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Abstract 

Critical depth is an important parameter in design of open channels and analysis of gradually varied flow. In trapezoidal 

channels, the governing equations are nonlinear for computing critical depth. Therefore, implicit solution of the equations 

involves numerical methods. Any methods that researchers have suggested for solving these equations are so complex. In 

this paper, two simple and useful semi-analytical solutions were introduced using Data Fit software that has minimum 

errors in calculating the critical depth in trapezoidal channels. In first solutions, equation (20) was obtained based on the 

equation of degree 6 for trapezoidal channels (Equation 4). In second solutions, critical depth equation in trapezoidal 

channel was developed as the equation (22) using critical depth equation in triangular channel. Results show these 

equations have acceptable accuracy, which relative error of equations (20) and (22) are 1.22% and 1.34% respectively. 
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1. Introduction 
Critical and normal depths values are used in designing the open channels and analysis the gradually varied flow 

profiles [1]. Also, flow discharge in open channels is determined using the critical depth of control section. 

Critical depth is calculated using trial and error methods except for triangular and rectangular sections [2, 4-6]. 

Generally, critical depth in rectangular channel is calculated using the following equation: 
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Where: cy  is critical depth  m , g  is gravity acceleration  2sm , q  is discharge per unit width  sm2  and   

is energy correction factor. Also, critical depth in triangular channels is calculated with the following equations: 
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Where: m  is side slope (H:V). Critical depth could not be directly calculated in trapezoidal channel. The main 

equation for computing critical depth in a simple trapezoidal section (Figure 1) is as [2, 4-6]: 
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Where: 
cT  is width of the channel at the water surface in critical condition  m  and cA  is area of flow cross 

section in critical condition  2m . By substituting cT  and cA  into equation (3),it could be written as [2,4 and 5]: 
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Figure 1: Geometric and hydraulic parameters of trapezoidal channel in critical condition 

 

For calculating the critical depth in trapezoidal channel, equation of degree 6 (Equation 4) must be solved. But 

any analytical solution method has not been proposed yet. Researchers have suggested several methods for 

solving this problem. Wang [10] suggested a non-dimensional equation for calculating the critical depth of 

trapezoidal channels as: 
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Where: ky  is critical depth of trapezoidal channels  m  and ky'  is critical depth of rectangular channel that the 

channel bottom width is equal to trapezoidal channel  m . For solving equation (5), Wang [10] developed the 

following equation:  
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Equation (4) is often written as [8]: 
6
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       . Wang et al. [11] used equation (8) and 

developed equation of critical depth in trapezoidal channels as: 
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Vatankhah and Easa [9] proposed equation (8) on the other hand as: 
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Vatankhah [8] solved equation (8) by Newton-Raphson method and reported the following equation: 
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Where: 
1 041 0 374
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c c ct . ( . )    .  

Also, Swamee and Rathie [7] have reported exact analytical equations for critical depth in trapezoidal cross 

sections. Most of the equations suggested for calculating critical depth of trapezoidal channels have complex 

forms and are used in special condition. In this research, two different solutions are introduced and evaluated in 

calculating critical depth of trapezoidal channels.  
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2. Materials and methods 
To obtain the equations of critical depth in trapezoidal channel, 17100 critical depths were generated in 

Microsoft Excel. In Table (1), variation of geometric and hydraulic parameters was shown. Also, in order to test 

the equations, 900 critical depths were approximately generated in trapezoidal channel. It was attempted to use 

actual data in depth generation process, so that it was observed 1 6b
y

   condition.  

 

Table 1: Variation of geometric and hydraulic parameters 

Parameters Min Max 

)(mb  0.6 6 

m  1 3 

  1 1.09 

 my
c

 0.15 4 

 smQ 3  0.1193 349.3 

 

In this research, two solutions are suggested for calculating the critical depth in trapezoidal channels. First 

solution is in conjunction with the equation of degree 6 for trapezoidal channels (Equation 4). Second solution is 

a new method that is obtained using the critical depth equation in triangular channels. 

