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Abstract 
Correlations between the calculated physicochemical descriptors and corrosion inhibition efficiency for furan 

derivatives against iron corrosion in HCl solutions were examined using quantitative structure–activity 

relationship (QSAR) paradigm, genetic function approximation (GFA) and neural network analysis (NNA) 

techniques. The quantum chemical indices were calculated, the energy of the highest occupied molecular orbital 

(EHOMO), the energy of the lowest unoccupied molecular orbital (ELUMO), Binding energy, Molecular sizes (area 

and volume) for the seventeen furan derivatives. Molecular dynamics (MD) method and density functional theory 

have been used to study adsorption behavior of these inhibitors on Fe surface. High correlation was obtained with 

the multivariate correlation, i.e. all the indices combined together, where the prediction power was very high for 

GFA and NNA. The GFA and NNA algorithm has been applied to these published data sets to demonstrate it is 

an effective tool for doing QSAR. The molecular dynamics simulations results indicated that the furan derivatives 

could adsorb on the Fe surface firmly through the hetero-atoms. 

 

 

Keywords: Acid corrosion inhibitor; Modeling studies; QSAR; Genetic Function Approximation algorithm; Neural 

Network Analysis.  

 

1. Introduction 
 

A subject of intense interest in corrosion science research is the effect of molecular structure of the corrosion 

inhibitor molecule on its inhibition efficiency [1-5]. Quantitative structure activity relationship (QSAR) has been 

derived for several series of active corrosion inhibitors [6-9]. 

Some organic compounds have been used as corrosion inhibitors for many metals and alloys. It has been known 

that organic inhibitor usually interacts electrostatically with the metal surface. It includes electrons transfer from 

the organic compounds to metal surface. Also, it forms coordinate covalent bond during chemical adsorption 

process [10-12].  

Recently, theoretical chemical calculations have been used, such as quantum chemical calculations, to 

illustrate the mechanism of corrosion inhibition [13-17]. 

In this study theoretical measurements go far beyond the experimental research. The method of quantum chemical 

calculations has been widely used as a powerful tool for studying the reaction mechanisms of corrosion inhibition. 
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The structural parameters such as the frontier molecular orbital (MO) energy HOMO (highest occupied molecular 

orbital) and LUMO (lowest unoccupied molecular orbital) and molecular volume/area [8]. The quantitative 

structure-activity relationship (QSAR) is a relationship between descriptors characterizing the structure properties 

of corrosion inhibitors against their corrosion inhibition efficiencies. 

QSAR correlates and predicts physical and chemical properties of chemicals and plays an important role in 

effective assessment of organic inhibitors. The application of QSAR in corrosion research has been reported [18, 

19]. 

Genetic function approximation (GFA) algorithm offers a new approach to the problem of building quantitative 

structure-activity relationship (QSAR) and quantitative structure property relationship (QSPR) models [20-22]. 

Replacing regression analysis with the GFA algorithm allows the construction of models competitive with or 

superior to those produced by standard techniques. GFA makes available additional information not provided by 

other techniques. GFA provides multiple models, where the populations of the models are created by evolving 

random initial models using a genetic algorithm [23]. 

Neural network (NN) analysis method which is an artificial intelligence approach to mathematical modeling. 

Neutral networks are inspired by the way the human brain works. The brain consists of billions of neurons, which 

are linked together into a complex network. A neuron communicates with another by sending an electrical signal 

along an axon, which is a long nerve fiber that connects to the second neuron at a synapse [24, 25]. Each neuron 

acts as an information processing element because the electrical signals sent out by one neuron depend on the 

strength of the incoming signals at its synapses [24, 26]. Neural network analysis is a sophisticated model-

building technique capable of modeling data may be better represented by non-linear functions. Corrosion is a 

complex non-linear phenomenon that is too complex to be described by analytical methods or empirical rules 

which make it an ideal phenomenon to be studied using artificial neural networks [24, 27]. 

The main purpose of this work is to build a quantitative structure–activity relationship (QSAR) using (GFA) and 

(NNA) between the structural properties and the inhibition efficiencies of seventeen furan derivatives. Also, the 

aim of this work is to simulate the adsorption of an example of furan derivative molecules on iron (111) surface 

computationally as well as generating adsorption configurations to obtain a ranking of the energies for each 

generated configuration, thereby indicating the preferred adsorption sites [8]. 

