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Abstract  

Groundwater contamination due to agricultural activities and fast industrialization is a major concern for human 

communities. Applying certain monitoring techniques and a groundwater-monitoring network can reveal the 

critical condition of these resources. The main purposes of this investigation are to present an overview of 

present groundwater quality, determine the spatial distribution of some groundwater-quality indices such as Cl
-
, 

SO4
-2

, EC and NO3
-1

, and select the best Geostatistical method for mapping groundwater quality in the Ghara-su 

Basin of Golestan Province, Iran. Also chemical variables were graphically interpreted using Piper, Durov and 

USSL diagrams to show the groundwater facies. Kriging and Cokriging methods are evaluated for mapping of 

groundwater quality. The analysis shows that universal Cokriging achieves better results for estimation of EC, 

Cl
-
 and NO3

-1
 contents than other methods; for SO4

-2
, universal kriging is obviously more precise than other 

methods. Each method depends on the distribution of samples and the characteristics of the region. The 

groundwater-quality maps show that the highest concentrations of groundwater-quality indices are located to 

the North of Gorgan City, and results of graphically analysis of physico-chemical parameters indicated that Ca - 

Mg was the mainly water facies dominant in this area and the water type highly exhibit So4- Cl and most of the 

groundwater samples for agricultural purposes are found in C2S1 which are suitable for irrigation. A few 

samples in the north of the study area were unsuitable for irrigation. In general, groundwater quality decreases 

moving from the South to the North of the Ghara-su Basin. 

 

Key words: Groundwater quality, Kriging, Cokriging, Probability maps, Ghara-su Basin.    

                                                      

1. Introduction  

In recent years, the importance of groundwater as a natural resource has increased [1] One of the existing 

threats in many areas is the increasing amount of soluble chemicals being produced in urban and industrial 

activities[2] and modern agricultural practices. Groundwater resources are a crucial component of the 

ecosystem. This water supply is essentially a renewable resource generated from within the global water-

circulation system [3]. But in many cases, groundwater is polluted by industrial wastewater and sewage [4]. 

People who use contaminated groundwater as drinking water may suffer from diseases in the future as a result 
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[5]. Many regions all over the world are entirely dependent on groundwater resources for various uses. 

Groundwater contaminated with various pollutants that make it unsuitable for consumption can put human and 

animal life as well as the overall environment at great risk. 

 So, specific practical actions are needed that aim to control the risk of water pollution and protect the natural 

quality of groundwater. GIS and Geostatistical methods can be powerful tools for producing spatial data and 

informing management decisions [6]. Geostatistical methods were developed to identify spatial patterns and 

interpolate values at unsampled locations, creating mathematical models of spatial correlation structures with a 

variogram[7]. Sample variograms should be estimated with the proposed function to model the spatial structure 

of data on water quality [8].  

In recent years, many scientists have used Geostatistical methods for prediction of groundwater depth and 

quality, and have evaluated the accuracy of different spatial interpolation methods.  

Gaus et al. [9] employed disjunctive kriging to analyse the arsenic concentration in groundwater in Bangladesh. 

Ahmadi and Sedghamiz [6] evaluated kriging and Cokriging methods for mapping the groundwater depth in the 

South-East of Fars Province, southern Iran. The results demonstrated that groundwater depths were all spatially 

correlated. Moreover, it was concluded that although both methods were acceptable, Cokriging gave more 

accurate results in mapping the groundwater depth across the study area. Nas [10] used the Ordinary Kriging 

(OK) method to assess the spatial distribution of groundwater quality. Dash et al. [11] applied OK and IK to 

analyse the spatial variability of groundwater depth and quality in Delhi; their study results indicated that the 

groundwater chloride levels in 62% of the study area exceeded 250 mg/L, and salinity levels in 69% of the area 

exceeded 2.5 dS m
−1

. Mendes and Ribeiro [12] used Disjunctive Kriging (DJ) methods to study the spatial 

variability of nitrates on the Balarood Plain aquifer alluvial system of the River Tagus. Their results showed 

there were more areas on the western bank with higher probabilities of contamination by nitrates (nitrate 

concentration values above 50 mg/L) than on the eastern bank. Ghadermazi et al [13] compared Ordinary 

