1

𝜈
 is the Reynolds number 

of approaching flow. For the large value of the Reynolds number, viscous effects can be neglected [32]. As a 

result the final equation is derived as follow:  
𝐿𝑗

𝑦1
= 𝜑(𝐹𝑟1 ,

𝑦2

𝑦1
)   (7) 

 

2-2-Experimental data 

The classical hydraulic jump data was gathered from USBR reports and published data from literature[2,3,33]. 

The experiments have been done on 6 different flumes. The range of data parameters has presented in Table 

1.Upstream Froude number is one of the most important parameters. Table 1 shows that wide range of Froude 

number has been covered in experimental data. Total number of experimental data was 167. 

 

Table 1:  Range of experimental data 

Parameter Range 

Width of flumes (m) 1.5,0.61,0.5,1.21,0.3 

Maximum discharge (l/s) 170,340,142,793,283,142 

Upstream depth of jump(cm) 1-10 

Downstream depth of jump(cm) 12-117 

Upstream Froude number 1.7-19.52 

 

2-3-TLBO algorithm 

Teaching-learning based optimization algorithm (TLBO) which is based on the natural phenomenon of teaching 

and learning was introduced firstly byRao and et al[34, 35]. One of the most important advantages of the TLBO 

algorithm over the other meta-heuristic algorithms, such as artificial bee colony (ABC), particle swarm 

optimization (PSO) and ant colony optimization, are its simplified numerical algorithm and its independence on 

numerous control parameters to define the algorithm’s performance [36]. Thus TLBO algorithm provides more 

accurate and global optimum solutions and it consumes less time compared to other optimization methods such as 

ABC and PSO algorithms [26].  

Teaching-learning based optimization algorithm has two control parameters which are the population size 

(student number) and maximum number of iteration. Like other optimization methods, it uses randomly generated 

initial population size [35]. 

The process of working of TLBO is divided into two parts.  Teacher phase which means learning from teacher 

and learner phase which means learning through the interaction between learners.  

The algorithm steps are as follows [35]: 

1- Preparation: Initialize population size (number of students) and maximum number of iteration (termination 

criteria) 

2- Calculate the mean of each variable 

3- Identify the best solution ( as teacher) 

4- Teaching phase: Modify solution based on best solution  

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑀𝑒𝑎𝑛 𝑖
= 𝑟𝑖 𝑀𝑛𝑒𝑤 − 𝑇𝐹𝑀𝑖   (8) 

Where 𝑋𝑡𝑒𝑎𝑐 𝑒𝑟  is desired mean,  𝑀𝑖  is current mean, 𝑟𝑖  is a random number between  0,1  and𝑇𝐹  is a 

teaching factor (its value can be either 1 or 2) that it can be calculated as follow: 

𝑇𝐹 = 𝑟𝑜𝑢𝑛𝑑 1 + 𝑟𝑎𝑛𝑑 0,1  1,2     (9) 

The modification of existing solution is according to the following equation: 
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𝑋𝑛𝑒𝑤 ,𝑖 = 𝑋𝑜𝑙𝑑 ,𝑖 + 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑀𝑒𝑎𝑛𝑖       (10) 

5- Learner phase: In the learning phase, modified students increase their knowledge by means of interaction 

between each other according to teaching–learning process [36]. A learner collaborates arbitrarily with 

different learners with the aim of group discussion, communication, etc. A learner learns something new if 

the other learner has more knowledge than him or her. Learner modification is expressed as [35], 

𝐹𝑜𝑟 𝑖 = 1: 𝑃𝑛  
Randomly select another learner𝑋𝑗 , such that 𝑖 ≠ 𝑗 

𝐼𝑓 𝑓 𝑋𝑖 < 𝑓 𝑋𝑗   

𝑋𝑛𝑒𝑤 ,𝑖 = 𝑋𝑜𝑙𝑑 ,𝑖 + 𝑟𝑖 𝑋𝑖 − 𝑋𝑗   

𝐸𝑙𝑠𝑒 
𝑋𝑛𝑒𝑤 ,𝑖 = 𝑋𝑜𝑙𝑑 ,𝑖 + 𝑟𝑖 𝑋𝑗 − 𝑋𝑖  

𝐸𝑛𝑑 𝑖𝑓 

𝐸𝑛𝑑 𝑓𝑜𝑟 
Accept 𝑋𝑛𝑒𝑤  if it gives a better function value 

The new student obtained from student phase is not taken into account if its objective function is not better, as 

well as in the teaching phase. At the end of the learning phase, a cycle (iteration) is completed for the TLBO then 

learning and teaching phases are continued until reaching a termination criterion [36]. 