 

2.1 First solution 

In the equation (4), with assuming c
c

my b
  and   y

b m


   , equation (4) could be rearranged as: 
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With assuming
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Q m
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
 , equation (12) could be written as: 
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In equation (13), K and λ are non-dimensional parameters. Value of K is well-known and value of λ could be 

calculated. However, equation (13) has no any analytical solution yet. By using the generated critical depths and 

equation (13), a new equation was suggested to calculate critical depth in trapezoidal channels.  

 

2.2 Second solution 

In this method, critical depth in trapezoidal channels is calculated using critical depth equation in triangular 

channels. With attention to Figure (2) and assumption critical condition in OAB triangle: 
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Figure 2: Geometric and hydraulic parameters in critical condition 
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And based on the equation (2): 
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Where: 'Q  is discharge in OAB triangle with assumption critical condition  sm3 . With these assumptions, 

flow discharge in OCD triangle is equal to: 

'" QQQ                                                                                  (16) 

Where: "Q  is flow discharge in OCD triangle  
s

m3  and Q  is flow discharge in ABCD trapezoid  
s

m3 .  

It is necessary to mention that flow conditions are critical in the cross section. Based on the equation (2), critical 

depth in OCD triangle is: 
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And Critical depth in ABCD trapezoid can be fitted as: 
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Using dimensional analysis of the critical depth in trapezoidal channel, the following function is obtained: 
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Finally, critical depth in trapezoidal channel can be calculated using the equation (19). In the following, results 

of the methods are reported and compared together. 

 

3. Results and discussion 
3.1 First solution results 

In this method, by using equation (13) and 17100 generated critical depths; the flowing equation was obtained 

in Data Fit software: 
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Figure (3) shows calculated non-dimensional parameters of critical depth in trapezoidal channel (λE) using 

equation (20) versus real non-dimensional parameter of critical depth (λP). As shown in this figure, equation 

(20) can calculate the non-dimensional parameter of critical depth (λE) well. Relative percentage error (RPE) 

was calculated by: 
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In equation (21), the subscript “P” describes real parameter and the subscript “E” describes calculated 

parameter by using equation (20). Maximum relative percentage error of equation (20) was obtained 0.97%.  

 

3.2 Second solution results 

Most of the known methods for computing the critical depth of trapezoidal cross section are based on equation 

(13). But second solution is a new and different method. This solution suggested in this research, is based on 

critical depth equation in triangular channels. Using 17100 generated depths and equation (19), the following 

equation was fitted in Data Fit software: 
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Figure 3:Calculated non-dimensional parameter of critical depth (λE) -Equation (20) - versus real non-

dimensional parameter of critical depth (λP) 

 

Error of equation (22) to calculate critical depth is negligible (Figure 4). Otherwise, maximum relative 

percentage error of equation (22) was 0.95%. Figure 4 shows that equation (22) can calculate critical depth of 

trapezoidal channel well. Flow discharge value is the most important parameter in channel designing and the 

parameter is the main one in the form of equation. In equation (22), critical depth of trapezoidal channel could 

be simply calculated with high accuracy without trial and error. The proposed equation has simple form, easy 

calculation and wide application range compared with the existing equations. 

 

 
Figure 4: Calculated non-dimensional parameter of critical depth (λE) -Equation (22) - versus real non-

dimensional parameters critical depth (λP) 

 

In the test stage, calculated non-dimensional parameter of critical depth using equations (20) and (22) were 

compared with real data. Results show these equations have acceptable performance, which for 900 generated 

depths, maximum relative percentage error of equations (20) and (22) are 1.22% and 1.41% respectively 

(Figures 5 and 6). Figures (7), (8) and (9) depict calculated non-dimensional parameter of critical depth (λE) - 

Wang’s equation, Vatankhah and Easa’s equation and Vatankhah’s equation- versus real non-dimensional 

parameters of critical depth (λP). As shown in Figures (7), (8) and (9), results of the equations have good 

agreement with the real data and the equations are accurate solution. But according to Vatankhah and Easa, 

Wang’s equation is complicated solution [9]. Also, maximum relative error of Wang’s equation,Vatankhah and 

