Gandou et al.

Effect of time of microwave activation synthesis on crystallite size of spheroid β Tricalcium Phosphate nanopowders

Z. Gandou^{1,2}, A. Nounah¹, K. Nouneh³, A. Yahyaoui⁴

¹Mohammed V University, High School of Technology, Laboratory of materials and environment, Avenue Prince Héritier, B.P.227, Salé, Morocco

²CNESTEN, Laboratory of Inorganic Chemistry synthesis, Laboratory of structural and isotopiques analysis, laboratory exploitation Department, Rabat BP 1382 Rabat Principal

³Ibn Tofail University, Laboratory of Physics of condensed Matter Physics Department, Kenitra Morocco ⁴Mohammed V Agdal University, Faculty of Sciences, Laboratory of Radiochemistry and Nuclear Chemistry, B.P. 1014 RP, Rabat, Morocco

Received 30 Nov 2015, Revised 13 Mar 2016, Accepted 23 Mar 2016 *Corresponding author. E-mail: <u>Zahraa.gandou@gmail.com</u> (Z. Gandou); Phone: +212698990589

Abstract

 β Tricalcium phosphate nanopowders was successfully synthesized by the microwave activated co-precipitation in ambient atmospheric method without adding any surfactant. The synthesized were calcined at 900°C to obtain monophasic β TCP. The powder were characterized using X-ray diffraction, Fourier Transform-Infrared spectroscopy (FT-IR),and transmission electron microscopy to study structure and stability of product as synthesized and after calcination at 900°C. The results showed that amourphous calcium phosphates (ACP) and calcium deficient hydroxyapatite (CDHA) had been synthesized in a rapid way using microwave assisted co precipitation, which was an important processing method introduced to the synthesis of β TCP after calcination at 900 °C. The effects of microwave irradiation, time of irradiation on the reaction mechanism were studied. By using microwave as an assisted method for activation the reaction, the powders can be produced faster by employing an improved and efficient heat transfer throughout the volume and to synthesize nanostructured materials . Biocompatible β TCP nanopowders were synthesized with controlled particle size, morphology by this way.

Keywords: spheroid, microwave, ACP, Hap (Hydroxyapatite), BTCP (BTricalcium phosphates)

1 Introduction:

In the latest years, researchers chose to develop and optimize new methods processing of materials with precise control over the crystallographic, chemical structure, controlled size and morphology. The surface properties of the implant play a crucial role to improve both the biological response to implant, the material response to implants and to reacts with the physiological conditions [1-7].

Calcium phosphates (CaP) exhibit excellent biocompatibility and show osteoconductive properties [8-12]. Recently, it was found that β tricalcium phosphate (β TCP) is a good tissue engineering scaffold material in biomedical field because its high capacity of resorption, this type of material presents an excellent biocompatibility and bioactivity while it contacts bone cells as some advantages including the gradual degradation in organisms metabolic process, the stage of replacement and growth of new bone, without prejudice to newly grown bone in material substitution steps and builds a direct chemical connection between bone tissues and ceramics implant However, applications of β TCP are restricted to relatively small bone defects. Moreover, researchers have shown that nanoscales features improve cell-material interactions in different materials [13, 14].

 β TCP nanopowder with different morphology can be used directly in drug or bimolecular delivery applications or can be used for processing nanograin compacts for bone grafts. Bioresorbability of β TCP nanopowder can be

tailored by varying particle size, morphology, surface area, and crystallinity [15]. β TCP cannot be precipitated from aqueous solutions. It is a high temperature phase, which can be prepared at temperatures above 750°C by thermal decomposition of calcium deficient hydroxyapatite CDHA [16, 17].

Numerous synthesis methodologies of calcium phosphates powders are known, such as precipitation, solid state synthesis, hydrolysis, hydrothermal, sol-gel methods and flame synthesis. The preparation of calcium phosphate ceramics by conventional wet, dry and hydrothermal routes is tedious and time-consuming. Ultrasonic treatment has been used to accelerate the formation of Hap [17].

The microwave synthetic routes have been reported for the preparation nanosize powders of pure or biphasic calcium phosphates within a shorter period of time [18-22]. Microwave synthesis of materials offers the advantages of heating throughout the volume and very efficient transformation of energy. In contrast to the conventional procedures, where the material is externally heated through conduction, microwave heating involves in situ conversion of microwave energy into heat using the inherent properties of reaction mixture [23–25]. Reaction times are shorter than those required conventionally producing samples having comparable X-ray powder patterns with a specific morphology (table 1).