Cokriging with Ordinary Kriging and inverse distance weighting for the spatial prediction of NO3-N in drinking 

water, using pH as an auxiliary variable, on the Bijar and Qorveh Plains of western Iran. Their results indicated 

that Cokriging achieved better results than other methods. Arslan [8] used Ordinary Kriging and Indicator 

Kriging for mapping spatial and temporal groundwater salinity Bafra Plain of Turkey. The results showed that, 

spatially, groundwater salinity showed a tendency to increase towards the North of the Bafra plain; temporally, 

groundwater salinity decreased from 2004 to 2010. Azareh et al. [14] developed groundwater-quality maps with 

the use of the Geostatistical and deterministic methods for the Shahr-e Babak Plain of Iran. Using deterministic 

methods, the authors found that RBF, due to having lower RMSE and MAE, is more suitable to develop a 

variation map of the parameters Cl, Na and TH.  

According to the above-mentioned researchers’ results, Geostatistical techniques can be widely and 

successfully used in different applications. The suitable method of interpolation depends on study area, regional 

factors and variable type; no single method for a specific area can be generalized to others [7].  

The main purposes of this investigation were to present an overview of present groundwater quality, determine 

the spatial distribution of some groundwater-quality indices, such as Cl
-
, SO4

-2
, EC and NO3

-1
, and select the 

best Geostatistical method for mapping groundwater quality. In this research, Kriging and Co kriging methods 

are applied to assess their precision in mapping the groundwater-quality parameters in the Ghara-su Basin of 

Golestan Province in the North-East of Iran. This basin is a valuable ecosystem for agricultural activity due to 

its wet Mediterranean climate and fertile soil. Ghara-su Basin sees high annual rates of fertilizer application, 

which has a strong influence on groundwater quality. 

 

2. Materials and methods 

2.1. Study area  

The Ghara-su Basin of Golestan Province in Iran has an area of about 1660 km2. The study area is located on 

the northern slopes of Alborz Mountain. The catchment area has an altitude ranging from -27 m in the South-

West of the Caspian Sea to 3086 m. The mean annual precipitation is about 560 mm. Gorgan City (the capital 

of Golestan Province) and Kordkuy are two important districts in the region. Golestan Province is one of the 
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most important areas of Iran for agriculture and in terms of the high density of the population; assessing 

groundwater quality is therefore vital. Figure 1 shows a location map and the geographical location of the 

observation wells. As indicated by the figure, 186 wells were analyzed and about 965 km2 of the Ghara-su 

Basin was assessed and mapped.   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1: Location map and Land use pattern of the Ghara-Su Basin 

 

2.2. Spatial prediction methods 

Data were collected from rural Golestan water and sewer as well as water and wastewater companies. After 

performing a normality (Kolmogorov-Smirnov) test to analyse the normal distribution for each parameter, 

Kriging and Cokriging techniques were used to estimate or predict groundwater quality at unsampled locations. 

2.2.1. Kriging and Cokriging methods of interpolation 

The theoretical basis of Geostatistics has been described by several authors [15-17]. Semi-variograms are the 

main tool in Geostatistics, which express spatial autocorrelation between neighbouring observations. In fact 

geostatistic methods by exploitation spatial autocorrelation contained in georeferenced data are used to spatial 

prediction purposes and evaluate the spatial structure of a variable. Autocorrelation is evaluated using structure 

functions that assess the spatial structure or dependency of the variable. Semi-variance is used for descriptive 

analysis where the spatial structure of the data is investigated using the semi-variogram and for predictive 

applications where the semi-variogram is fitted to a theoretical model, parameterized, and used to predict the 

regionalized variable at other non-measured points. A semi-variogram shows the distance between all the pairs 

of available data points, as calculated using Eq. (1). 

