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Abstract 
The rapid changes in land use pattern have resulted into forest degradation and its adverse impact on global climate due to 

the emissions of green house gases (GHGs) from terrestrial and aquatic systems. The present paper reviews the methods to 

assess above ground biomass (AGB), below ground biomass (BGB) and soil organic carbon (SOC) in a forest catchment. It 

is found that out of various methods, Allometric method is the most suitable for AGB estimation, while root shoot ratio 

(RSR) & Allometric equations are used to assess the BGB in given forest. Out of several methods to estimate SOC, infra 

red spectroscopy (IRS) and Walkley & Black method is found to provide the most precise results as it has high carbon 

recovery rate, is less time consuming and cost effective. The Carbon stock estimation gives an idea about the quantity of 

carbon available in the area. A part of this „C‟ stock appears as run-off in river/streams and finally in reservoirs/lakes where 

it is degraded via aerobic/ anaerobic degradation into GHGs which are emitted to atmosphere, thereby causing global 

warming and climate changes which is responsible for present changes in weather and hydrological cycles.  
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List of abbreviations: 
AGB: Above Ground Biomass 

BEFs: Biomass Expansion Factors 

BGB: Below Ground Biomass 

CH4: Methane 

CO2: Carbon Dioxide 

ETSs: Emissions Trading Schemes 

FL: Forest Land 

FOC: Forest Organic Carbon 

GHGs: Green House Gases  

GWP: Global Warming Potential 

IPCC: Intergovernmental Panel on Climate Change 

IRS: Infra Red Spectroscopy 

LiDAR: Large Footprint Light Detection and Ranging 

LOC: Labile Organic Carbon 

LULUCF: Land Use and Land Use Cover Changes 

N2O: Nitrous Oxide 

OC: Organic Carbon 

REDD: Reductions in Emissions from Deforestation in Developing Countries 

RSR: Root Shoot Ratio 

SOC: Soil Organic Carbon 

UNFCCC: United Nations Framework Convention on Climate Change 

 

1. Introduction  
The LULUCF changes and deforestation are amongst the most important factors that contribute to social and 

environmental challenges and hence are being faced by mankind in 21
st
 century. Since 1750, approximately 

35% of anthropogenic CO2 emissions are found to be directly related to changes in the land use [1]. The CH4 

and N2O are present in much lower concentrations than CO2 in the atmosphere, but potentially cause much more 
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GWP, i.e. N2O is 298 and CH4 is 25 times more stringent GHG than CO2 [2]. The N2O is mainly emitted from 

human activities, particularly, agricultural practices. However, the impact of land use changes to global 

warming is difficult to quantify as GHGs are produced from diffuse sources and complex systems [1]. As per 

the IPCC, if the concentrations of GHG in the atmosphere continue to increase, the mean temperature at the 

earth‟s surface could rise from 1.8º to 4 ºC over 2000 level by the end of this century [2]. Climate change leads 

to average global temperature rise, sea level rise, melting of glaciers, changes in the habitat for plants and 

animals, intense droughts, hurricanes and other extreme weather events, increased wildfire risk and increasing 

events of floods and storms [12]. Changes in carbon stocks may occurs due to the following activities: (a) 

natural processes in the forest (b) indirect human influences (c) sustainable management practices viz. 

regeneration and harvesting in forests; (d) conversion of dense forests to other forest types; and (e) conversion 

of forests to cropland, grassland, wetlands, human settlements or other lands [3]. Tropical deforestation 

generates on an average about 1–2 billion tonnes of carbon per year during the 1990s, which is roughly 15–25% 

of annual global GHG emissions [4-5]. The significant sources of GHGs in most tropical countries are largely 

by deforestation and degradation of forest. The photosynthesis of forest vegetation and the decomposition & 

transformation of forest SOC is affected by climate changes which further impact the storage and dynamics of 

OC in forest soils [6]. Any change in land use practices may causes additional transfer of C from atmospheric 

CO2 to the terrestrial environment (soil or vegetation), thus, reducing the atmospheric CO2 concentration. More 

atmospheric CO2 reduction may be achieved by (i) enhancing the net photosynthetic efficiency by planting more 

& more trees or grass in new areas (ii) slowing the rate of decomposition/degradation of SOC through land 

management (reduced intensity of tillage or altered water management). 

     Despite the importance of checking deforestation and associated emissions, developing countries have few 

economic or policy incentives to reduce the emissions from land-use changes [7]. Avoided deforestation 

projects were excluded from the first commitment period of the Kyoto Protocol (2008–2012), due to the 

concerns of reduction in fossil fuel concentration and measurement of GHG emissions reductions [8-9]. 

Recently, the importance of emissions reductions from tropical deforestation in future climate change policy has 

grown over the year. The UNFCCC has agreed to consider a new initiative led by forest-rich developing 

countries, who call for economic incentives to help facilitate REDD [10]. 

      To estimate GHG emissions, the area of cleared forest and the amount of carbon stored in those forests need 

to be known. Several techniques to estimate forest biomass at different spatial scales, but destructive 

measurements of individual tree biomass are available to calibrate allometric equations (a statistical model 

relating the tree biomass to a set of predictors like as tree diameter and/or height, wood specific gravity or forest 

type) [11-13]. To effectively boost the ETSs, soil scientists are faced with the challenge of identifying and 

quantifying the GHGs fluxes from the soil. Suitable methodologies and protocols for monitoring SOC stocks 

must be developed.  