2. Experimental

2.1. Synthesis of calcium phosphate powders

ACP and CDHA was prepared by co-precipitation of calcium hydroxide $Ca(OH)_2$ and phosphoric acid (H_3PO_4) , as Ca and P precursors, respectively. To form a reaction mixture, 0.45M of H_3PO_4 aqueous solution was added to 0.75M of $Ca(OH)_2$ aqueous suspension under a constant stirring condition at room temperature. In this study, commercially supplied $Ca(OH)_2$ (99.8% purity) and (H_3PO_4) (85.0–87.0%) and the double distilled de-ionized water were the only starting materials. The powders were synthesized at a fixed Ca/P molar ratio of 1.5.

The mixture as prepared was immediately exposed to microwave radiation (850 W) for 11 minutes interspersed with samples taken after 5, 3, 2 and 1 minutes of heating. A white paste subsequently is formed. The times of heating by microwave are the following: Time (mn) $t_1 = 5 \text{ mn}$ (Hap5), $t_2 = 8 \text{ mn}$ (Hap8); $t_3 = 10 \text{ mn}$ (Hap10); $t_4 = 11 \text{ mn}$ (Hap11)

The pastes resulting from this treatment are maintened for 36 hours at a temperature of 37°C. These powders were then calcined at 900 °C and holding for 1 h to increase their crystallinities. The calcined samples are Hapc5, Hapc8, Hapc10 and Hapc11.

2.2 Characterization of calcium phosphates :

The physical and chemical analyses were carried out on the dried precipitate and the powder annealed at 900 °C. The phases formed were identified by the time heating in microwave as dried and after heating,

2.2.1. XRD analysis :

Crystalline phases were identified (Theta/Theta) X-ray diffractometer (XRD) (SIEMENS D5000, λ Cu=1.5408 Å). XRD patterns were collected over the 2 θ range of 0-90°. The software used for data processing of X-ray diffraction was DIFFRACT/AT. Crystalline phases detected in the patterns were identified by comparison to the standard patterns From the ICDD/PDF (International Center for Diffraction Data-Powder Diffraction Files).

2.2.2 FTIR measurements:

The Fourier transform infrared spectra (FTIR) were obtained by infrared spectroscopy (Nicolet AVATAR 360)with the wave numbers recorded from 400 to 4000 cm^{-1} at 2 cm^{-1} resolution. small amount of sample powders was blended with KBr and then pressed into discs for the measurement.