𝜸(𝒉) =  
𝟏

𝟐𝑵
   𝒁 𝒙𝒊+𝒉  − 𝒁(𝒙𝒊)

 
𝟐

𝑵

𝒊=𝟏

 

The experimental semi-variogram can be obtained by grouping the data pairs according to their distances from 

the measured data points, where γ(h) is the value of the experimental variogram for a distance of h( Lag size) ; N  

is the number of data pairs at a distance of h ; xi are the geo-referenced positions and z(xi) and z(xi + h) is the value 

of other points separated from xi by a discrete distance h [8,13,16]. After analysis, the empirical (cross)-

variogram was fitted to the theoretical variogram function to model the spatial autocorrelation curve and after 

comparing models; the best-fit model was chosen according to the different parameters (e.g., range, nugget and 

sill) and then used in the Kriging procedure.  

The performance validation of the fitted models was done by cross-validation using correlation coefficients (r
2
) 

and residual sum of squares (RSS) as criteria.The basic equation used in Ordinary Kriging (OK) is as follows: 

𝐙𝟎 = 
  𝛌𝐢 𝐙  𝐱𝐢  

𝐧
𝐢=𝟏  

In this method the estimated mean is assumed to be constant. Simple Kriging (SK) is similar to Ordinary 

Kriging (OK), except that it uses the average of the entire data set while Ordinary kriging uses a local average 
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[10]. When a significant spatial trend is regionalized in the data values, such as a sloping surface, the 

assumption of the stationarity of the mean is violated and leading to a nonstationary interpolation technique the 

stationary condition can be temporarily imposed on the data using a simple polynomial function. Universal 

Kriging (UK) provides an estimator when a trend is present in the measured dataset. The trend can be modelled 

with the following polynomial: 

𝒎  𝒙 =   𝒂𝒑 × 𝒇𝒑(𝒙)

𝒍

𝒑=𝟏

 

Where l is the number of functions used in modelling the trend, ap is the pth coefficient; fp is the pth basic 

function that describes the trend. As shown in Figure 2, this study’s variables, which included Cl
-
, SO4

-2
, EC 

and NO3
-1

 have a trend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Tend analysis of Cl
-
, SO4

-2
, EC and NO3 

 

The universal kriging predictor 𝐙𝐰
∗  (𝐗𝟎) of the value of Z(x) at the target point x0 is the linear sum 

𝒁𝒘
∗  (𝑿

𝟎
) =   𝒘𝒊𝒁(𝑿

𝒊
) =  𝑾𝑻𝒁

𝒏

𝒊=𝟏

 

With weights wi ∈ 𝑹, i = 1, … , n; corresponding to each evaluation of the random function Z(x) at the 

sample point xi and W := (𝑾𝟏, … , 𝑾𝒏)𝑻 ∈  𝑹𝒏 

Whenever spatial dispersion of data is complicated and choosing the best-fit model is difficult, Disjunctive 

Kriging (DK) was used. 

Cokriging methods are used between two or more regionalized but related variables; such methods are 

appropriate when data are sparse. Cokriging permits us to estimate the values of one variable with the aid of an 

auxiliary one[13,19]. The advantages of Cokriging include reductions in costs or sampling effort. The spatial 

cross-semivariance model of primary and secondary attributes is computed through the following equation: 

𝝀𝒊𝒋𝒉 =
𝟏

𝟐
𝑬  𝒛𝒊  𝒙 − 𝒛𝒊 𝒙 + 𝒉   𝒛𝒋  𝒙 − 𝒛𝒋  𝒙 + 𝒉     

where   is the cross-semivariance between i and j, is the primary variable and the secondary variable [20]. 

 

Cl
- SO4

-2 

EC 
NO3 
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2.2.2. Prediction performances and Comparison between the different methods 

Prediction performances were assessed by Root Mean Square Error (RMSE) and General Standard Deviation 

(GSD) in cross-validation mode. By the cross-validation technique a table with two columns was created, 

consisting of real and estimated points. For the obtained estimated points, each time an observable point was 

temporarily omitted and the calculation of the estimated amount done for that point through nearby points. 

RMSE and GSD were estimated using the following formulas: 

𝐑𝐌𝐒𝐄 =   
𝟏

𝐍
  𝐙𝐢 – 𝐙𝐢

∗ 𝟐
𝐍

𝐢=𝟏

 

 

 

 

where Zi is the observed value at point i, Z
*
i is the predicted value at point i, N is the number of samples and   is 

the average of observable amounts. The smallest RMSE and GSD values indicate the most accurate 

predictions[21,22]. 