 

2. Computational and statistical details 
The quantum chemical calculations were performed using the generalized gradient approximation (GGA) 

within the density functional theory was conducted with the software package DMol
3
 in Materials Studio of 

BIOVIA. To optimize the molecule geometry and to obtain the quantum chemical parameters, parametric Method 

(PM
3
) and semi-empirical method were employed [10]. Complete geometric optimization of all stationary points 

for the seventeen investigated furan derivatives. The double numerical with polarization (DNP) basis set and the 

(PWC) exchange correlation functional were conducted in all calculations, since this was the best set available in 

DMol
3
. This basis set is known to provide accurate electronic properties and geometries for wide range of organic 

compounds. The optimization was repeated until minimum energy reached. The quantum chemical indices were 

calculated: the energy of the highest occupied molecular orbital (EHOMO), the energy of the lowest unoccupied 

molecular orbital (ELUMO), Binding energy, Molecular sizes (area and volume) of all compounds for the seventeen 

furan derivatives using QSAR model. 

To get the lower energy adsorption sites on the iron surface and to examine the favored adsorption of the 

studied inhibitors, the studied furan derivatives have been simulated as adsorbate on iron surface (111) substrate 

[28]. Monte Carlo method has been used to calculate the binding energy and the adsorption density of the studied 

inhibitors. In this computational study, possible adsorption configurations have been identified by carrying out 

Monte Carlo searches of the configurationally space of the iron/ furan derivatives inhibitor system as the 

temperature is slowly decreased [28]. 

The studied furan derivatives, the adsorbates, were constructed and their energy was optimized using Forcite 

classical simulation engine [28]. 
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The geometry optimization process is carried out using an iterative process, in which the atomic 

coordinates are adjusted until the total energy of a structure is minimized, i.e., it corresponds to a local minimum 

in the potential energy surface [28, 29]. Geometry optimization is based on reducing the magnitude of calculated 

forces until they become smaller than defined convergence tolerances [28]. The forces on the atoms in the studied 

inhibitors are calculated from the potential energy expression and will, therefore, depend on the force field that is 

selected [28]. Materials Studio software is used to perform the MD simulation of the interaction between the 

studied inhibitor molecule and iron (111) surface [30]. The size of the area above the electrode surface (vacuum 

slab) must be enough (15 Å) that the non-bond calculation for the adsorbate does not interact with the periodic 

image of the bottom layer of atoms in the surface. After minimizing the Fe (111) surface and the furan derivatives 

inhibitor molecules, the corrosion system will be built by layer builder to place the inhibitor molecules on Fe 

(111) surface, and the COMPASS (condensed phase optimized molecular potentials for atomistic simulation 

studies) force field was used to simulate the behaviors of these molecules on the Fe (111) surface [28]. To model 

the adsorption of the inhibitor molecules onto Fe (111) surface, adsorption locator module in Materials Studio 

have been used 7[31], and thus provide access to the energetic of the adsorption and its effects on the inhibition 

efficiencies of the studied. The following equation was used to calculate the binding energy, Ebinding  between the 

studied inhibitors and Fe (111) surface [32]. 

𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐸𝑡𝑜𝑡𝑎𝑙 −  𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝐸𝑖𝑛𝑕𝑖𝑏𝑖𝑡𝑖𝑜𝑛         (1) 

Where (Etotal ) is the total energy of the inhibitor and surface, (Esurface ) is the energy of the surface without the 

inhibitor, and (Einhibition ) is the energy of the inhibitor without the surface. 

The Genetic Function Approximation GFA algorithm detailed description has been described elsewhere 

[28, 33]. This technique has a number of important advantages over other standard regression analysis techniques. 

It forms multiple models instead of a single model [28, 34]. It automatically selects which features are to be used 

in the models. It is better at discovering combinations of features that take advantage of correlations between 

multiple features [28]. GFA incorporates Friedman's LOF error measure, which estimates the most appropriate 

number of features, resists over-fitting, and allows control over the smoothness of fit. Also, it can use a larger 

variety of equation term types in construction of its models and finally, it provides, through study of the evolving 

models, additional information not available from standard regression analysis [28, 34]. 

The structure of the artificial neural network was described elsewhere [24]. It consists of layers. The input 

layer(s), hidden layers and output layer.  The input layer is used to introduce the input (predictor) variables to the 

network. The upper layer is the output layer. The outputs of the nodes in this layer represent the predictions made 

by the network for the response variables. The network also includes hidden layers with several nodes. Each node 

(other than those in the input layer) takes as its input a transformed linear combination of the outputs from the 

nodes in the layer below it. This input is then passed through a transfer function to calculate the output of the 

node. The transfer function is an S-shaped sigmoid function which is used by QSAR. S-shaped sigmoid function 

is chosen because it is smooth and easily differentiable, features that help the algorithm that is used to train the 

network [24, 35]. 