J. Mater. Environ. Sci. 7 (5) (2016) 1653-1662 ISSN : 2028-2508 CODEN: JMESC

Table1 shows Different methods to synthesize calcium phosphates by microwave

Starting	Template	Nature of	Power	time	pН	Authors	Outcome powder morphology and property
materials	additives	microwave				And Ref	
Ca(CH ₃ COO) ₂ ,	Sodium	Professional	120°C	30min	5	Wang 2011	Hap microsphere from 0.5 to 2 µm and exhibit
Na ₂ HPO ₄ , NaH ₂ PO ₄	citrate HC1	Microwave				[26]	three-dimensional nanoporous network structure.
Ca(NO ₃) ₂ x4H ₂ O	NH ₄ OH	1Ultrasonic	50 W	1 h	9	G.E.J.	Uniform Spherical particles with size from 40 to 50
KH ₂ PO ₄		2 Commercial	1100W	-		Poinern et	in diameter.
		microwave				al 2011	
	HNO ₃	Microwave oven	600 W	5 min	_	Sahil jalota	Monodispersed nanowhiskzers of Hap with 1 µm
	NaNO ₃					et al 2004	and 100 nm
Ca(NO ₃) ₂ x4H ₂ O /	NH ₄ OH	Sonochemistry-	180 W	10 min	10,5	Tong Liang	Uniform rod like nanoparticles with different
(NH ₄) ₂ HPO ₄		assisted		,30 min		et al 2013	dimension (diameters and length :
		microwave reactor	200 W			[29]	50°C : d 15 nm L: 40 nm 90°C d: 30 nm L : 100 nm
		reflux cooling					At 10°C : flake like morphology without
	CTT 4 D	D	100011	2 .	0	D 1 ' M '	mesoporous structure
	cTAB in alcool/water	Domestic microwave with	1000W	3min	9	Rabia Nazir et al 2013	BICP spherical morphology 50 a 80 nm
	NH ₄ OH	refluxing				[30]	
	$\rm NH_4OH$	Domestic	600W	1 min	10	Rabia Nazir	Hap spherulites agglomerates with narrow size
		refluxing	850W 1000W	5min 5min 10		[31]	distribution around 0, 80 µm
	NH ₄ OH	Professional	50°C	40 min	7	Li Sha et al	Pur β TCP short rod-like with the size of 80–150
		Microwave				2011 [32]	nm in width and 200–300 nm in length.
Ca(NO ₃) ₂ x4H ₂ O	EDTA	Domestic	600W	19 min	9	S.J.Kalita	Highly crystalline powder of 10 nm-50 nm
Na_2HPO_4		Microwave with Refluxing		3 min		S.Verma	Rod shaped 5 nm in diameter and 15 nm in length
		Kenuxing		5 min		[33]	
	CTT + D			OFF			
	NaOH	Microwave	900W 2.45	5 min		Arami 2009 [34]	Hap nanostrips with average width and length of 10 and 55 nm, respectively
			GHz			[0.1]	
Ca ₃ (NO ₄) ₂ x4H ₂ O	wihout	Domestic	175W			Sidharthan	Needle shape 39-56 nm length, 12-14 nm width
$H_3 PO_4$		microwave	525 W 660 W			[35]	Platelet shape; 32-42 nm length, 12-25 nm width
	1,2	Microwave	100 °C	3 min	_	Y.Z.Wang	Pure nano crystalline calcium deficient Hap
	Ethylendiami	Hydrothermal Max 1200 W	120 °C 140 °C			et al 2011 [36]	Crystallinity degree, crystallite size and morphology of powder change with temperature
	ne	1010X 1200 W	140 C			[50]	and/or time.
	NULOU	D (000 11/	20.45.60	> 0	DAMLE	54,7 nm (140°C for 1 min)
$(NH_4)_2HPO_4$ Ca(OH) ₂	NH ₄ OH NaOH	Domestic	900 W	30,45,60, 75,90,12	≥9	al 2012	100nm and with around 10-15 min
				0 min		[37]	
		Domestic	1100W	30 min	11	Rameshbab	Nanostructured biphasic calcium phosphates with
		merowave				[38]	crystante size using sheerer formula 20 mil 24 mil
	CaCO ₃	Domestic	800W	40 à 45	-	Kumar et al	To form biphasic calcium phosphate mimicking
	MgCO ₃	microwave		min		[39]	ion
	without	Precipitation mw	850W	20 min	≥ 10	Meejoo et	Needle shape; 50 nm diameter, 200 nm length 28-
						al 2006 [18]	159 nm particle size
Ca(OH) _{2/}	without	Domestic	850W	11 min		This study	Spherical Nano TCP calcium phosphate with
$H_3 PO_4$		microwave					serious agglomerate
	HNO3 NaOH	Domestic	800W	45 min	9	Ghomach	Spherical Nano Hap-TCP biphasic calcium
		microwave				et al 2012	phosphate with serious agglomerate
	HNO ₂ NaOH	Acide base	800W	45 min	6.8.9	[40] Farzadi	Hap/ BTCP grain size of powders 43 to 55 nm and
		microwave	00011		,10	2011	the grain size of powders produced by acid-base
	:41	Acide base	70011	25 .	6.01	[41]	Han and blabasis TOD 1 11 1 1 1
	without	microwave	700W	25 min	0,81 0.12	Lee et al 2007	Hap and Diphasic TCP nanopowder with spherical shape pH 6 : $80 - 90$ nm pH 12 : $50 - 70$. The ratio
		Acide base			.,	[42]	Hap/TCP and particles size change with Ph

2.2.3 Thermogravimetric analysis :

Thermogravimetric analysis (TGA) were conducted under air using a TA Instruments Q500 apparatus with 10°C min⁻¹ ramp between 25 and 1000°C. Mass losses in TGA plot represent thermal stability of the sample and may also represent chemical decomposition or vaporization and sublimation at higher temperatures.

2.2.4 TEM analysis :

The size of nanoparticles was performed by a Tecnai G2 microscope at 120 Kv in dark field.

3. Results and discussion:

3.1 XRD analysis

The XRD patterns of samples before and after calcinations are shown in figure 2 and 3 respectively. The as dried sample Hap5 show a single broad peak around $2\Theta = 32^{\circ}$ identified as Amorphous Calcium Phosphate (ACP), revealing their amorphous nature. The Hap8, Hap10 and Hap11 can be indexed as CDHA phase according to the standard pattern (JCPDS N° 09-432). This result confirms the further characterization with FTIR also confirms the formation of CDHA.