 

2.3. The assessment of groundwater quality  

Some groundwater-quality indices such as Cl
-
, SO4

-2
, EC and NO3

-1
 were used for mapping and assessing 

spatial distribution of them based on Geostatistical method. Also, Chemical variables were graphically 

interpreted using Piper, Durov and USSL diagrams to show the groundwater facies for Ghara-su Basin of 

Golestan Province. To understand general chemical nature of groundwater, Piper trainer diagram (Piper, 1944) 

is used. Durov, (1948) introduced another diagram which an alternative to the Piper diagram and display some 

possible geochemical processes by providing more information on the hydro-chemical facies. For determination 

of suitability for irrigation use the US Salinity Laboratory Staff (USSL 1954) diagram by plotting the value of 

sodium absorption ratio (SAR) and electrical conductivity (EC). The SAR is computed using the formula [23, 

24]  

𝑺𝑨𝑹 =  
𝑵𝒂

 𝑪𝒂 + 𝑴𝒈
𝟐

 

 

3. Results and discussion 

3.1. Descriptive statistics  

Table 1 provides a summary of groundwater-quality statistics such as mean, standard deviation, minimum, 

maximum, coefficient of variations of skewness, and kurtosis and were used to mapping . Kriging methods 

work best if data are normally distributed; this study’s variables, which included Cl
-
, SO4

-2
, EC and NO3

-1
, 

exhibited a non-normal distribution of measured values, and therefore a logarithmic method was used for data 

normalization.  

 

Table 1: Summary of groundwater quality statistics (Cl
-
, SO4

-2
, EC and NO3

-1
 were used for mapping) 

Skewness Kurtosis Std Mean Max Min GWQI 

2.88 11.36 64.7815 55.8872 411.200 1 Cl
-
 

-.35 -1.15 1.572 3.024 6.02 0 Cl
-
* 

1.40 4.74 53.0550 74.6449 370 10 SO4
-2

 

-.27 -1.11 .792 4.035 5.91 2.3 SO4
-2*

 

.61 .12 236.464 795.333 1448 300 EC 

-.27 .38 .302 6.635 7.28 5.70 EC* 

1.83 3.22 15.507 12.081 80 1 NO3
-1

 

.29 -1.20 1.29 1.698 4.38 0 NO3
-1*
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Figure 3 shows the variables histogram before and after normalization. Also Table 2 provides the Statistical 

summary of Physico-chemical Parameters which were used to graphically analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Data histogram of Cl
-
, SO4

-2
, EC and NO3 before and after normalization of data distribution. a) 

Before normalization of data distribution. b) After normalization of data distribution. 

 

Table 2: Statistical summary of Physico-chemical Parameters 

 

 Mg TDS Na Ph K Ca 

Min 4.8 191.5 1.15 6.87 0.2 28.8 

Max 53.76 988.5 200.1 8.1 20.28 153.6 

Mean 26.894 472.56 40.402 7.506 2.23 80.012 

STD 9.494 141.113 32.9 0.232 1.981 23.143 

 

3.2. Semi-variogram and cross-semivariance models 

The software GS
+
 was used for the Geostatistical analysis. Table 3 shows the selected variogram models, which 

fitted best to the experimental or sample values. 

These included Spherical (EC) and Gaussian (SO4
-2

, Cl
-
 and NO3

-1
) quadratic models. These semi-variograms 

are shown in Figure 4. The spatial dependence of groundwater quality was assessed by the ratio (%) of nugget 

to sill, a ratio of <25% indicating a strong spatial dependence, a ratio of 25–75% indicating moderate spatial 

dependence, and a ratio of >75% indicating a weak spatial dependence. The results for the nugget-to-sill ratios 

indicated a moderate spatial structure of groundwater quality for Cl
-
, NO3

-1
 and EC, and a weak spatial structure 

for SO4
-2

 (Table 3). 

 

Cl Cl* 

SO4
-2

 SO4
-2*

 

 

EC Ec* 

NO3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO3
*
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Table 3:  Best-fitted variogram models of ground water quality and their parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: semi-variograms related to Groundwater quality (a) Cl
-
, (b) SO4

-2
, (c) EC and (d) NO3 

 

Cokriging methods are used for two or more related variables. Table 4 shows the correlation between variables. 