 

3. Inhibitor 

The dataset used in this study consisted of seventeen furan derivatives used as corrosion inhibitors and their 

calculated corrosion inhibition extracted from literature [36].  A brief summary for the determination of corrosion 

inhibition of mild steel in 1 M HCl in the presence of the furan derivatives are presented as elsewhere [36]. 

Potentiodynamic polarization measurements were carried out at (25±1°C) using 250 ml of 1.0 M HCl solution 

without and with the addition of 0.005 M of the inhibitors.  

Polarization measurements was conducted in potential range -0.25 and +0.25 V with respect to open circuit 

potential in Autolab potentiostat/Galvanostat using a standard three electrode corrosion cell [36]. 
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Table 1: Inhibition efficiencies and molecular structures of the studied inhibitor series. 

Inhibition 

Efficiency [36]  
Structure Inhibitor name  

96.54 

 O

O

O
Cl

 

Ethyl 5-(chloromethyl)-2-furoate  

 
1 

89.93  

 

OO

O

 

5-(2-Furyl)-1,3-cyclohexanedione 2 

89.44  

 
O

HS

 

2-Furanmethanethiol 3 

89.03  

 
O

N

 

2-Furonitrile 4 

88.60 

O

O

OH
Br

 

5-Bromo-2-furoic acid 5 

84.77 
H2N O  

5-Methylfurfurylamine 

 

6 

78.24 
O

O

OH

 

trans-3-Furanacrylic acid 

 
7 

77.34 
O  

2-Ethylfuran 

 
8 

76.75 
O

O

O

 

Methyl 2-furoate  

 
9 

76.14 
O

O

 

5-Methylfurfural  

 
10 
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Inhibition 

Efficiency [36]  
Structure Inhibitor name  

76.06 

O O

OH 

2-Furoic acid  

 
11 

71.99 

O

N

HO

H

Cl 

5-(Dimethylaminomethyl)furfuryl 

alcohol hydrochloride 
12 

68.05 O

O

O

 

Methyl 2-methyl-3-furoate 

 
13 

64.25 

O O

Cl 
2-Furoyl chloride 

 

14 

53.93 

O

HO

 
Furfuryl alcohol 

 

15 

41.75 
H2N

O  Furfurylamine 

 

16 

35.96 
O N+

O

O-

 

2-(2-Nitrovinyl)furan 17 

 

4. Results and discussion 
The main difficulty for QSAR resides not in setting the variable selection for it but in performing the correlation 

itself but [28, 37]; the mathematical counterpart for such problem is known as the “factor indeterminacy” [38, 39] 

and affirms that the same degree of correlation may be reached with in principle an infinity of latent variable 

combinations. Fortunately, in chemical-physics there are a limited (although many enough) indicators to be 

considered with a clear-cut meaning in molecular structure that allows for rationale of reactivity and bindings [40, 

41]. However, the main point is that given a set of N-molecules, one can choose to correlate their observed 

activities 1,i N
A

 with M-selected structural indicators in as many combinations as [37]:   
M

k k

M M

k=1

!
C= C ,  C

!( )!

M

k M k





       (2) 

linked by different endpoint paths, as many as [37]: 
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1

M k

Mk
K C


         (3) 

indexing the numbers of paths built from connected distinct models with orders (dimension of correlation) from 

k=1 to k=M [37]. 

In the present study we developed the best QSAR model to explain the correlations between the 

physicochemical parameters and corrosion inhibition efficiency for 17 furan derivatives used as corrosion 

inhibitor extracted from the literature [36]. 

 

Table 2: Descriptors for the studied seventeen furan derivatives 
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Ethyl 5-(chloromethyl)-2-furoate 96.54 -990.43 -4.16 -0.22 -0.08 0.14 202.76 156.64 
92.08 96.26 

5-(2-Furyl)-1,3-cyclohexanedione 89.93 -607.80 -4.80 -0.21 -0.09 0.12 199.72 159.80 85.19 88.81 

2-Furanmethanethiol 89.44 -663.95 -2.49 -0.20 -0.03 0.17 133.04 100.41 88.14 85.87 

2-Furonitrile 89.03 -319.65 -2.23 -0.23 -0.08 0.15 109.30 82.64 84.87 88.47 

5-Bromo-2-furoic acid 88.60 
-

2985.51 
-2.55 -0.23 -0.10 0.13 143.68 110.55 

89.13 88.38 

5-Methylfurfurylamine 84.77 -360.98 -3.23 -0.18 -0.02 0.17 148.74 110.59 85.62 84.88 

trans-3-Furanacrylic acid 78.24 -492.12 -3.43 -0.22 -0.10 0.12 156.49 120.23 75.24 78.35 