Figure 2: XRD analysis of the effect of time of microwave activation on nanocrystalline apatites

On the other hand, we can see in figure 3 that the Hapc5 sample demonstrated some weak diffraction peaks that match those of standard (JCPDS N° 09-432), but for other samples Hapc8, Hapc10 and Hapc11, the peaks were identified to be corresponding to β TCP and indexed according to the standard value (JCPDS 09-0169).

Figure 3: XRD analysis of the effect of time of calcination on nanocrystalline apatites

3.2 Infra red analysis :

The FTIR spectra of the as obtained powders at Hap8, Hap10 and Hap11 display the similar profile in figure 1. As listed in table 2, the hydroxyl OH bond stretch at around (633 and 3440 cm⁻¹) prove presence of Hap **[43]**, PO_4^{3-} (472, 563, 602, 961, and (1035-1089 cm⁻¹) , and residual H₂O (3431 and 1640 cm⁻¹) whereas the weak bands. Absorption bands 873 cm⁻¹ 1425, 1455 can be attributed to HPO_4^{-2} substitutes phosphate ion, revealing that B- type carbonate Hap is formed [43-44]. By the presence of HPO_4^{-2} ions bands the spectra exhibit clear evidence of CDHA [45-47]. The CDHA also exhibit low intense OH⁻ stretching and librationals modes than stochiometric Hap [48].

After calcinations at 900°C, the disappearance of the hydroxyl OH⁻ bands and carbonate $CO_3^{2^-}$ band has been noticed for all samples except sample of Hap5. The presence of new bands at 1120, 971, and 944 cm⁻¹ can be assigned to PO₄³⁻ groups of β TCP [47] (Fig.2). From literature this band can be associated with Ca-deficient apatite (CDAp) after thermal treatment decomposition of CDAp lead to formation of β tricalcium phosphate (β TCP) or biphasic calcium phosphates (BCP) [18-38-49]. For sample Hap5, there is formation of CDHA from intermediate product ACP after calcinations with a small amount of carbonate ($CO_3^{2^-}$) substitution [5].

The results also confirmed that the Hap phase obtained in this work is calcium deficient Hydroxyapatite (CDHA).All CDHA samples showed broad bands corresponding to absorbed water. This may arise due to nanoparticles nature and associated porosities resulting in adsorbed water peak at higher temperature [5].

	Infrared frequencies (cm ⁻¹)								
		As synt	thesized		After Calcination 900°C				
Assignments	Hap5	Hap8	Hap10	Hap11	Hapc5	Hapc8	Hapc10	Hapc11	
PO_4^{3-} bend $v2$	472	468	472	466	472	478	472	466	
PO_4^{3-} bend v4	563	563	563	562	569	553	553	551	
PO_4^{3-} bend v4	602	602	600	602	602	604	604	604	
Structural OH ⁻	_	632	633	633	632	_	_	_	
HPO ₄ ⁻²	873	873	873	873	873	_	_	_	
PO_4^{3-} stretch v1	961	962	961	961	962	_	_	_	
PO_4^{3-} stretch v1	_	_	_	_	_	971	970	971	
PO_4^{3-} bend v3	1035	1029	1066	1042	1043	1043	1042	1042	
HPO ₄ ⁻²	1088	1089	1089	1089	1089	_	_	_	
PO_4^{3-} bend v3	_	_	_	_	_	1118	1117	1120	
CO_3^{2-} v3	1420	1425	1425	1425	1413	_	_	_	
CO_3^{2-} v3	1455	1455	1455	1455	1458	_	_	_	
H_2O adsorbed v2	1641	1640	1642	1640	1640	1640	1642	1642	
H ₂ O adsorbed	3441	3439	3438	3431	3571	-	-	-	
Structural OH ⁻	3568	3568	3568	3568	3570	_	-	-	

Table 2: Assignments of infrared frequencies (cm⁻¹) of as synthesized CDHA and heat treated samples

The FTIR spectrum of Hap8, Hap10, Hap11 powders show in figure 5 are similar of characteristics bands of β TCP, the characteristic PO₄³⁻ absorption bands of β TCP, The band at 900-1200 cm⁻¹ were the stretching mode of PO₄³⁻ group. The sharp peaks at 552 and 606 cm⁻¹ represent the vibration peaks of PO₄³⁻ in β TCP. The absence of sharp peak at 3571 cm⁻¹ indicating the absence of OH functional group in the sample. These results confirm the results obtained by X-ray diffraction.