In order to apply Cokriging methods a cross-semivariance analysis must be performed prior to Cokriging. The 

auxiliary variables were used to develop the cross-variograms[7,20] , presented in Figure 5. 

 

Table 4: Best-fitted Cross variogram models of ground water quality and their parameters 

RSS R2 

% 

(CO/CO+C) 

% 

Range 

effect 

(m ) 

( CO+C ) 

Sill 

(Co) 

Nugget 

Model Groundwater 

quality 

0.045 62 51 41100 4.8270 2.4130 Gaussian Cl
-
 

0.033 96 92 33950 2.02 0.161 Gaussian SO4
-2

 

2.250e-03 54 64 3500 0.084 0.0295 Spherical EC 

0.08 94 62 17280 1.579 0.282 Spherical NO3
-1

 

RSS R
2
 

% 

(CO/CO+C) 

% 

Range 

effect 

(m ) 

( CO+C ) 

Sill 

( Co) 

Nugget 

 

 

Model 

The 

auxiliary 

variable/ 

Correlation 

index% 

 

Groundwater 

quality 

5.980

E-03 

61 598 34640 0.4582 0.1841 Exponential EC/ 659
**

 Cl
-
 

0.01 72 75 71020 0.20020 0.0001 Gaussian Ca
+2

/ 634
**

 SO4
-2

 

5.689

E-03 

56 50 21100 0.155 0.077 Spherical TDS/ 955
**

 EC 

9.057

E-03 

90 0.72 29570 0.323 0.001 Spherical Ca
+2

/ 668
**

 NO3
-1

 

(a) (b) 

(c) (d) 
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Figure 5: Cross variogram related to Groundwater quality (a) Cl
-
, (b) SO4

-2
 , (c) EC and (d) NO3 

 

The results indicate that spherical (EC), Gaussian (SO4
-2

) and exponential (Cl
-
 and NO3

-1
) quadratics are the 

best-fit cross-variogram models. 

3.3. Selecting the best interpolation method 

For selection of the most suitable method among Kriging and cokriging series, RMSE and GSD were used 

(Table 5). 

 

Table 5: Selecting the best interpolation method according to RMSE and GSD parameters 

 

Co-kriging Kriging GWQI 

DCK UCK SCK OCK DK UK SK OK  

64.52 60.269 64.520 61.747 177.824 159.101 177.82 163.505 RMSE Cl
-
 

1.262 1.1789 1.2620 1.207 3.4783 3.1121 3.4783 3.198 GSD 

40.3153 40.316 40.315 40.314 40.6600 39.4864 40.660 40.456 RMSE  

SO4
-2

 0.54009 0.5401 0.5400 0.54008 0.54470 0.52899 0.5447 0.5419 GSD 

200.091 199.99 201.33 200.53 203.059 233.777 203.05 202.29 RMSE EC 

0.2528 0.2527 0.2544 0.2533 0.2566 0.2954 0.256 0.2556 GSD 

7.8524 7.8126 7.8361 7.8369 8.3895 8.1468 8.385 8.2765 RMSE No3 

0.6060 0.6029 0.6047 0.6048 0.6474 0.6287 0.647 0.638 GSD 

 

The results show that Cokriging methods gave considerably more accuracy than Kriging methods for EC, Cl
-
 

and NO3
-1

. Analysis showed that for estimation of EC, Cl
-
 and NO3

-1
 content Universal Cokriging (UCK) 

achieved better results than other methods, and for SO4
-2

 Universal Kriging (UK) was obviously more precise 

than other methods. If the primary variable is difficult or expensive to measure, predicting the values of one 

variable with the aid of an auxiliary one can greatly improve interpolation estimates without having to more 

intensely sample the primary variable. Finally, maps of groundwater quality were prepared by the selected best 

methods for interpolation in a GIS environment [7,14,20]. 