Detailed description of the TLBO algorithm and its implementation are given by Rao, Savsani [35]. 

 

2-4-Statistical criteria 

The objective function for the teaching based learning algorithm is sum of square error (SSE) given by the 

following equation: 

𝑚𝑖𝑛 → 𝑆𝑆𝐸 =   𝑃𝑖 − 𝑂𝑖 
2𝑁

𝑖=1 (11) 

Where N= number of observations, Oi = observed value, and Pi= predicted value of the regression functions. 

To estimate the accuracy of the proposed models the following expressions were used:  

𝑅𝑀𝑆𝐸 =   (𝑁
𝑖=1 𝑂𝑖−𝑃𝑖)2

𝑁
 (12) 

𝑀𝐵𝐸 =
1

𝑁
  𝑂𝑖 − 𝑃𝑖 

𝑁
𝑖=1 (13) 

𝑀𝐴𝑃𝐸 =
1

𝑁
  

𝑂𝑖−𝑃𝑖

𝑂𝑖
 𝑁

𝑖=1  (14) 

𝑅2 =
( (𝑁

𝑖=1 𝑂𝑖−𝑂𝑖 )(𝑃𝑖−𝑃𝑖) )2

 (𝑁
𝑖=1 𝑂𝑖−𝑂𝑖 )2  (𝑁

𝑖=1 𝑃𝑖−𝑃𝑖 )2    (15) 

Where 𝑂𝑖  is the observed value, 𝑃𝑖  is the predicted value,𝑂𝑖
  is the mean value of observations, 𝑃𝑖

  is the mean 

value of predictions, 𝑖 is the subscript which indicates the ID of data, and 𝑁 is the total number of data. Best 

model was selected according to minimum RMSE and maximum R
2
. 

 

3-Results and discussion 
3-1-Results 

From 167 data sets, 117 (70 percent) data sets were used for TLBO regression model training and the rest of the 

data for testing. Train and test data were selected randomly. In the Modeling process, four regression functions 

(quadratic, exponential, linear and power functions) are used to predict hydraulic jump length over a horizontal 

smooth bed. Then the TLBO algorithm is used to optimize coefficients of regression functions. One of the most 

important challenges of the met-heuristic optimization algorithms like TLBO is to set the parameters of the 

algorithms. The control parameters of TLBO algorithm were chosen as follows: number of maximum iteration 

(termination criteria) = 10,000 and size of initial population (number of students) = 50, 100, 150 and 200, 

respectively. TLBO algorithm parameter ranges were between [-30, 30]. Using TLBO algorithm to optimize the 

coefficients of different regression functions, following equations obtained: 
𝐿𝑗

𝑦1
= 2.84 − 12.597𝐹𝑟1 + 14.908

𝑦2

𝑦1
 (16) 
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𝐿𝑗

𝑦1
= 3.987. 𝐹𝑟1

−1.9951 .  
𝑦2

𝑦1
 

2.9081
(17) 

𝐿𝑗

𝑦1
= −13.558 + 11.621𝐹𝑟1 − 0.326.

𝑦2

𝑦1
+ 12.59. 𝐹𝑟1 .  

𝑦2

𝑦1
 − 10.07. 𝐹𝑟1

2 − 3.95.  
𝑦2

𝑦1
 

2
(18) 

𝐿𝑗

𝑦1
= 10 + exp(3.529 − 0.055. 𝐹𝑟1 + 0.105.  

𝑦2

𝑦1
 )(19) 

Results of regression models, empirical equations and observed values are compared and the best fitted equations 

are determined. The comparison is made using statistical performance indices, i.e. RMSE, MAE, MABE and R
2
. 

The performance indices for testing set are presented in Table 2. The best fitted equation is marked bold. 