     The present paper reviews various methods which can be used to assess above ground biomass, below 

ground biomass & soil carbon stocks of forests. Information can also be used as a benchmark to estimate the 

AGB, BGB, and SOC availability which in turn may help in estimating GHG emission potential from the 

available carbon in the catchment as well as from the carbon transported to reservoir/ lakes. The carbon is 

considered as a net contributor of GHGs to the atmosphere. Mitigation measures are also suggested to reduce 

the C-stock and GHG emissions from catchment and reservoirs/ lakes. 

 

2. Measurements of Forest Carbon Stock (FOC) 
The main carbon pool in tropical forest ecosystems consists of the living biomass of trees, understory 

vegetation, dead mass of litter, woody debris and soil organic matter. The carbon stored in the AGB of trees is 

the largest pool and is directly impacted by deforestation and degradation. The estimation of AGB carbon is 

therefore the most critical step in quantifying carbon stocks and fluxes from tropical forests. Literature review 

reveals that no method is yet available to directly measure forest carbon stocks across a landscape. As a result, 

efforts are made to develop tools and models that can „scale up‟ or extrapolate destructive harvest data points to 

larger scales based on proxies measured in the field or from the remote sensing instruments [12-14]. At the 

national level, the IPCC has set up guidelines to estimate GHG inventories at different tiers of quality ranging 

from Tier 1 to Tier 3 [15-16]. Tier 1 is based on highly aggregated data, default combustion and emission 

factors. It is also important to mention that data available in all the countries can provide rough approximations 
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which can be immediately used to calculate a nation‟s carbon stocks. Ground-based measurements of tree 

diameters and heights can be combined with predictive relationships to estimate FOCs (Tiers 2 & 3).  

All emission estimates from tropical/subtropical deforestation are based on biome-average datasets in 

which a single numerical value of forest carbon per unit area (tonnes of C per hectare) is applied to broad forest 

categories or biomes [17-20]. The most primitive compilations of biome averages were made decades ago and 

were subsequently updated and modified by the researchers [21]. The continuous updation of biome averages 

makes it difficult to identify original data sources and other key information. Many contemporary estimates of 

FOCs are based on multiple versions or iterations of analysis. The best guesses, often employed as multiple 

biome averages, are combined or modified [16-18]. Table 1 provides the advantages and limitations of available 

methods for the estimation of FOCs. 
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Table 1: Advantages and limitations of methods used to estimate forest carbon stocks. 

Sl.No Methods Description Advantages Limitations Uncertainty  References  

1.  Biome 

averages 

 

Estimates the average forest carbon stocks for 

broad forest categories based on a variety of 

input data sources. 

 Immediately available at no cost. 

 Data refinements could increase 

accuracy. 

 Globally consistent. 

 Fairly generalized 

 Data sources not properly sampled to 

describe large areas 

 

High  [19-20, 

89] 

 

2.  Forest 

carbon 

inventory 

Relates ground-based measurements of tree 

diameters or volume to forest carbon stocks 

using allometric relationships. 

 Generic relationships readily 

available 

 Low-tech method widely understood 

 Can be relatively inexpensive as the 

field labour constitutes the major 

cost. 

 Generic relationships not appropriate for all 

regions 

 Can be expensive and slow 

 Challenging to produce globally consistent 

results. 

Low [12, 32, 63, 

88] 

3.  Optical 

remote 

sensors 

Make use of visible and infrared wavelengths to 

measure spectral indices and correlate to 

ground- based forest carbon measurements e.g. 

Landsat, Moderate Resolution Imaging 

Spectroradiometer (MODIS). 

 Satellite data routinely collected and 

freely available at global scale. 

 Limited ability to develop good models for 

tropical forests. 

 Spectral indices saturate at relatively low C 

stocks. 

 Can be technically demanding. 

High [90] 

4.  Very high 

resolution 

airborne 

optical 

remote 

sensors 

Uses very high-resolution (10–20 cm) images to 

measure tree height and crown area and 

allometry to estimate carbon stocks e.g. Aerial 

photos, 3D Digital Aerial Imagery. 

 Reduces time and cost of collecting 

forest inventory data. 

  Reasonably accurate. 

 Excellent ground verification for 

deforestation baseline. 

 Applicable only to small areas  

(<10 000 ha). 

 Can be expensive and technically 

demanding. 

 No allometric relations based on crown area 

are available. 

Low-

medium 

[91-92] 

5.  Radar 

remote 

sensors 

Uses microwave or radar signal to measure 

forest vertical structure e.g. Advanced Land 

Observing Satellite (ALOS), Phased Array type 

L-band Synthetic Aperture Radar (PALSAR), 

European remote sensing satellite (ERS-1), 

Japanese Earth Resources Satellite (JERS-1), 

Envisat. 

 Satellite data are generally free. 

 New systems launched in 2005 to 

provide improved data 

 Can be accurate for young or sparse 

forests. 

 Less accurate in complex canopies of mature 

forests because of the saturation of signals. 

 Mountainous terrain also increases errors. 

 Can be expensive and technically demanding 

Medium [93, 94] 

 

http://www.eorc.jaxa.jp/JERS-1/en/
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The Table 1 shows that forest carbon inventory method is the method of choice as it can be applied to measure 

carbon stock in the forest area with low uncertainty and better results compared to other methods discussed 

above. In many countries, it may be more feasible to rely on forest carbon inventories rather than remotely 

sensed data to estimate FOCs, as the labor costs are often low compared to installing and managing high-tech 

remote-sensing equipment. However, the satellite-based estimates of FOCs will likely be more accessible over 

the next decade, as the new technologies emerge and technical capabilities are strengthened. 