 

(d) 

(a) 
(b) 

(c) 
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3.4. The groundwater-quality map 

The groundwater-quality maps generated by the selected (cross) semivariograms models for each parameter are 

presented in Figure 6. Table 6 shows the differences in groundwater-quality values within the study area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Spatial distribution of a Chloride, b Sulfate, c Electrical conductivity, and d Nitrate concentrations 

  

Table 6: Selecting Differences in groundwater quality values within the study area 

 

Also Standard deviation map for all produced maps and cross validation diagram between computed and 

estimated values were presented in figure 7 and 8. 

WHO 

(mg/l ) 

>50 

Area 

(km2) / % 

45-50 

Area 

(km2) / % 

25-45 

Area 

(km2) / % 

15-25 

Area 

(km2) / % 

5-15 

Area 

(km2) / % 

1-5 

Area 

(km2) / % 

Groundwater 

quality(mg/li) 

50 3.79 

0.39 

28.54 

2.95 

79.43 

8.22 

134.84 

14 

302.79 / 

31.37 

415.81 

43 

NO3 

WHO 

(mg/l ) 

>250 

Area 

(km2) / % 

200-250 

Area 

(km2) /  % 

150-200 

Area 

(km2) /  % 

100-150 

Area 

(km2) / % 

50-100 

Area 

(km2) / % 

1-50 

Area 

(km2) / % 

Groundwater 

quality(mg/li) 

250 16 

1.65 

40.46 

4.2 

106.77 

11 

280 

29 

209 

21.67 

312.33 

32.3 

Cl
-
 

250 9.3 

0.96 

42.86 

4.44 

192.58 

19.96 

232.56 

24.1 

218.91 

22.70 

268.42 

27.83 

SO4 

WHO >1300 

Area 

(km2) / % 

950-1300 

Area 

(km2) / % 

800-950 

Area 

(km2) / % 

650-800 

Area 

(km2) / % 

500-650 

Area 

(km2) / % 

1-500 

Area 

(km2) /  % 

Groundwater 

quality 

(microS/cm) 

 110.22 

11.42 

110.15 

11.41 

142.32 

14.75 

185.27 

19.2 

321.6 

33.34 

95 

9.8 

EC 

Cl
-
 SO4 

EC NO3 
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Figure 7: Standard deviation map a Chloride, b Sulfate, c Electrical conductivity, and d Nitrate 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: cross validation diagram between computed and estimated values a Chloride, b Sulfate, c Electrical 

conductivity, and d Nitrate 

 

Chloride 

Chloride is found in groundwater due to weathering, leaching of soil and rocks, and human activities. As 

indicated by Figure 6(a), high concentration of chloride gives an undesirable taste to water. The highest 

concentration of chloride was found in the North-West of the study area, near Caspian Sea. Saltwater intrusion 

Cl
-
 

 

EC 

 

NO3 

 

SO4 

 

Cl SO4 

 

EC 

 

NO3 
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and sea spray in coastal areas are sources of chloride in groundwater [25]. The maximum contaminant level 

(MCL) for chloride in drinking water is given as 250 mg/l by the World Health Organization (WHO)[26]. As 

shown in Table 6, only in 1.65% of the study area (16 km2) did chloride concentration exceed 250 mg/li. The 

dispersion map shows that the concentration of chloride increased around Gorgan City due to wastewater and 

sewage contamination. 

 

Sulphate 

Sulphates occur naturally in numerous soil and rock formations that contain sulphate minerals. Minerals that 

contain sulphate include magnesium sulphate (Epsom salt), sodium sulphate (Glauber’s salt), and calcium 

sulphate (gypsum)[27]. Sulphates can discharge into water from smelters and from kraft pulp and paper mills, 

textile mills and tanneries[26]. As indicated by the dispersion map, the highest concentration of sulphates was 

around 370 mg/l in Gorgan City. Due to the use of chemical fertilizers (mainly CuSo4) in rice fields, sulphate 

concentration increases, spatially, where cultivated lands have a high density. But in 0.96% of Ghara-su Basin 

sulphate concentration exceeds the MCL level (WHO, 2004), as shown in Table 6. 