According to Table 2 the best regression equation is obtained from the quadratic function (RMSE= 0.164 m and 

R
2
=0.974). The second high precision model is Linear TLBO model (RMSE= 0.169 m and R

2
=0.975). As can be 

seen from Table 2, all TLBO regression models predict the hydraulic jump length better than proposed empirical 

models [1, 7]. Comparison of two empirical models of Silvester [7] and Carollo, Ferro [1]  shows that Silvester 

[7] model (RMSE=0.301 m and R
2
=0.945) give better results for our dataset. Carollo, Ferro [1] model 

underestimate the hydraulic jump length. Thus, the developed TLBO regression models can predict the target 

values of the hydraulic jump length with acceptable accuracy and less error than the available models. It can be 

interpreted that this is because the quadratic model together with various mathematical computing methods such 

as 𝑥1 × 𝑥2 creates new independent variables by using available independent variables and in this way the 

precision of the model increases. 

 

Table 2: The model results for test data 

Model RMSE(m) R
2 

MAPE (%) MBE(m) 

Quadratic TLBO 0.164 0.974 6.4 0.015 

Linear TLBO 0.169 0.975 6.88 0.005 

Power TLBO 0.168 0.974 7.32 -0.011 

Exponential TLBO 0.508 0.793 22.71 -0.108 

Carollo, Ferro [1] 1.16 0.933 52.12 1.09 

Silvester [7] 0.301 0.945 11.09 -0.178 

 

Figure 2 illustrates a comparison of the observation results with the computed results from testing sets. Although 

determination of the fittest equation from Figure 2 difficult, the error values mentioned above shows that the 

model with TLBO algorithm has higher accuracy. 

 

 
Figure 2: The comparison of the observed jump length values with the predicted ones for different models 

 

Figures 3, 4 and 5 also provide a different illustration of the performance for the best fitting model for testing sets. 

The nearer the points gather around the diagonal, thebetter the learning results are. The relative errors of the 

points on the diagonal are zero. 
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Figure 3: Comparison of observed and predicted values of quadratic and linear TLBO models 

 

Figure 4: Comparison of observed and predicted values of power and exponential TLBO models 

 

Figure 5: Comparison of observed and predicted values of Silvester [7] and Carollo, Ferro [1]models 
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3-2-Uncertainty analysis for developed TLBO models 

In this section, a quantitative evaluation of the uncertainties in the prediction of the jump length is presented 

employing the available existing equations, and the developed TLBO models. The uncertainty analysis describes 

the model prediction error as 𝑒𝑖 = 𝑃𝑖 − 𝑂𝑖 . The calculated model prediction errors for the dataset are utilized to 

calculate the mean and standard deviation of the prediction errors as 𝑒 =  𝑒𝑖
𝑛
𝑖=1  and 

𝑆𝑒 =    𝑒𝑖 − 𝑒  2𝑛
𝑖=1 𝑛 − 1   respectively. A negative mean value implies that the prediction model 

underestimated the observed values, and a positive value implies that the model overestimated the observed 

values [37]. Using the values of 𝑒  and 𝑆𝑒 , a confidence band can be defined over the predicted values of an error 

using the Wilson score method without continuity correction, the use of ±1.96𝑆𝑒yields an approximately 95% 

confidence band [37]. Table 3, shows the mean prediction errors of the different models, the width of the 

uncertainty band, and the 95% prediction interval error. 

 

Table 3: Uncertainty Estimates for different models 

 
Model Mean prediction error 𝑒  𝑆𝑒  Width of uncertainty band±1.96𝑆𝑒  

Quadratic TLBO -0.016 0.165 ±0.323 

Linear TLBO -0.005 0.172 ±0.336 

Power TLBO 0.011 0.170 ±0.333 

Exponential TLBO 0.109 0.501 ±0.983 

Carollo, Ferro [1] -1.098 0.381 ±0.746 

Silvester [7] 0.178 0.244 ±0.478 

 

According to Table 6, all TLBO models have mean prediction error for jump length less than available equations 

([1, 7]). Mean prediction error of quadratic and power models is less otherTLBO models. The uncertainty band 

for the quadratic model ranged ±0.323 for hydraulic jump length. This range was smaller than those of available 

equations ([1, 7]). The uncertainty band for the power model was slightly smaller than linear model.  

 

 

Conclusions 
In this study, the ability of TLBO algorithm to model hydraulic jump length based on upstream Froude number 

(𝐹𝑟1) and ratio of (𝑦2 𝑦1)  is investigated. The conclusions of present study can be summarized as follows: 

- The results of the TLBO based models had good agreements with the measured experimental data. 