 

3. Stratification of the Forest Land 
The stratification process consists of separating the entire 'managed' FL in forest strata to minimise the variation 

within each forest type (stratum). The stratification of land-use categories, especially, of the FL in the different 

forest types, different forest management practices and REDD activities is a key methodological challenge. 

Table 2 provides the criteria, carbon pool to measure AGB & BGB and methods of carbon estimation in forest 

area. 

Table 2: Criteria, components measured and recommended methods for carbon estimation in forest area. 

S. 

No 

Criteria for 

stratification 

Carbon pools to measure 

AGB & BGB 

Methods for estimation References 

1.  Climate zone, 

ecotype, soil type 

& management 

regime within 

land- use types. 

AGB, BGB, dead wood, 

litter and SOC as well as 

emissions of non-CO2 

gases. 

Allometric equations for trees Ratio 

of BGB to AGB for tropical dry 

forest, 0.56 for < 20 tons AGB/ ha, 

0.28 for > 20 tons AGB/ ha, Carbon 

fraction (CF), 0.47 (default value 

for all parts). 

[16] 

 

2.  Vegetation, soil 

and topography 

AGB, BGB, dead wood, 

litter, SOC and wood 

products. 

Allometric equations for trees, 

destructive harvesting for shrubs, 

herbs and litter Root, Shoot ratio, 

BGB = exp (-1.0587 + 0.8836 x ln 

AGB), Carbon content = 0.50. (50% 

of total biomass). 

[95] 

3.  Land-use, 

vegetation, slope, 

drainage, 

elevation & 

proximity to 

settlement. 

AGB/ necromass, BGB 

(tree roots), soil carbon and 

standing litter crop. 

Equation for moist climate, annual 

rainfall (1,500 – 4,000 mm) y = 

38.4908 – 11.7883 D + 1.1926 D², 

Root, Shoot ratio = 0.10 or 0.15, 

Carbon content = 0.50 (50% of total 

biomass). 

[96] 

4.  As per the 

guidelines of 

IPCC. 

Pools covered under the 

IPCC guidelines are 

considered. 

As per IPCC guidance. [97-98] 

  

The Table 2 indicates that - use of stratification based on climatic zone, soil type, and slope etc. may help a 

country to produce verifiable quantitative estimates for its forest strata. Moreover, no distinction is made 

between living and dead roots so the root biomass is generally reported as total living and dead roots but 

difficult to compare, generalize and model the root systems due to scarcity of data, lack of accuracy & precision 

in the methodology used. 

 

4. Root Shoot Ratio (RSR) 
RSR, an indicator of physiological processes affecting the carbon allocation, is of significant importance in 

providing the estimates of BGB and AGB. Multiplying AGB by RSR is the method used to estimate BGB and 

carbon stocks for National Greenhouse Gas Inventories [22-24]. The RSR can be calculated to measure BGB as 

shown in Table 3.  
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Table 3: Root Shoot Ratio for the estimation of BGB [16]. 

Domain Ecological 

zone 

AGB RSR Range of RSR 

Tropical  Rain  forest <123 Mg/ha 

>125 Mg/ha 

0.20 

0.24 

0.09-0.25 

0.22-0.23 

Dry forest < 20 Mg/ha 

> 20 Mg/ha 

0.56 

0.28 

0.28-0.68 

0.27-0.28 

Subtropical 

 

Humid forest  <125 Mg/ha 

>125 Mg/ha 

0.20 

0.24 

0.09-0.25 

0.22-0.33 

Dry forest < 20 Mg/ha 

> 20 Mg/ha 

0.56 

0.28 

0.28-0.68 

0.27-0.28 

  

The Table 3 reveals that the RSR is more in the case of dry forest and less in case of humid and rain forests. It is 

helpful for the calculation of BGB with the help of AGB.  

 

5. The Carbon Pools 
As per IPCC (2003), five carbon pools of terrestrial ecosystem consist of biomass, namely, the AGB, BGB, the 

dead litter mass, woody debris and SOC. The CO2 fixed by plants during photosynthesis is transferred across the 

different carbon pools [3]. The AGB of a tree constitutes the major portion of the carbon pool & is the most 

important and visible carbon pool of the terrestrial forest ecosystem [25]. Any change in the land use, like forest 

degradation and deforestation, has a direct impact on this component of the carbon pool. The BGB, constituted 

by all the live roots, plays an important role in the carbon cycle by transferring and storing carbon in the soil 

[26]. The dead litter biomass and woody debris are not a major carbon pool as these contribute to only small 

fraction of the carbon stocks of forests [25]. Soil organic matter is also a chief contributor to the carbon stocks 

of forests after AGB and soils, which are the major sources of carbon emissions following the deforestation [25, 

27-29]. 