Figure 4: IR spectra analysis of the effect of time of microwave activation on nanocrystalline apatites

Figure 5: IR spectra analysis of the effect of calcination on nanocrystalline apatites

Comparing the results obtained in this work we observe formation of two man of biomaterials using the only one synthesis just with changing time of activation the synthesis by microwave:

ACP, CDHA and finally after calcination CDHA and β TCP.

After activation of synthesis the first 5 minutes, there is formation of ACP which transforms to carbonated CDHA after calcination.

For the other samples Hapc8, Hapc10, Hapc11 we obtained carbonated CDHA that transforms in β TCP after calcinations. Perhaps, this difference is due in Ca/P ratio. Arnaud Destainville and coauthor's study allowed to highlight the high variability of the Ca/P ratio of the powders with the experimental conditions. In general it was observed an increase in this ratio with the maturation time. The kinetics of the hydrolysis reactions which take place during the synthesis may explain the rapidity of the increase in the Ca/P ratio at the beginning of the reaction. In accordance with a thermally activated reaction process, the temperature favors the hydrolysis reactions [43].

In order to evaluate the effect of hydrolysis on Ca/P ratio and of nature of phase, S. Somrani and coauthors **[50]** performed at three different liquid ratio samples. Because of the very low solubility of the Ca-P phases, the influence of the amount of ions in the solution on the Ca/P ratio of the solid phase depends strongly on the liquid-to-solid ratio. The increase (or decrease) of the solid Ca/P ratio is necessarily linked to a decrease (or increase) of that in the solution, to maintain the total composition constant. They found significant increase of the Ca/P ratio of the solid phase when the liquid/solid ratio becomes very high which could considerably affect the composition of the apatitic phase formed.

Based upon these concepts, we can explain why there is formation of ACP after the first 5 minutes of activation by microwave which transformed after calcinations on CDHA while for other microwave activation times are longer there is formation of CDHA enhanced by hydrolysis phenomenon and valorized by decrease of the solid liquid ratio which leads to a equilibrium and a decrease in the Ca/P ratio which is close to 1.5 inducing the formation of pure β TCP after calcination.

Comparing the results obtained in this work we observe formation of two kinds of biomaterials using the only one synthesis just with changing time of activation the synthesis by microwave:

ACP, CDHA and finally after calcination CDHA and β TCP.

3.3 Thermogravimetric analysis :

Thermal Decomposition

Figure 6 illustrates thermogravimetric analysis (TGA) measurement of sample synthesized taken at t = 5 min. The sample showed weight loss with increasing temperature. Total weight loss on heating from 25 to 800°C is evaluated to be about 11.6 %.

The FTIR spectra of as synthesized samples shown in figure 3 exhibit clear evidence of CDHA [Usually expressed as $Ca_{10-x}(PO_4)_{6-x}(HPO_4)_x(OH)_{2-x}$. xH_2O (the name is originate from loss of Ca^{2+} ions from the unit cell of hydroxyapatite). The HPO₄^{2^-} formation results from occupation by H₂O molecules at the vacant OH⁻ sites and hydrogen bonding to the nearest PO_4^{3-} groups as: $PO_4^{3-} + H_20 \longrightarrow HPO_4^{2-} + OH^{-1}$

i. Between 25 and 200°C with the loss of 7,43 % :

TGA curves display a continuous mass loss with constant temperature increase. The water molecules adsorbed on the surface discharges were lost (temperature less than 250) [51].

Between 220 and 470°C with the weight loss of 2,5 %: ii

Furthermore, this class of calcium phosphates absorbs much energy during microwave processing in relatively short times and has poor stability than stoichiometric HA. Under non-equilibrium conditions and lower stability a part of CDHA transform to $Ca_2P_2O_7$ [52] as given :

(1)
$$2Ca^{2+} + 2HPO_4 \xrightarrow{2^-} Ca_2P_2O_7 + H_2O$$

In our sample, a fast slop change is presented over 350 with a maximum at about 400°C in the derivative curve, indicating again a mass loss which can be due to the partial removal of physically and chemically adsorbed water.

iii. Between 470 and 620°C:

This range may be assigned to the transformation of amorphous $Ca_2P_2O_7$ to crystalline $Ca_2P_2O_7$

The peak observed at about 545°C, on derivative curve indicate that some structural reorganization occurs in this particular temperature range. This can be attributed to the condensation of hydrogenophosphate ions $(\text{HPO}_{4}^{2}).$

A mass loss between the temperature range of 600-900°C possibly corresponds to the decarboxylation of the Hap, releasing CO_2 and the condensation of $HPO_4^{2^2}$ releasing water and possibly brings about elimination of interstitial water in crystal lattice [18,33] and the moisture discharged from pores up to 500°C as reported by Liga Berzina-Cimdina and Natalija Borodajenko [51].