- The comparison between the results shows that the best fit equation for hydraulic jump length prediction 

is obtained from the quadratic function 

- Quadratic, Linear and power TLBO models have higher accuracy in comparison of empirical equations 

that had been proposed by other researchers. 

- The application of the TLBO algorithm by hydraulic engineers is recommended for future studies since 

the results of the proposed model are found to be satisfactory for this study. 

 

 

References 
1. Carollo F.G., Ferro V., Pampalone V., J. Hydraul. Eng. 165 (2012) 451. 

2. Carollo F.G., Ferro V., Pampalone V., J. Hydraul. Eng. 133 (2007) 989. 

3. Hager W.H., Bremen R., Kawagoshi N., J. Hydraul Res. 28 (1990) 591. 

4. Safranez K., Unter. Wechse. (1929) 341. 

5. Rajaratnam N., J. Hydraul. Div. 91 (1965) 107. 

6. Hager W.H., Bremen R., J. Hydraul Res. 27 (1989) 565. 

7. Silvester R., J. Hydraul. Div. 90 (1964) 23. 



J. Mater. Environ. Sci. 7 (8) (2016) 2947-2954                                                                                      Karbasi 

ISSN : 2028-2508 

CODEN: JMESC 

2954 
 

8. Mohamed Ali H., J. Hydraul. Eng. 117  (1991) 83. 

9. Gupta S.K., Mehta R., Dwivedi V., Proc. Eng. 51 (2013) 529. 

10. Kisi O., Emiroglu M. E., Bilhan O., Guven A., Expert Syst. Appl. 39 (2012) 3454. 

11. Dursun O.F., Kaya N., Firat M., J. Hydrol. 426 (2012) 55. 

12. Emiroglu M.E., Kisi O., Water.Resour. Manag. 27 (2013) 1473. 

13. Ebtehaj I., et al., Appl. Soft. Comput. 35 (2015) 618. 

14. Bagatur T., Onen F., KSCE. J. Civ. Eng. 18 (2014) 304. 

15. Uyumaz A., et al., J. Hydroinform. 16 (2014) 1318. 

16. Sikorska A.E., Viviroli D., Seibert J., Water. Resour. Res. (2015) 1. 

17. Naseri M., Othman F., Adv. Eng. Soft. 48 (2012) 27. 

18. Venkata Rao R., Waghmare G., Pham D., Cog. Eng. 2 (2015) 997. 

19. Azizipanah-Abarghooee R., et al., Energy. 37 (2012) 322. 

20. Dokeroglu T., Comp. & Indust. Eng. 85 (2015) 86. 

21. Bayram A., Envir. Earth. Sci. 73 (2015) 6565. 

22. Durai S., Subramanian S., Ganesan S., J. Electr. Power. Sys. 67 (2015) 11. 

23. García J.A.M., Mena A.J.G., J. Electr. Power. Sys. 50 (2013) 65. 

24. Degertekin S. Hayalioglu M., Comp. Struct. 119 (2013) 177. 

25. Dede T., Ayvaz Y., App. Soft. Comp. 28 (2015) 250. 

26. Dede T., Ayvaz Y., Struc. Eng. Mech. 47 (2013) 495. 

27. Rao R.V., Savsani V.J., Mech. Optim. Tech. (2012) 210. 

28. Togan V., Struc. Eng. Mech. 47 (2013) 209. 

29. Uzlu E., Energy. 75 (2014) 295. 

30. Rao R., V. Patel, J. Indus. Eng. 3 (2012) 535. 

31. Rao R., Dec Sci. Let. 5 (2016) 1. 

32. Abbaspour A., J. Hydro. Envir. Res. 3 (2009) 109. 

33. Peterka A.J., USBR Eng Monograph. 25 (1958) 155. 

34. Rao R.V., Savsani V.J., Vakharia D., Comp. Aid. Des. 43 (2011) 303. 

35. Rao R.V., Savsani V.J., Vakharia D., J. Inform. Sci. 183 (2012) 1. 

36. Toğan V., Eng. Struc. 34 (2012) 225. 

37. Satta A., J. Pipeline. Sys. Eng.5 (2014) 401. 

 

 

 

(2016) ; http://www.jmaterenvironsci.com/ 
 

http://www.jmaterenvironsci.com/