 

5.1. Methods to assess the AGB pool in the forest  

The most common method to estimate AGB of forests includes the combination of forest inventories with 

allometric biomass regression equations and airborne or satellite-based remote-sensing techniques [5]. Recent 

remote-sensing technique like LiDAR enables detailed assessments of spatial variations in AGB over large 

spatial scales but the accuracy depends on the calibration with field data [30-31]. Thus, allometric models are a 

crucial link in the estimation of forest AGB stocks [32]. Two methods of field measurement are available. (i) 

The destructive direct method of tree biomass estimation for estimating the ABG and the carbon stocks stored in 

the forest ecosystems [11]. It involves harvesting of all trees in the known area and measuring the weight of 

different components of harvested tree like the tree trunk, leaves & branches including weight of oven dried 

components [25, 33]. The method is not only limited to a small area or small tree sample size but is time and 

resource consuming, destructive, expensive, can be feasible for a large scale analysis and therefore is not 

applicable to degraded forests with threatened species [34]. But it can be used for developing biomass equations 

that may be used to assess biomass on a larger-scale [35]. (ii) The second method also known as, the non-

destructive method can estimate the biomass of a tree without felling and is applicable for those ecosystems 

with rare or protected tree species, where harvesting of tree species is not very practical or feasible. In a study 

by Montes et al. [34], the biomass of the individual tree was estimated by taking into account the tree shape, 

physical samples of different components of the trees like branches and leaves and dendrometric measurements, 

volume and bulk density of the various components. Another way of estimating the AGB by this method is by 

climbing up the tree in order to measure the various parts [36] or by simply measuring the diameter at breast 

height, volume of the tree, height of the tree and wood density to calculate the biomass using allometric 

equations [37]. Since these methods do not involve felling of tree species, it is difficult to validate the reliability 

of this method which requires a lot of labour & time and the climbing can also be troublesome.  

A reliable estimation of AGB should consider the spatial variability, tree and forest metrics (allometric 

models). Several papers have appeared in literature on AGB estimates in tropical forests around the world [38-

42], while the research on BGB estimation is relatively limited to tropical areas [7, 22, 43-47]. As the root 
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systems have particular features and require specific procedures, the measurements are time consuming, costly, 

qualitative, focussed only on one specific application and are often not representative of large areas as these 

generally involve a small number of root systems. In some cases, new methods (3D root architecture data 

analysis) can also be used to compute the continuous spatial distribution of coarse root volume, biomass and 

specific length of root [10]. 

 

5.1.1. Comparison of allometric models for mixed forests as a function of tree diameter and volume 

Allometric equations can be used to accurately estimate the biomass and/or carbon stock in forest ecosystems. 

The mixed species tree biomass regression models were used for AGB estimation of natural and plantation 

forests as shown in Table 4. To accurately estimate the forest biomass, it is preferable to develop allometric 

equations for tree diameter and/or height, because once the equations are developed, the disturbance e.g. 

destruction of the forest stand can be avoided and it may be possible to cover large study areas [12, 48]. 

Moreover, the adequacy of this estimation is usually high even when there are many tree species within the 

same forest stand [49]. Research reported that the selection of the most appropriate allometric equations for a 

target forest is important to accurately estimate the forest biomass because the developed equations differ 

significantly between forest types as shown in Table 4. In most of the cases, DBH is largely used for the 

estimation of AGB because it saves time, cost and energy. Allometric models using diameter and height of trees 

are rarely reported since height (H) is often difficult to measure in the field due to time and cost constraints. 

 

Table 4: Regression equations for the estimation of AGB for mixed-species forest 

Sl. 

No 

Regression equations R
2
 References  

Natural 

plantation 

Plantation 

forest 

1.  AGB = exp {-2.134+2.530 × ln(D)} 0.80  0.83  [50] 

2.  AGB = 42.69-12.800(D) + 1.242 (D
2
). 0.87  0.84  [50] 

3.  AGB= - 12.05+0.876(BA) 0.98 - [99] 

4.  AGB =11.27+6.03(BA)+1.83(H) 0.94 - [99] 

5.  AGB = 21.297- 6.953 (D) + 0.740 (D
2
) 0.87  0.84  [50] 

6.  AGB = exp[-3.114+0.972 × ln(D
2
H)] 0.87  0.65  [100] 

7.  AGB = exp[-2.409+0.952 × ln(D
2
H)]  0.88  0.67  [100] 

8.  AGB = exp (-2.00+2.42) × ln(D)  0.82  0.76  [39] 

9.  AGB = exp[-0.37+0.33 × ln(D) + 0.933 ln (D)
2
 × 0.122 ln (D)

3
]  0.93  0.91  [51] 

10.  AGB = 1.276 + 0.034(D
2
×H)  0.86  0.63  [52] 

11.  AGB = 38.4908 - 11.7883(D) + 1.1926 D
2
  0.88  0.85  [100] 

12.  ln(AGB) = 1.201 + 2.196*ln(DBH) 0.96 - [55] 

13.  ln(AGB) = (–0.744) + 2.188*log(DBH) + 0.832*log(WSG) 0.97 - [55] 

14.  ln(AGB) = (–1.499) + 2.148*ln(DBH) + 0.207*ln(DBH)
2
 – 

0.0281*ln(DBH)
3
 + ln(WSG) 

1.00 - [12] 

15.  ln(AGB) = (–2.977) + ln (WSG*DBH
2
*H) 0.99 - [12] 

16.  ln(AGB) = (–2.289) + 2.649*ln(DBH) – 0.021*ln(DBH)
2
 0.98 - [102] 

17.  ln (AGB) = –2.025 + 2.459*ln(DBH) 0.84 - [101] 

 

Where; AGB in kilogram (kg); Diameter at breast height (DBH or D) in cm; H (tree height) in meters; WSG or 

WD is wood density (g /cm
3
); BA, basal area (m

2
). 