At temperature below 750°C the agglutination begins, the results show that the CDHA (TCP) phase transformed into β TCP, according to the following equation 2 [51, 52, 53]:

(2) $Ca_9HPO_4(PO_4)_5OH \rightarrow 3Ca_3(PO_4)_2 + H_2O$

As reported by Thermal stability is characterized by decomposition temperature of Hap sample. The decomposition occurs when critical dehydratation point is achieved. In the temperature less than critical point, crystal structure of Hap remains inchanged in spite of stage of dehydratation. Achieving the critical point, complet irreversible dehydroxillation occurs, which results damage of Hap structure, decomposing onto tricalcium phosphate [18, 51].

In literature it is reported that CO_2 is discharged from the sample between $450 - 950^{\circ}C$ [51].

The carbonate bands and $P_2O_7^{4}$ completely disappear after heating at 800°C, indicating that transformation of CDHA to β TCP is completed after this heat treatment. The other decomposition of CDHA taking place with loss of water by reaction 3:

 \rightarrow 2PO₄³⁻ + H₂O (3) $P_2 O_7^{4-} + 2OH^{-}$

The nature of sample of t = 10 min is after calcinations is β TCP as reported in IR and DRX analysis.

Figure 6: Thermogravimetric analysis of sample Hap10

3.4 Morphology analysis:

The size and morphology of fine powders are determined with TEM. The dark field transmission electron microscopic images of as synthesized and calcined samples are shown respectively **in figure 7.** Almost the particles are spheroid with different diameter corresponding of time of microwave activation and calcinations. The TEM images of the as synthesized powders revealed that the particles were predominantly agglomerated and that the individual particles appeared spherical.

Figure 7: TEM image and electron diffraction pattern of samples as synthesized Hap5 and after calcinations at 900°C

However, it should be noted that the particles do not posses high regularity in shape; in other words, their surfaces are smooth. In addition, the particles show a high tendency towards agglomeration except for Hap5 sample who is almost amourphous with some particles with 60 nm in diameter.

A novel microwave process for synthesizing nanosize Btcp (Hapc5, Hapc8, Hapc10) with spherical shape was thus developed. In most report concerning the synthesis of β -TCP, the particles shapes are plat [51] or polyhedra [54], but nanoparticles with spheroidal morphology were successfully prepared in the current research. Because the spherical geometry rather than irregular shape is important for achieving osteointegration [55-56], the products synthesized via microwave process are preferred for medical applications. However, it was confirmed using TEM that the microwave prepared powders have nanocrystalline structures with appropriate morphology.

Thus we determined that, after 5, 8, 10 and 11 minutes of the synthesise in microwave and subsequent thermal treatment at 900°C, this method rise to pure β -TCP with average sizes are different and depend of microwave activation time and with calcination as reported in table 3.

Samples as synthesized (Fig.6)	Hap5	Hap8	Hap10
Average diameter (nm)	amorphous	60 ± 10	180 ± 20
Samples after calcinations (Fig.7)	Hapc5	Hapc8	Hapc10
Average diameter (nm)	200 ± 20	320 ±20	500 ± 20

Table3: particles size of powders as synthesized and after calcination

Conclusion

We used the method of microwave as a source of heat input for synthesis. This method has some advantages such as heating throughout the media, rapid heating, fast reaction, high yield, excellent reproducibility, narrow particle distribution, high purity and high efficient energy transformation, and being environmentally cleaner. A simple, high yield process involving inexpensive reagents, no control of pH has been set up for production tree kinds of calcium phosphates.

There is formation of CDHA as an intermediate product pholphocalcique of ACP. After calcination at 900°C the CDHA transformed to pure nanocrystalline β tricalcium phosphate which is also used as biomaterial.

It has been inferred that the structure of the synthesized product is related to time of activating by microwave synthesis and heat treatment after synthesis (effect of calcination).