Easa’s equation and Vatankhah’s equation are 0.0154%, 1.63% and 5.5E-06% respectively.  
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Figure 5: Calculated non-dimensional parameter of critical depth (λE) -Equation (20) - versus real non-

dimensional parameter of critical depth (λP) in test stage 

 

 
Figure 6: Calculated non-dimensional parameter of critical depth (λE) -Equation (22)- versus real non-

dimensional parameters critical depth (λP) in test stage 

 

Configuration of Equation (20) is similar to the pervious equations with two non-dimensional parameter 

including
c  and

1
3

4

cK ( )


 .So that Equation (20) predicts the critical depth as well as the pervious 

equations. In the polynomial form, the more complex the curvature of the data, the higher the polynomial order 

required to fit it. There are no data restrictions associated with this equation form. But for extrapolating beyond 

the range of the data, polynomial models can change direction suddenly beyond the range of the data. 

Otherwise, it offers up to a six to order equation. The higher order equations have more inflection points[3]. 

Equation (22) has a different ground work that calculates critical depths with acceptable accuracy. This 

equation is known as hyperbola formula that computational steps are lower and simpler than the other 

equations. Otherwise, the proposed equation is very user-friendly and applicable, but the other researchers’ 

equations have complex and difficult forms. It is concluded that non-dimensional forms of the governing 

equation are very powerful tools for developing general explicit regression-based equations [8]. 
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Figure 7: Calculated non-dimensional parameter of critical depth (λE) -Wang’s equation- versus real non-

dimensional parameters critical depth (λP) in test stage  

 
Figure 8: Calculated non-dimensional parameter of critical depth (λE) -Vatankhah and Easa’s equation- versus 

real non-dimensional parameters critical depth (λP) in test stage 

 

 
Figure 9: Calculated non-dimensional parameter of critical depth (λE) -Vatankhah’s equation- versus real non-

dimensional parameters critical depth (λP) in test stage 
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Conclusion 

 
1. In this research, two solutions were used to calculate critical depth in the trapezoidal channels. 

2. First solution was based on the analytical method and using equation (13), equation (20) was fitted in Data 

Fit software. 

3. Second solution was a new and different method that was based on the critical depth in triangular channel. 

In this method, equation (22) was fitted in Data Fit software. 

4. Results showedthat the maximum relative percentage error of equations (20) and (22) are 1.22% and 

1.41% respectively (Figures 5 and 6). 

5. Calculaed critical depths using Wang’s equation, Vatankhah and Easa’s equation and Vatankhah’s 

equation showed that the proposed equations (20) and (22) had acceptable accuracy as well as the other 

equations. 

6. The proposed equations were very simple and easier to solve (user-friendly) that could calculate critical 

depth of trapezoidal channel more accurately. 

 

 

 

 

References 

 
1.  Achour B., Khattaoui M., Open Civil Eng. J., 2 (2008) 9.  

2.  Chow V. T., Open channels hydraulics, McGraw-Hill, New York. (1973). 

3.  Draper N.R., Smith H., Applied regression analysis, Wiley-Interscience, New York. (1998). 

4.  Henderson F. M., Open channel flow, Mac Millan, New York. (1966). 

5.  French R. H., Open cannel hydraulics, McGraw-Hill, New York. (1986). 

6.  Swamee P. K., J. Irrig. Drain. Eng. 119 (1993) 400. 

7.  Swamee P. K., Rathie P. N., J. Irrig. Drain. Eng., 131 (2005) 474. 

8.  Vatankhah A. R., Ain Shams Eng. J. 4 (2013) 17. 

9.  Vatankhah A. R., Easa S., Flow Meas. Instrum. 22 (2011) 9. 

10. Wang Z. Z., J. Hydraul. Eng., 124 (1998) 90. 

11. Wang Z. Z., Yuan S., Wu C.L., J. Hydraul. Eng., 43 (1999) 7, (In Chinese). 

 

 

 

(2015) ; http://www.jmaterenvironsci.com 
 

http://www.jmaterenvironsci.com/