 

         The Table 4, shows that the generic allometric equations for natural plantations including height was 

developed by Chave et al. [12] who found the best equation with the highest R
2
 of 1.00 and the lowest as 0.80 as 

estimated by FAO. 3.2.4. [50]. For plantation forest, the highest regression coefficient of 0.91 was estimated by 

Chambers et al. [51] and lowest (0.63) by Brown and Iverson [52]. The allometric equations based on the 

regression coefficient (R
2
>0.90) discussed above might be useful for calculation of the AGB in forest area. As 

reported by IPCC, the field measurements of FOC though provide more accurate estimates of the forest biomass 
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but are labour & resource intensive and time consuming as well[3]. The choice of an appropriate allometric 

equation requires low uncertainties in forest biomass stock estimates. The allometric equations are often 

preferred for estimating forest biomass, due to fact that it is a nondestructive indirect measurement of biomass, 

cheaper and less time consuming. This indirect method makes use of only the indicator parameter obtained from 

the forest inventories to estimate the biomass. However, the allometric equations developed for biomass 

estimation need to be validated. The regression of AGP in different forest as a function of tree diameter and 

volume is given in Table 5, from which it can be seen that in all forest, SE from 2.44-7.37 indicates lesser 

uncertainty i.e. low variation in data for the estimation of AGB. 

Rates of biomass accumulation are dependent on the different climatic conditions and eco-regions. The 

mean value given by Rai and Proctor [53] was found three times more than the estimation of Chan et al., [54]. 

Similar results were obtained when the results of Chan et al. [54] equation was compared with the results by 

Yamakura et al. [49] and Basuki et al. [55] for primary rain forests in East Kalimantan, Indonesia. These results 

emphasize the importance of tree height in the estimation of forest biomass. In addition, these findings indicate 

that tropical rain forests has higher biomass productivities than seasonal forests regardless of different climatic 

and topographic conditions. This suggests that various size classes of diameters and/or heights as well as 

different species must be considered to estimate biomass in any eco-region. The literature reveals that the higher 

variation are found in the mean estimation of AGB based on equations for primary rain forests, moist tropical 

forest, logged-over forest and mixed secondary forest.  It is important to emphasise that the site-specific 

allometric relationships are vital for accurate estimation of biomass. Different forest types reflect different 

growth patterns giving different recovery rates of biomass accumulation.  

5.1.2. Errors and bias in the estimation of the above carbon stock 

Four types of uncertainties are associated with AGB estimates of tropical forests [32]: inaccurate measurements 

of variables, wrong allometric models, sampling uncertainty and poor representativeness of the sampling 

network. Vieira et al. [56] demonstrated the effect of inaccurate height measurement, for example a stem with a 

DBH of 20 cm and a height of 13 m gave an AGB of 153.0 and 127.0 kg respectively, when using the tool of 

Chave et al., [12]. With the same DBH, but one metre more height, the estimated AGB becomes 164.1 and 

136.6 Kg, with an increase of about 7% and 5% biomass respectively. The LiDAR data and small footprint 

LiDAR data can also be used to retrieve indirect tree height estimates. The elevation difference within the 

footprint particularly for large footprint, LiDAR data can be substantially compared to the predominant tree 

height making it difficult to accurate estimate the tree height [57]. Terrestrial laser scanning (TLS) can also be 

used to estimate the tree height indirectly at plot level. However as the tree height, branching frequency and 

stand density increase, the quality of information obtained from the terrestrial laser scanner decreases due to 

inherent occlusion effects, increasing point spacing and the related uncertainty. 

     Most research is based on considering 10–30 sample trees per species which seems to be too low for biomass 

estimation of large countries in the tropics. The accuracy of biomass estimation ultimately depends on the 

accuracy of the original measurements used to develop biomass assessment tools like allometric models; BEF 

and generic equations and species group specific volume-to-biomass models [58-59]. BEFs are strongly 

dependent on the stand structure [60] and site characteristics/features [58, 61] and extrapolation with BEFs may 

lead to biased results when compared with local biomass equations [62] indicating the importance of 

representativeness and the risks of extrapolation.  

Therefore, the lack of representativeness is the major drawback with current biomass equations. The sampling 

of sufficient trees is time consuming and costly for the purpose of acquiring the information on species and size 

distribution in a forest. Grouping all species even in species-rich tropical forests, may produce multiple/simple 

regression equations with high R
2
 (>0.95) [63]. Therefore, use of regression equations stratified by eco-regions 

or species group (broadleaf or conifer) might increase the accuracy and precision of the equations which is 

based on a large number of trees spanning over wider range of diameters  apart from the assess where unique 

plant forms occur for which development of regression equations is recommended [63]. 

There is, therefore, an urgent need to validate and test the reliability of allometric models for country and/or a 

specific region. The allomertic equation/ regression equations with high R
2
 (>0.90) may help to predict the 

biomass in a particular eco-region but may not be applicable to other eco-regions due to climatic conditions, site 

specificity and forest types. 
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Table 5: Regressions of AGB in forest as a function of tree diameter and height. 

Sl. 