2-Ethylfuran 77.34 -306.04 -2.91 -0.19 -0.01 0.18 130.90 98.53 76.08 78.12 

Methyl 2-furoate 76.75 -454.35 -3.12 -0.22 -0.08 0.14 144.95 109.49 82.39 75.92 

5-Methylfurfural 76.14 -379.61 -2.90 -0.21 -0.09 0.11 134.49 101.63 76.32 75.60 

2-Furoic acid 76.06 -415.42 -2.61 -0.23 -0.08 0.15 121.82 92.39 85.48 78.43 

5-(Dimethylaminomethyl)furfuryl 71.99 -972.91 -4.65 -0.18 -0.03 0.15 242.12 177.52 74.85 71.56 

Methyl 2-methyl-3-furoate 68.05 -493.31 -3.66 -0.21 -0.06 0.15 162.10 125.60 
67.39 69.65 

2-Furoyl chloride 64.25 -798.83 -2.36 -0.25 -0.11 0.13 128.52 98.37 66.13 64.96 

Furfuryl alcohol 53.93 -341.82 -2.58 -0.20 -0.03 0.17 121.72 90.15 51.93 55.68 

Furfurylamine 41.75 -322.02 -2.69 -0.20 -0.02 0.18 126.65 93.89 42.30 42.93 

2-(2-Nitrovinyl)furan 35.96 
-

508.01 

-

3.12 

-

0.23 

-

0.13 
0.09 152.08 115.72 

35.63 36.16 

 

Table 2 shows the structural descriptors for the 17 furan derivatives. It also records their inhibition efficiencies. 

Unless otherwise specified, the following unites are used for quantities calculated by QSAR descriptors and 

properties; area (Å
2
), volume (Å

3
), energy (Kcal/mol), dipole moment (e Å), HOMO and LUMO (Hartree). The 
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atom volumes and surfaces model calculate surface areas and volumes of surfaces around atomistic structures 

using the atom volumes and surfaces functionality of the Materials Studio software [30, 42]. 

Molecular area in Table 2, describes the volume inside the van der waals area of the molecular surface area 

determines the extent to which a molecule exposes to the external environment [28]. This descriptor is related to 

binding, transport, and solubility. Molecular volume in Table 2, describes the volume inside the van der waals 

area of a molecule [28]. Total molecular dipole moment, this descriptor calculates the molecule dipole moments 

from partial charges defined on the atoms of the molecule [28]. If no partial charges were defined, the molecular 

dipole moment would be zero. Total energy, HOMO and LUMO energy have been described in our previous 

studies in details [33]. 

 

Table 3: Univariate analysis of the inhibition data. 

Statistical parameters 

Number of sample points 17.00 

Range 60.58 

Maximum 96.54 

Minimum 35.96 

Mean 74.05 

Median 76.75 

Variance 272.07 

Standard deviation 17.00 

Mean absolute deviation 12.75 

Skewness -0.85 

Kurtosis -0.29 

 

4.1 Genetic Function Approximation Study 

For understanding the quantitative structure and activity relationships, statistical analysis using genetic function 

approximation (GFA) method, first a study table, which contains all physicochemical descriptors as well as the 

experimental inhibition efficiency, was belt and presented in Table 2. Second, a correlation matrix was derived, 

and then regression parameters were obtained. Table 2 shows the structural descriptors for the 17 furan 

derivatives used in this study (as a training set). The structure descriptors presented in Table 2 include total 

energy, HOMO and LUMO energy as well as the area and volume of the studied molecules. Also, the binding 

energy have been used in QSAR studies.  

Univariate analysis is performed on the inhibition efficiency data in Table 3 as a tool to assess the quality of the 

data available and its suitability for next statistical analysis. Data in Table 3 shows acceptable normal distribution. 