Thermal transformation of CDHA involved the dehydroxylation, decarboxylation and phosphate decomposition and decarbonatatin.

The nanometric grain size of Ca-P changed to the size with time of microwave activation and after calcinations.

Acknowledgments-The authors are pleased to acknowledge Mohamed V University of sciences for providing the facilities for the research. Also the Centre of Research (CNRST) is gratefully acknowledged for his help to use their facilities for the characterization.

References:

- 1. Gopal S. N., Zheng P. Y., Lin L., Bin H. Ch. Nanomedicine 8(4)(2013) 639-653
- 2. Nathanael A.J., Seo. TH Oh., Nanomater (2015) 1-9
- 3. Bohner M., Tadier S., Van Garderen N., De Gasparo A. Döbelin N. and Baroud G., *Biomatter*. 3(2)(2013) 1-15
- 4. Sheikh Z., Brooks P. J., Barzilay O., Fine N., Glogauer M., Mater. (8) (2015) 5671-5701
- 5. Gandou Z., Nounah A., Belhorma B., Yahyaoui A., J. Mater. Environ. Sci., 6 (4) (2015) 983-988.
- 6. Nag S. and Banerjee R., ASM handbook, Volume 23 : Materials for Medical Devices 23 (2012) 6-17
- 7. Dorozhkin Sergey S. V., Pro. Biomat. (1)(2012) 1-40
- 8. LeGeros R. Clin. Z. Orthop. Relat. Res. 395(2002) 81-98
- 9. Drouet C., Bosc C., Banu F., Largeot M., Combes C., Dechambre C., Estournès G., Raimbeaux C. G. and Rey C., *Powder Technol.* 190 (2009)118-122.
- Wua S.C., Hsua H.C., Hsua S.K., Chang Y.C. b, Hoc W-F, Journal of Asian Ceramic Societies 4 (2016) 85– 90
- 11. Destainville A. Thesis (2005) 11-38
- 12. Roveri N., Iafisco M. chap. 4, "Advances in biomimetic", Biomed. Eng. (2011)75-102
- 13. Webster T.J, Ergun C., Doremus R. H., Siegel R. W, Bizios R., Biomaterials 21(2000)1803-1810
- 14. Bauer L. A., Birenbaum N. S., Meyer G. J., J. Mater. Chem. 14(2004)517-526.
- 15. Keck W. M., J. Am. Ceram. Soc. 92 (11) (2009) 2528-2536.
- 16. Sergey V. Dorozhkin, "Calcium Orthophosphates: Applications in Nature, Biology, and Medicine" Book by *Pan Stanford Publishing* 2012.
- 17. Sadat-S. M., Taghi Khorasani M., Dinpanah-Khoshdargi E., Jamshidi A. Acta Biomater. 9 (2013) 7591–7621.
- 18. Meejoo S., Maneeprakorn W., Winotai P., Thermochim. Acta 447 (2006) 115–120.