No Location type 
Forest 

type 
Species 

MAP 

(mm) 

MAT 

(˚C) 

 

No. 

of 

sample 

Diameter 

Range 

(cm) 

Mean 

AGB 
Regression equation 

Wood 

density 

(g/cm
3
) 

SE 

(%) 
SL References 

1.  World moist 

tropical 

MT Mixed - - 170 5-148 32.17 In (AGB) = 2.53 × In (D)– 

2.13 

0.71 4.77 0.40 [103] 

2.  Kalimantan, 

Indonesia 

PR Mixed 1862 26 76 5-148 34.29 In (AGB) = 2.62 × In (D)–2.30 0.36-0.81 5.32 0.21 [49] 

3.  India, Karnataka PR Mixed 6500 22 189 12.4-60.9 61.80 In (AGB) = 2.12 × In (D)–

0.435 

0.49-0.98 7.37 0.00 [53] 

4.  Kalimantan, 

Indonesia 

PR Mixed 2000 27 122 6-200 34.75 In (AGB) = 2.196 × In(D) –

1.201 

0.60 4.32 0.18 [55] 

5.  Sumatra, 

Indonesia 

MSF Mixed 3000 26 29 7.6-48.1 20.22 In (AGB) = 2.59 ×In (D) –2.75 0.60 3.09 1.00 [104] 

6.  Kalimantan, 

Indonesia 

ESF Mixed 1800 28 191 3.2-20.3 17.44 In (AGB) = 2.44 ×In (D) – 

2.51 

0.29-0.47 2.47 1.00 [105] 

7.  Sarawak, 

Malaysia 

ESF Mixed 2600 27 136 0.11-

28.66 

17.34 AGB= 0.0829 × D
2.43

 0.35 2.44 1.00 [47] 

8.  Sarawak, 

Malaysia 

LOF Mixed 4010 25 30 1.0-44.1 25.34 AGB= 0.1525 × D
2.43

 0.50 3.41 0.98 [106] 

9.  Bago, Myanmar MDF Mixed 1900 25 160 1.2-25.4 18.82 AGB= 0.069 × D
2.533

 0.1-0.86 2.79 - [54] 

10.  Sarawak, 

Malaysia 

LOF Mixed 4010 25 30 1.0-44.1 19.56 AGB= 0.1083 ×(D
2
H)

0.80
 0.50 2.46 0.94 [106] 

11.  Thailand MIX Mixed 1434-2721 - 119 - 24.32 AGB= 0.0430 ×(D
2
H)

0.95
 - 3.76 0.31 [107] 

12.  Bago, Myanmar MDF Mixed 1900 25 160 1.2-25.4 18.15 AGB= 0.063 ×(D
2
H)

0.86
 0.1-0.86 2.49 - [54] 

13.  Northern Costa 

Rica, Europe 

MIX Mixed 4000 23.7 19 15.7-35.9    - AGB= 21.297 − 6.95(D) + 

0.7403(D)
2
 

0.62 - 0.92 [40] 

Where; MT = moist tropical, PR = primary rain forest, MSF = mixed secondary forest, ESF = early successional secondary forest, LOF = logged-over forest, 

MDF = mixed deciduous forest, Mix = mixture of dry monsoon, monsoon-savanna, savanna, and rain forest, MAP = Mean annual precipitation, MAT = 

Mean annual temperature, SE = Standard error, SL = Significance level, n = number of samples.  
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5.2. Assessment of BGB pool in the forest 

BGB constitutes about 30 % of AGB [64-65] which is estimated for most carbon mitigation projects and 

national GHG inventories using RSR or allometric equations. One of the most common methods for root 

biomass estimation is the RSR in which the root biomass is estimated from easily measured shoot biomass [66]. 

This method is currently widely used to estimate BGB and carbon stocks [22-24]. The method is not really 

precise due to considerable variability being encountered in the data, natural variability in forests and the use of 

different sampling methods, but also due to the lack of a systematically/statistically experimental design 

implemented [63]. Root biomass can also be estimated by another indirect method (without digging) using 

allometric models or equations [7], but such models/equations need calibration based on large amounts of data 

collected by reliable excavation methods as shown in Table 6. 

 

Table 6: Methods to measure Carbon stocks in forests area. 

Sl. 

 No 

Types of 

biomass 

Methods of 

carbon stock 

estimation 

Empirical formula References  

1.  BGB Allometric 

equations  

BGB = 0.02186 x DBH 
2.487

 [108] 

BGB = Exp [–1.0587 + 

0.8836*ln(AGB] 

[22] 

Root ,Shoot ratio BGB= AGB x Root, Shoot ratio [16] 

2.  Deadwood 

and Litter 

Gain–Loss” or 

“Stock-

Difference” 

methods. 

---- 

[3,16, 102] 

 

3.  SOC Dichromate 

Methods 

Soil mass (t/ha) = [area (10,000 m
2
 /ha) 

× depth (0.3 m) density (t/m
3
 )] 

SOC (t/ha) = [soil mass in 30 cm layer 

× SOC concentration (%)] / 100 

[102, 109-110] 

  

Despite the importance of below-ground parts in plant production, estimation of root mass and its distribution in 

the profile by direct method is still very difficult and time consuming and no single reliable methodology is 

available [67]. Difficulties in harvesting roots in their totality, particularly for deep root systems, [68] may lead 

to global underestimates of root mass in forest ecosystems. Consequently, the depths are not standardized but 

the depth selected in a given study is assumed to capture practically all the roots.  