The normal distribution behaviour of the studied data was confirmed by the values of standard deviation, mean 

absolute deviation, variance, skewness and Kurtosis presented in Table 3, description of these parameters have 

been reported elsewhere [33]. 
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Table 4: Correlation matrix of the studied variables: 

  

C : 

Experimental  

Inhibition 

efficiency 

D : Total 

energy 

E : 

Binding 

energy 

F : 

HOMO 

energy 

G : 

LUMO 

energy 

H : 

LUMO-

HOMO 

energy 

I : 

Molecular 

area 

J : 

Molecular 

volume ) 

C : Experimental  

Inhibition efficiency 
1 -0.294319 -0.212854 

-

0.031963

4 

0.0268479 0.0660563 0.218264 0.251996 

D : Total energy  -0.294319 1 6.33E-04 0.243397 0.256675 0.216001 -0.206625 -0.218488 

E : Binding energy  -0.212854 6.33E-04 1 
-

0.367868 
-0.0218774 0.244326 -0.938494 -0.95377 

F : HOMO energy -0.0319634 0.243397 -0.367868 1 0.849101 0.567087 0.322995 0.270727 

G : LUMO energy  0.0268479 0.256675 -0.0218774 0.849101 1 0.916595 0.0066856 -0.0501741 

H : LUMO-HOMO 

energy  
0.0660563 0.216001 0.244326 0.567087 0.916595 1 -0.23405 -0.283148 

I : Molecular area  0.218264 -0.206625 -0.938494 0.322995 0.0066856 -0.23405 1 0.993802 

J : Molecular volume  0.251996 -0.218488 -0.95377 0.270727 -0.0501741 -0.283148 0.993802 1 

 

Table 4 contains a correlation matrix which gives the correlation coefficients between each pair of columns 

included in the analysis in Table 2. Correlation coefficients between a pair of columns approaching +1.0 or -1.0 

suggest that the two columns of data are not independent of each other. Correlation matrix can help to identify 

highly correlated pairs of variables, and thus identify redundancy in the data set. A correlation coefficient close to 

0.0 indicates very little correlation between the two columns. The diagonal of the matrix always has the value of 

1.0. To aid in visualizing the results, the cells in the correlation matrix grid are coloured according to the 

correlation value in each cell. A standard colour scheme is used when the correlation matrix is generated: +0.9 

≤X≤+1.0 (orange), +0.7≤ X<+0.9 (yellow), -0.7<x>+0.7 (white), -0.9 <x>-0.7 (yellow) and -1.0 ≤x≤-0.9 (orange) 

[33]. Inspection of Table 4 shows that the descriptors most highly correlated with corrosion inhibition efficiency 

include: ELUMO, EHOMO and energy gap, binding energy and dipole moment. After constructing the correlation 

matrix both the genetic function approximation algorithm and neural network analysis will be used to perform a 

regression analysis. 

After constructing the correlation matrix in Table 4, now it is ready to perform a regression analysis of the 

descriptor variables compared against the measured corrosion inhibition values. There are two separate issues to 

consider: First, there are many more descriptor variables than measured inhibition values, so we should reduce the 

number of descriptors. Typically, a ratio between two and five measured values for every descriptor should be 

sought in order to prevent over-fitting. Secondly, we are aiming to obtain a parametric representation of the 

regression, producing a simple equation which can be validated against our scientific knowledge [34]. 

The GFA algorithm works with a set of strings, called a population [34]. This population is evolved in a manner 

that leads it toward the objective of the search [43]. Following this, three operations are performed iteratively in 

succession: selection, crossover, and mutation. Newly added members are scored according to a fitness criterion. 

In the GFA, the scoring criteria for models are all related to the quality of the regression fit to the data. The 

selection probabilities must be re-evaluated each time a new member is added to the population [43]. The 

procedure continues for a user-specified number of generations, unless convergence occurs in the interim. 

Convergence is triggered by lack of progress in the highest and average scores of the population [43]. 



J. Mater. Environ. Sci. 7 (6) (2016) 2121-2136                                                                                   Khaled et al. 

ISSN : 2028-2508 

CODEN: JMESC 

2129 

 

Table 5: Validation Table of the Genetic Function Approximation, GFA. 

  Equation 1 

Friedman LOF 93.18 

R-squared 0.95 

Adjusted R-squared 0.92 

Cross validated R-squared 0.85 

Significant Regression Yes 

Significance-of-regression F-value 27.19 

Critical SOR F-value (95%) 3.30 

Replicate points 0 

Computed experimental error 0.00 

Lack-of-fit points 9 

Min expt. error for non-significant LOF (95%) 3.50 

 

Various statistical measures can be adapted to measure the fitness of a GFA model during the evolution process. 

Use of the Friedman lack-of-fit (LOF) measure has several advantages over the regular least square error 

measure. In Materials Studio [30, 42], LOF is measured using a slight variation of the original Friedman formula 

[23]. The revised formula is: 

2(1 )

SSE
LOF

c dp

M





         (4) 

Where SSE is the sum of squares of errors, c is the number of terms in the model, other than the constant term, d 

is a user-defined smoothing parameter, p is the total number of descriptors contained in all model terms (again 

ignoring the constant term) and M is the number of samples in the training set [23]. Unlike the commonly used 

least squares measure, the LOF measure cannot always be reduced by adding more terms to the regression model. 