- 19. Lee B.T., Youn M.H., Rajat K. Paul R.K., Lee K.H., Song. H.Y, Mater. Chem. Phys. 104(2007) 249-253.
- 20. Khan N.I., Ijaz K., Zahid M., Khan A.S., Abdul Kadir M.R., Hussain R., Anis-U., Darr JA, Ihtesham-U., Chaudhry A.A., *Mater Sci*. *Eng C Mater Biol Appl. Nov* 1(56)((2015) 286-93.
- 21. Ramli R., Zafirah A. Arawi O., Kumar T. M., Mahat M. M., Umi S., Jais U.S., AIP Conference Proceedings; Vol. 14555(1) (2012)45
- 22. Bramhe S., Ryu J.-K., Chu1 M. C., Balakrishnan A. and Kim T. N., Korean J. Mater. Res. 24(2014)700-703.
- 23. Vani. R, Raja S.B., Sridevi T., Savithri K., Devaraj S.N., Girija E., Nanotechnology 22(2011)285701 [10p].
- 24. Rameshbabu N., Rao KP, Kumar TSS. J. Mater. Sci. 40 (2005)6319-6323.
- 25. Torrent-Burgues J., Gomez-Morales J., Lopez-Macipe A., Rodriguez-Clemente R., *Cryst. Res. Technol.* 34 (1999)757–762.
- 26. Wang K.W., Zhu Y.-J, Chen, Cheng G.-F., Huang Y.-H. Mater. Lett. 65 (2011) 2361–2363.
- 27. Poinern G.E.J., Brundavanam R., tho X. Le , Djordievic S., Provic M. Fawcett D., Int. J. of Nanomed. (09/2011) 2083-2095.
- 28. Jalota S., Tas AC, Bhaduri SB. J. Mater. Res. 19(2004)1876-1881.
- 29. Liang T., Qian J., Yuan Y., Liu C., J.Mater. Sci. 48, 15 (2013) 5334-534.
- 30. Nazir R., Khan A., Aftab A., Ur-Rehman A., Chaudhry A. A., UrRehman I., Wonge F.L. *Ceram. Int.* 39 (2013) 4339–4347.
- 31. Nazir R., Iqbal N., Abdul S., Khan A. S Aftab A. Anila A. Aqif A. Chaudhry A., Ihteshamur. Rehman, Rafasat H. *Ceram. Int.* 38(2012) 457-462.
- 32. Sha L., Liu Y., Zhang Q., Hu M., Jiang Y., Mater. Chem. Phys. 129 (2011) 1138-1141
- 33. Kalita S. J., Verma S., Mater. sci. Eng. C 30 (2010) 295-303
- 34. Arami H., Mohajerani M., Mazloumi M., Khalifehzadeh R., Lak A., Sadrnezhaad S.K., J. Alloys and Compd 469 (2009) 391.
- Siddharthan A., Seshadri S. K. and Sampath Kumar T. S. Trends Biomater. Artif. Organs 18(2)(2005)110-113
- 36. Wang Y.Z., Fu Y. Mater Lett. 65 (2011)3388-3390.
- 37. Ramli R., Omar Arawi A. Z., Talari M. K., Mahat M. M., Unmi Sarah Jais R., *American Institute of Physics* 2012 2nd ASEAN APTCTP Workshop
- 38. Rameshbabu N., Prasad Rao K., Curr. Appl Phys., 9 (2009) S29–S31.
- 39. Sampath Kumar T.S. Manjubala I., Gunasekaran J. Biomaterials 21 (2000) 1623-1629.
- 40. Pasand E.G, Nemati A. Solati Hashjin M., Arzani K. Farzadi A., Int J Min Met Mater 19 (2012) 441-445
- 41. Aminian A., Solati-Hashjin M., Samadikuchaksaraei A., Bakhshi F., Gorjipour F., Farzadi A., Moztarzadeh F., Schmucker M. *Ceram. Int.* 37 (2011) 1219–1229.
- 42. Byong-Taek L., Min-Ho Y., Rajat Kanti P., Kap-Ho L., Ho-Yeon S., Mater. Chem. Phys., 104 (2007) 249-253.
- 43. Destainville A. Champion E., Bernach-Assolant D. Mater. Chem. Phys. 80 (2003) 269-277.
- 44. Ratner B., Hoffman A., Shoen F. Biomaterials Scienc. (2004) 851.
- 45. Mortier A., Lemaître J., Rodrique L. and Rouxhet P. G, J. Solid State Chem. 78 (1989) 215
- 46. Andres-Verges M., Gonzalez F. and Gallego M., J. Eur. Ceram. Soc., 18 (1998) 1245.
- 47. Koutsopoulos S., J. Biomed. Mater. Res. 62 (2002] 600
- 48. Wilson R. M., Elliot J. C., and Dowker S. E. P., J. Solid State Chem. 174 (2003) 132
- 49. Zyman Z.Z., Tkachenko M.V., Polevodin D.V., J. Mater. Sci. Mater. Med., 19 (2008) 2819-2825.
- 50. Somrani S., Banu M., Jemal M., Rey C., J. solid State chem. 178 (2005) 1337-1348
- 51. Berzina-Cimdina L. Borodajenko N., Intech, (2012)123-148
- 52. Lazic S., J. Cryst. Growth, 147 (1995) 147-154
- 53. Dasgupta S., Tarafder S., Bandyopadhyay A., Bose S., Mater. Sci. Eng. C, 33 (2013) 2846-2854.
- 54. Sergey V. Dorozhkin Materials 2 (2009) 1975-2045.
- 55. Hsu, Y. Turner, I.G., & Milles, A. W., J. Mater. Sci. : Mater Med., 18 (2007) 1931-1937.
- 56. Nayar, S., Sinha, M. K., Basu D., Sinha, J. Mater Sci: Mater Med., 17 (2006) 1063-1068.

(2016); http://www.jmaterenvironsci.com