 

5.2.1. Methods of estimation of BGB 

Two direct methods are used to estimate root biomass and it involves sampling individuals or multi-tree plots 

[23]. Single-tree excavation (STE) method consists of removing the tree root system from the soil and tracing 

each root individually from the stump to root tip. Volumetric Soil-Root Sample (VSRS) method requires the 

excavation of a given volume of soil and sorting the roots contained in that volume. These volumetric samples 

range from traditional auger cores and monoliths to Voronoi polygons [7, 23]. In in-situ imaging method, the 

roots are seen through a tube [69] or a transparent pane of glass [70] inserted into the soil. Though,  biomass can 

be estimated by these imaging methods [71] but the results are obtained because these methods require a 

correction factor to convert length to root mass [72]. Of the direct methods, the first method (STE) is now 

considered as a standard method for coarse-root biomass [23]. On the other hand, for fine and medium roots, all 

the above-mentioned techniques provide highly variable biomass estimates. Millikin and Bledsoe [73] found 

that the root mass density of blue oak using the monolith method was at least 50% higher than that obtained by 

the core method for the youngest trees, while the reverse trend was observed for larger trees. For fine and 

medium roots, the choice is somewhat determined from the researcher‟s personal experience, preference, 

equipment, the time taken and available finances rather than accuracy and precision. 

     Part of the problem lies in substantial below-ground spatial heterogeneity and the highly variable allocation 

of photosynthates to roots [67]. In addition, fine-root dynamics are subject to many biotic and abiotic factors 

that vary in time and space. These factors include soil type, soil temperature, moisture, nutrient availability, tree 

age, trees species as well as the impacts of insects, fungi and other soil microorganisms [74-75]. 
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5.3. Soil organic carbon (SOC) pool 

Increasing SOC stocks are widely discussed as a short to mid-term implementable solution to the rising 

atmospheric GHG concentrations, as soils are the largest carbon reservoir of terrestrial carbon cycle. In 2005, 

about 10 – 12% of anthropogenic GHGs (N2O & CH4) emissions were contributed by agricultural activities, 

livestock and rice farming. The net CO2 flux from soils was estimated at only 0.04 Gt/year [76]. Carbon storage 

in soils is the balance between the input of dead plant material and losses from decomposition and 

mineralization of organic matter. Under aerobic conditions, most of the carbon entering the soil returns to the 

atmosphere by autotrophic root and heterotrophic respiration. DayCent model was developed to simulate 

ecosystem dynamics for agricultural, grassland, forest and savanna ecosystems for the prediction of GHG 

emissions [77-78]. DayCent used more mechanistic sub models to simulate daily plant production, uptake of 

plant nutrient, trace gas fluxes (N2O, CH4), NO3 leaching, and soil water and temperature [77, 79]. Factors 

affecting the CO2 production and emissions from the soil are given in Table 7.  

  

Table 7: Parameters affecting the CO2 production and emissions from the soil. 

Sl. No Factors Effects References 

1. Physical Conditions 
a) Soil temperature The CO2 emission is not possible below 5

0
C, but 

logarithmic increase from 20 to 40
0
C. 

[111] 

 Soil moisture Increasing CO2 emission with increase in soil 

moisture up to an optimum level, above which it 

reduces drastically. 

[112] 

 Temperature- moisture 

interaction 

Re-wetting a dry soil considerably increases CO2 

efflux. 

[113] 

 Crop seasonality Soil respiration is highest during the crop growing 

season. The seasonal CO2 flux is high in spring 

followed by summer, autumn, and winter. 

[114] 

2. Soil Conditions 

 Texture Soil texture affects microbial activity, water and air 

diffusion rates, thus CO2 formation. 

[115] 

 

 

 

 

 

 pH Directly related to microbial activity 

 Salinity Excess amounts of salts have adverse effects on soil 

microbial processes. 

 Others Microbial activity can be inhibited by the presence of 

toxic material in the soil and thus, CO2 emissions. 

3. Soil Management 

 Manure application Application of large quantities of organic/farm yard 

manure can increase CO2 emission in the soil.  

[116] 

 Fertilizer application The application of N fertilizer may increase acidity 

and reduce microbial activity in soil. 

[117] 

 Tillage Tillage activities can promote soil aeration which 

increases CO2 emission in soil.  

[118] 

 

As stated above, the agricultural activities directly produce and release about 10-12 % of the atmospheric GHGs 

such as CO2, CH4, N2O [76]. Similar to the concerns about the pool, there exists a significant uncertainty 

regarding the estimate of GHG fluxes (CO2, CH4) from world soils. Eddy Covariance (EC) measurement of CO2 

flux is valuable in this regard as it can cover longer time periods spanning a year or more (Post et al. 2001). Due 

to the heterogeneity of SOC distribution, the samples required to accurately estimate SOC stocks at large scales 

suitable for carbon trading is high.  Goidts et al., [80] found an increase in coefficients of variation (CV) from 

5–35 % in SOC stocks. Inadequate sampling procedures produced biasness in data resulting in inaccurate 

estimations of SOC stocks [81]. Gaudinski et al., [82] found that calculation of CO2 flux is very sensitive to the 

estimation of rock content in soil. The details of method to evaluate SOC are given in Table 8, from which it is 

seen that Walkley and Black method is suitable to calculate SOC from terrestrial biosphere due to high recovery 

rates, low cost and need of less time [83]. Recently, IRS has been applied to measure numerous soil properties 

including OC content and composition in bulk soils and soil fractions due to its being fast, inexpensive, non-

destructive, and requiring little/no sample pre-treatment [84-85].  
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Table 8: Problems identified and suggested mitigation measures. 