While the new term may reduce the SSE, it also increases the values of c and p, which tends to increase the LOF 

score. Thus, adding a new term may reduce the SSE, but actually increases the LOF score. By limiting the 

tendency to simply add more terms, the LOF measure resists over-fitting better than the SSE measure [35, 43]. 

 

Table 6: Equation used to calculate the predicted inhibition efficiency 

Equation Definitions 

Y =  123905.15 * X11  

     + 406588.46 * X39  

     - 0.007923536 * ramp(X1 +  2277.97)  

     + 12271.221 * ramp( - 0.0281 - X4)  

     - 8792.309 * ramp( - 0.011824576 - X4)  

     - 13886.665 * ramp( - 0.036134712 - X4)  

     - 2920.576 * ramp( - 0.082154740 - X4)  

     + 87.13 

X11 : (G : LUMO energy)^2 

X39 : (G : LUMO energy)^3 

X1 : D : Total energy  

X4 : G : LUMO energy  
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Table 5 shows the GFA analysis which gives summary of the input parameters used for the calculation. Also, it 

reports whether the GFA algorithm converged in specified number of generations. The GFA algorithm is assumed 

to have converged when no improvement is seen in the score of the population over a significant length of time, 

either that of the best model in each population or the average of all the models in each population. When this 

criterion has been satisfied, no further generations are calculated [33]. 

The Friedman's lack-of-fit (LOF) score in Table 5 evaluates the QSAR model [33]. The lower the LOF, the less 

likely it is that GFA model will fit the data. The significant regression is given by F-test, and the higher the value, 

the better the model. 

 
 

Figure 1. Plot of predicted inhibition and residuals versus measured corrosion inhibition using GFA. 

 

Figure 1 shows the relationship between the measured corrosion inhibition efficiencies of the studied inhibitors 

presented in Table 2 and the predicted efficiencies calculated by the equation model presented in Table 6. 

The distribution of the residual values against the measured corrosion inhibition efficiencies values are presented 

in Figure 1. The residual values can be defined as the difference between the predicted value generated by the 

model and the measured values of corrosion inhibition efficiencies. An analysis of Figure 1 shows good 

correlation behaviour, with most of the molecular system and showing acceptable deviations. The key feature of 

Figure 1 is the distribution of the residual values against the measured corrosion inhibition values. An acceptable 

variation is observed which should be present in a valid model. Inspection of Table 2 and Figure 1 shows that the 

suggested model gives good correlation between the measured and predicted corrosion inhibition values. It is 

important to point out that the identification of related inhibitors showing very good behaviour and this behaviour 

has not been reported previously although the relatively big number of molecules (17 molecules) employed in this 

study. When a prediction model is generated to predict response data from predictor data, the prediction model 

will not normally give an exact fit to the response data. Unless the response data is genuinely an exact linear 

function of the predictor data, this should not be the case and an exact fit is indicative of over-fitting (where there 

are as many independent observations as there are degrees of freedom in the algorithm from which the model is 

generated) [35]. 
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Figure 2. GFA-Outlier analysis for inhibition efficiency. 

 

With data that are randomly distributed within a normal distribution, when a linear prediction model is generated 

using a least squares analysis technique, the residual values should also have a normal distribution with a mean 

value of zero. It is then expected that 95% of the values should lie within two standard deviations of the mean 

value[35]. Figure 2a-b represents the potential outlier that used to test the constructed QSAR model. An outlier 

can be defined as a data point whose residual value is not within two standard deviations of the mean of the 

residual values. Figure 2a represents the residual values plotted against the measured corrosion inhibition 

efficiencies. Figure 2b shows the residual values plotted against Table 2 row number. Figure 2a-b contains a 

dotted line that indicates the critical threshold of two standard deviations beyond which a value may be 

considered to an outlier. Inspection of figure2a-b shows that there is one data point appeared outside the dotted 

lines which make the QSAR model acceptable. 