 

Electrical conductivity 

Conductivity is linked directly to the total dissolved solids (TDS). Total dissolved solids (TDS) comprise 

inorganic salts and small amounts of organic matter dissolved in water [28]. Salinity in the region increased 

with decreases in height, which could be because of leaching of salts through irrigation and precipitation. As 

shown in Figure 6c, the EC value increases from South to North, with the upper ranges greater than 1000 

μS/cm; in about 11.42% of the study area (110.22 km2), EC concentration exceeds 1300 μS/cm (Table 6). 

 

Nitrate 

Urbanization and population growth in the past decade, plus changes in farming systems leading to high levels 

of chemical fertilizer application on vegetable fields, have had large impacts on water quality, and especially on 

nitrate dispersion [29]. The MCL of nitrate is given as 50 mg/l for drinking water by the WHO. As indicated in 

Table 6, nitrate concentrations in 3.79 km
2
 of the study area were greater than 50 mg/l, and in 28.54 km

2
 of the 

study area greater than 46 mg/l. A high average nitrate concentration (80 mg/l) was located around Gorgan 

City. Urbanization significantly increases the surface water-flow to rivers, and water’s travel time to 

groundwater becomes shorter [30,31]. 

 

3.5. Graphically Representation of Physico-chemical Parameters 

Piper and Durov diagrams 

As shown in figure 9, Piper trainer diagram is used to characterize and analysis different water types and as 

mentioned earlier Durov diagram is an alternative to the Piper diagram.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Ground water samples plotted on Piper and Durov diagrams 
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Ca
 
- Mg was the mainly water facies dominant in this area and the water type highly exhibit So4- Cl. soluble 

substances of groundwater is very high. The pH part of the diagram shows that groundwater in study area is 

towards alkaline which is preferred for drinking  

 

USSL Diagram 

.S. salinity laboratory (USSL) has designed help to interpret the combined effect of salinity and sodium hazards. 

According to USSL diagram (Figure 10) most of the groundwater samples (148 well) for agricultural purposes 

fall under C2S1 which are suitable for irrigation. Based on this classification, about17 (9.13%) groundwater 

samples represented the C3S1 (high salinity with low sodium) type and 8 (4.3%) samples are found in 

C3S2 class with high salinity and medium alkalinity hazards respectively and special management plane 

for salinity control is necessary. About 2.2 and 3.2 percent of samples in the north of the study area were 

grouped under C3S3 and C3S4 (which is unsuitable for irrigation). Analytical results of the USSL chart 

summarized in Table 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Suitability of groundwater for irrigation in US Salinity Laboratory Staff (USSL 1954) diagram 

 

Table7: Ground water classification for irrigation according to USSL diagram 

Water class US salinity diagram Number of sample percentage 

C2S1 (medium EC low SAR) 148 79.6 

C2S2 (medium EC medium SAR) 2 1.1 

C2S3 (medium EC high SAR) 1 0.53 

C3S1 (high EC low SAR) 17 9.13 

C3S2 (high EC medium SAR) 8 4.3 

C3S3 (high EC high SAR) 4 2.2 

C3S4 (high EC very high SAR) 6 3.2 

 

Conclusion  

In this study, Geostatistical methods (Kriging and Cokriging) were applied to assess their precision in mapping 

groundwater-quality parameters such as Cl
-
, SO4

-2
, EC and NO3 and Chemical variables were graphically interpreted 

using Piper, Durov and USSL diagrams to show the groundwater facies for Ghara-su Basin of Golestan 

Province in the North-East of Iran. The results of Geostatistical methods indicated a moderate spatial structure to 
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groundwater quality for all data. Moreover, it was concluded that for estimation of EC, Cl
-
 and NO3 content universal 

Cokriging gave more accurate results in the mapping of these parameters, and for SO4
-2

 Universal Kriging. Our study 

emphasizes that each method depends on the distribution of the sample and the characteristics of the region. The 

groundwater-quality maps show that the highest concentrations of the groundwater-quality parameters are located North of 

Gorgan City. Also results of Graphically analysis of Physico-chemical Parameters showed that Ca - Mg was the 

mainly water facies dominant in this area and the water type highly exhibit So4- Cl and most of the groundwater 

samples for agricultural purposes are found in C2S1 which are suitable for irrigation. A few samples in the 

north of the study area were unsuitable for irrigation. In general, the groundwater quality decreases moving from 

South to North in the Ghara-su Basin. 
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