Sl. No Ecosystem Problems Strategy Potential land-management change Potential for LULC changes References 

1.  Forests Deforestation causes soil 

erosion and rise in 

temperature in nearby area. 

 Carbon 

sequestration 

 Lengthen timber harvest-regeneration 

rotation. 

 Increase forest management intensity 

(increase in forest density, forest 

fertilization, thinning, reduction in fire fuel 

to reduce severe fires, management of 

insects and diseases). 

 Reduce logging frequency. 

 Convert lands to forest 

(afforestation). 

 Preserve forest and avoid 

deforestation 

[119-120] 

 Mitigation of net 

GHG emissions 

 Reduce logging impacts  Reduce deforestation 

2.  Croplands  Rice crop emitting more 

CH4 because of anaerobic 

condition into the soil, as 

compared to other crop 

because the requirement 

of water is not much more 

as compared to rice crop. 

 Cropland requires 

fertilizer and pesticides, 

after degradation thereby 

emitting NO2 gas into the 

atmosphere.  

 Soil carbon 

sequestration 

 Reduce crop tillage 

 Change crop mix to high-residue crops 

and crop rotations 

 Increase winter cover crops 

 Increase efficiency of crop fertilization 

 Reduce summer fallow 

 Restore agricultural land 

 Use biochar 

 Convert to grassland and 

perennial crops.  

[121-122] 

 Mitigation of 

CH4 and N2O 

emission. 

 Improve crop tillage 

 Improve crop mix 

 Increase efficiency of crop fertilization 

 Expand irrigation 

 Reduce rice acreage [118, 123-

124] 

3.  Grasslands/ 

shrub lands  
 Degradation of shrub/ 

grassland causes soil 

erosion.   

 It also releases CO2 in to 

the atmosphere.  

 Soil carbon 

sequestration 

 Modify grazing management practices. 

 Improve efficiency of fertilizer. 

 Allow natural succession towards native 

shrub and forest. 

 Restore degraded rangelands 

 [125-126] 

 Mitigation of net 

GHG emissions 

 Reduce severe rangeland fires  Reduce conversion of 

grassland to energy 

producing crops. 

[127-129] 
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It is also successfully used to measure SOC in-situ, which is a reliable and low-cost method for assessing SOC 

stocks on the field scale, thereby resolving the problem of inadequate data resolution [86]. Kumar et al., [83] 

also found that out of the total SOC, LOC is largely responsible for the GHG emissions in soil/lakes/reservoirs. 

Several studies measured only the carbon changes in the top 20 to 30 cm of the soil profile and therefore do not 

shows any effect of leaching and activity by earthworms on the movement of carbon down the profile. In 

addition, temporal sampling of SOC measurements tends to be sparse, inadequate in number and time interval to 

estimate SOC decomposition rates [87]. 

From the Table 7, it is concluded that GHG emissions from the soil is affected by reduced tillage, extended 

rotations, temperature, pH, increased crop use efficiency of fertilizer-N and use of chemical or natural inhibitors 

of nitrification. Proper management of soils and crops also help to reduce GHG emissions by storing 

atmospheric „C‟ as soil organic matter.  

 

6. Problems due to C-stocks and remedial measures  
As stated elsewhere, a forest consists of several components i.e. AGB and BGB. The presence of this organic 

matter in natural forests may cause natural process of degradation to release GHG depending on the prevailing 

environment in soil/sediments [11, 13]. The runoff from degraded areas is carried during flooding to river and 

streams which ultimately reaches the reservoirs/lakes and finally settle at the bottom. The organic matter 

undergoes aerobic or anaerobic conditions prevailing at the bottom and releases significant quantities of GHG 

gases into the atmosphere thereby causing global warming. Depending on whether CO2 /CH4/N2O is in 

significant quantity, the global warming impact is accordingly measured. These gases bring serious climate 

changes affecting the environmental processes.        

The long term climate change effects may be minimized by applying catchment area treatment of degraded area 

using high photosynthetic efficiency, conservation of forest, stopping the flow of forestry organic matter to 

river/reservoirs and recovery of GHGs as a source of energy from reservoir, if GHG production is significant. 

The problems identified and suggested mitigation measures are however discussed in Table 8, it shows that the 

mitigation of net global carbon emissions requires both reduction in the sources of N2O/CH4/CO2 to the 

atmosphere as well as maintaining and increasing the terrestrial carbon sinks. 

 

7. Conclusions  
Forests, the largest carbon pool on earth, act as a major sources and sinks of carbon in nature. IPCC Tier 1 is 

useful for the estimation of national level forest carbon stocks and helps countries and policy-makers to predict 

climate changes/carbon sequestration. Allometric models can be used to predict stand and landscape AGB. 

Correlation between AGB and BGB and RSR is found within a narrow range. Thus, the default RER or 

Allometric equations could be used to assess the C-stocks of a given forest. Out of the several methods, IRS, 

and Walkley and Black method is found as the best method to calculate SOC due to high recovery of carbon, 

low cost and less time requirement. Satellite-based forest carbon stocks estimation may be more useful in future.  

    The estimation of C-stock gives an idea about the quantity and quality of carbon available in the area and also 

how it does behaves in water bodies, where the carbon is ultimately degraded to GHGs emissions to the 

atmosphere causing global warming and climate change impacts ,which affect entire ecosystem significantly. 

The suggestion of suitable mitigation measures is also given in order to reduce the GHG emissions. 
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