 

Table 7: Neural network analysis summary (NNA) 

Analysis type Neural Network Training 

  

Analysis type Predictor 

 1 

Network type 6 (Input) - 3 (hidden) - 1 (Output) 

Number of hidden layers 17 

Network configuration The maximum number of cycles without improvement was reached 

Number of rows in model  

Reason why training was terminated 0.99181600 

 -0.49404500 

r^2 0.70513500 

r^2 (CV) -0.10404400 

 
Determination of which observations (data points) are outliers is a subjective process which relies heavily on the 

nature and quality of the original data. From the plots of residual value against predicted value, it may become 

evident that certain observations are outliers if their residual values greatly exceed those of the other points. On 

the other hand, randomly distributed data will usually lead to points that lie outside the 95% confidence limit. 
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4.2 Neural Network Analysis  

The cross validation data for the neural network model operates by repeating the calculation several times using 

subset of the original data to obtain a prediction model and then comparing the predicted values with the actual 

values for the omitted data [36]. The main measure of the predictive ability of the model is the correlation 

coefficient r
2
. The closer the value is to 1.0 the better the predictive power. For a good model r

2
 value should be 

fairly close to 1.0. The correlation coefficient r
2
 for this study is equal to 0.999 (Table 7) which is reasonably high 

that indicates the predictive power of the model. 

Investigation of the neural network analysis in QSAR study shows that the network has too many degrees of 

freedom (usually the number of network connections between nodes) for the number of observations (rows of 

data) for which the network is being trained. In this study there are 6 input, three hidden layers and one output, 

summary of the neural network analysis presented in Table 7. 

Applying the neural network prediction model generates a model containing predictions corresponding to each 

output of the neural network. The neural network model adds a new column containing a calculation of the model 

to the study table (Table 2). Also, residual values of the predictions corresponding to each output of the neural 

network. 

 
Figure 3. Plot of predicted inhibition and residuals versus measured corrosion inhibition using NN. 

 

Neural network analysis consists of generating a neural network to replicate (predict) the input data. The hidden 

layers typically have fewer nodes than the input layer. From this network, a model can be generated to create the 

nodes of one of the hidden layers (rather than the more usual model to create the output layer). 

Figure 3 shows a relation between the predicted values, residual values and the experimental data presented in 

Table 2. Also, Figure 3 shows the distribution of the residual values against the measured corrosion inhibition 

values. The outputs of this model will then form a new data set that can be used in place of the original, assuming 

that the replications generated during the training are of sufficiently good quality. The generated data in Table 2 

shows excellent correlation with the experimental corrosion inhibition data presented in Table 2. 

Both Figures 1 and 3 shows that either genetic function approximation or neural network analysis used to run the 

regression analysis and establish correlations between different types of descriptors and measured corrosion 

inhibition efficiency. Inspection of Table 2 shows that the correlation obtained in case of applying NNA gives 

predicted values for corrosion inhibition efficiencies more accurate than those values obtained using GFA. 
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To test the constructed QSAR model, potential outliers have been identified in Figure 4. An outlier can be defined 

as a data point whose residual value is not within cross validated r
2
 values, is also, high, even though the 

regression is significant according to F-test.  

  
Figure 4. NN-Outlier analysis for inhibition efficiency. 

 

Figure 4 contains two charts. One contains the residual values plotted against the corrosion inhibition 

measurements and the other displays the residual values plotted against Table 2 raw number. Each chart contains 

a dotted line that indicates the critical threshold of two standard deviations beyond which a value may be 

considered to an outlier. Inspection of Figure 4 shows that there is no points appeared outside the dotted lines 

which make the QSAR model acceptable. 

 

4.3 Adsorption Study of (Ethyl 5-(chloromethyl)-2-furoate) 

In this adsorption study simulation of an iron surface (substrate) loaded with an (Ethyl 5-(chloromethyl)-2-

furoate) (adsorbate). This adsorption study is designed for the study of individual systems, allowing to find low 

energy adsorption sites on the iron surface substrate or to investigate the preferential adsorption of the studied 

furan derivative. A low energy adsorption site is identified by carrying out a Monte Carlo search of the 

configurational space of the substrate-adsorbate system as the temperature is slowly decreased. This process is 

repeated to identify further local energy minima. The adsorption task starts with preparing the adsorbates (Ethyl 

5-(chloromethyl)-2-furoate) as a 3D structure. In order to ensure that the energy results returned by this 

adsorption task are accurate, it is critically important that we perform geometry optimizations of the adsorbate 

structures (Ethyl 5-(chloromethyl)-2-furoate) using the same energy and minimization settings as we intend to use 

for your adsorption task. This includes not only the force-field, atomic charges, and non-bond summation 

methods, but also the quality of the energy and geometry optimization calculations and the convergence 

tolerances used for the minimization. We should also ensure that the substrate structure is plausible under the 

conditions to be used in the adsorption task. The substrate can either be a non-periodic structure or a periodic 

structure with primitive (P1) symmetry. Higher symmetry can be removed by converting to P1 symmetry. As we 

use an iron surface as a substrate, we start building this surface by creating an iron crystal super cell as a surface 

model and then building a crystal slab from this surface. 

Equilibrium adsorption configurations of Ethyl 5-(chloromethyl)-2-furoate on Fe (111) surfaces obtained by 

molecular dynamics simulations are presented in Figure 5 obtained by adsorption locator module [44-46]. Figure 

5 shows the most suitable configurations for adsorption of (Ethyl 5-(chloromethyl)-2-furoate) on Fe (111) 

substrate obtained by adsorption locator module [24] in Materials studio [47]. Figure 5 shows that the adsorption 

centers on the iron surface are the oxygen, chloro and the pi-electron system. 
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Figure 5. Equilibrium adsorption configurations of Ethyl 5-(chloromethyl)-2-furoate on Fe (111) surfaces obtained by 

molecular dynamics simulations 

 
Table 8: Different adsorption structures and the corresponding adsorption energy for Ethyl 5-(chloromethyl)-2-furoate 

Structures Total energy 
Adsorption 

energy 

Rigid adsorption 

energy 
Deformation energy ECMF : dEad/dNi 

Substrate 0.00 
    

ECMF 4.87 
    

Fe (1 1 1) - 1 -84.02 -88.89 -91.52 2.63 -88.89 

Fe (1 1 1) - 2 -83.75 -88.62 -91.25 2.63 -88.62 

Fe (1 1 1) - 3 -83.27 -88.14 -90.37 2.23 -88.14 

Fe (1 1 1) - 4 -82.99 -87.86 -89.94 2.08 -87.86 

Fe (1 1 1) - 5 -82.61 -87.49 -88.74 1.26 -87.49 

Fe (1 1 1) - 6 -82.31 -87.18 -88.94 1.76 -87.18 

Fe (1 1 1) - 7 -82.06 -86.93 -88.73 1.80 -86.93 

Fe (1 1 1) - 8 -81.81 -86.69 -88.48 1.80 -86.69 

Fe (1 1 1) - 9 -81.42 -86.29 -87.17 0.88 -86.29 

Fe (1 1 1) - 10 -81.22 -86.09 -86.92 0.83 -86.09 

Adsorption density field of the Ethyl 5-(chloromethyl)-2-furoate on iron substrate are presented in Figure 6. 

 
Figure 6. Adsorption density field of Ethyl 5-(chloromethyl)-2-furoate on the Fe (111) substrate 
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The Monte Carlo simulation process tries to find the lowest energy for the whole system. The structures of the 

adsorbate (Ethyl 5-(chloromethyl)-2-furoate) are minimized until it satisfies certain specified criteria. The 

Metropolis Monte Carlo method used in this simulation, samples the configurations in an ensemble by generating 

a chain of configurations [48]. 

The outputs and descriptors calculated by the Monte Carlo simulation are presented in Table 8. the adsorption 

energy of (Ethyl 5-(chloromethyl)-2-furoate) is more than -88 kcal mol−1 which explain its highest inhibition 

efficiency compared to the other studied furan derivatives. 

The parameters presented in Table 8 include total energy, in kcal mol
−1

, of the Fe (111) – In this adsorption study 

simulation of an iron surface (substrate) loaded with Ethyl 5-(chloromethyl)-2-furoate (adsorbate). This 

adsorption study is designed for the study of individual systems, allowing to find low energy adsorption sites on 

the iron surface substrate or to investigate the preferential adsorption of the studied Ethyl 5-(chloromethyl)-2-

furoate. A low energy adsorption site is identified by carrying out a Monte Carlo search of the configurational 

space of the substrate-adsorbate system as the temperature is slowly decreased. This process is repeated to 

identify further local energy minima. 

 

Conclusions  
The relationships between inhibition efficiency of iron surface in1 M hydrochloric acid and the EHOMO, ELUMO, 

ELUMO - EHOMO, total energy and binding energy of the seventeen furan derivatives were calculated using the DFT 

method. The computational method has proved satisfactory for the inhibition efficiency estimations. High 

correlation was obtained with the multivariate correlation, i.e. all the indices combined together, where the 

prediction power was very high for GFA and NNA. Although GFA and NNA proved to be efficient in predicting 

ability, more work is still required toward understanding structure-property correlation on inhibition corrosion 

studies, particularly concerning the analysis of different structural chemical descriptors. Computational studies 

help to find the most stable adsorption sites for a broad range of materials 
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