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Abstract  
In this study we worked on a series of molecules based on phenol against leukemia cell line (L1210). The 

objective is to find a correlation between the structure and physicochemical properties. These were determined 

by combining DFT and QSAR results. This study was conducted using the principal component analysis (PCA) 

method, the multiple linear regression method (MLR), the non-linear regression (RNLM) and the artificial 

neural network (ANN). We accordingly propose a quantitative model, and we interpret the activity of the 

compounds relying on the multivariate statistical analysis. This study shows that the prediction results were in 

excellent agreement with the experimental value. 

 

Keywords: phenols, Leukemia, 3D-QSAR model, DFT study. 

 

1. Introduction 
The phenolic hydroxy group has a wide range of cellular activities that have not been clearly investigated. At 

present there is intense interest in polyphenols which are present in the diet as part of fruits, tea, coffee and wine 

[1-3] since they have been shown to protect cells from oxidative stress [4]. In addition, these compounds show a 

wide spectrum of action involving antitumor, antiviral, antibacterial, cardioprotective, prooxidant and 

antimutagenic activity [1, 5-7]. Recently [8], the Hansch group has examined the cytotoxicity of a set of simple 

and complex mono-substituted phenols towards a fast-growing murine leukemia cell line (L1210). The 

objectives of this work are to develop predictive QSAR models for the cytotoxicity of a series of phenols against 

L1210 leukemia cell line. 

Quantitative structure–activity relationship (QSAR) [9, 10] has been widely used for years to provide 

quantitative analysis of structure and biological activity relationships of compounds. Different QSAR studies 

were reported to identify important structural features responsible for the biological activity and to develop 

toxicity models for diverse chemicals by different workers [11, 12]. At present, there are a large number of 

molecular descriptors that can be used in QSAR studies. Once validated, the findings can be used to predict 

activities of untested compounds. 

Recently, computer assisted drug design based on QSAR has been successfully employed to develop new drugs 

for the treatment of cancer, AIDS, SARS, and other diseases. 

In this work, we have modeled the cytotoxicity of phenolic compounds based on ortho alkyl substituted 4-X-

phenols (Figure 1) against L1210 leukemia cells using several statistical tools, principal components analysis 

(PCA), multiple linear regression (MLR), non-linear regression (RNLM) and artificial neural network (ANN) 

calculations. On the other hand, several quantum chemical methods and quantum-chemistry calculations have 

been performed in order to study the molecular structure, electronic and topologic properties [13, 14]. The more 

relevant molecular properties were calculated. These properties are the highest occupied molecular orbital 

energy EHOMO, the lowest unoccupied molecular orbital energy ELUMO, energy gap ∆E, dipole moment µ, the 

total energy ET, the activation energy Ea, the absorption maximum λmax, the Molar Volume (MV), the Molecular 

Weight (MW), the Molar Refractivity (MR), the Parachor (Pc), the Density (D), the Refractive Index (n), the 

Surface Tension (γ) and the Polarizability (α). 
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Figure 1: Chemical structure of the series of 2-alkyl and 2,6-dialkyl-4-X-phenols 

 

2. Material and methods 
2.1. Material 

Previous studies [1] had established a quantitative model of structure activity relationship for a series of 

phenolic compounds. 

Reference [8] provided all cytotoxicity data, in the shape of –log IC50 (pIC50), where C constitutes the molar 

concentration of X-phenol that induces 50% inhibition of growth in the cell line. 

The following table shows the chemical structures of the studied compounds and the corresponding 

experimental activities pIC50. The experimental toxicity of the studied compounds has been collected from 

recent work [1] (Table 1). The range of the toxicity data varies from 3.02 to 4.9 (M). 

 
Table1: Observed toxicity for the series of 2-alkyl and 2,6-dialkyl-4-X-phenols 

N° Substituent pIC50 

1 2,6-di-Me 3.02 

2 2,6-di-OMe 3.86 

3 2,4,6-tri-Me 3.20 

4 2,6-di-CMe3 3.85 

5 

6 

2,6-di-CMe3-4-Me 4.04 

2,6-di-Et 3.26 

7 2,6-di-CHMe2 3.25 

8 2,4,6-tri-CMe3 3.90 

9 2-CMe3-6-Me 3.73 

10 2,6-di-CMe3,4-NO2 4.90 

11 2,6-di-CMe3-4-Et 3.91 

12 2,6-di-CMe3-4-Br 4.11 

13 2,4-di-CMe3 4.24 

14 2-CMe3-4-Me 3.80 

15 2,4-di-Me 3.04 

16 2-Me-4-F 3.09 

17 2-Me-4-NO2 3.49 

18 2-Me-4-Br 3.46 

19 2-Me-4-OMe 3.39 

20 2-Me-4-COMe 3.14 

21 2-CMe3-4-Et 3.80 

 

2.2. Methods  

2.2.1 Principal Components Analysis (ACP) 

The phenolic compounds (1 to 21) were studied by statistical methods based on the principal component 

analysis (PCA) [15] using the software XLSTAT version 2013. This is an essentially descriptive statistical 

method which aims present, in graphic form, the maximum of information contained in a data table 1. PCA is a 

statistical technique useful for summarizing all the information encoded in the structures of compounds. It is 

also very helpful for understanding the distribution of the compounds. 
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2.2.2 Multiple linear regressions 
The multiple linear regression statistic technique is used to study the relation between one dependent variable 

and several independent variables. It is a mathematic technique that minimizes differences between actual and 

predicted values. The multiple linear regression model (MLR) was generated using the software XLSTAT, 

version 2013, to predict pIC50. It has served also to select the descriptors used as the input parameters for a back 

propagation network (ANN). 

 

2.2.3 Artificial Neural Networks (ANNs) 

The ANNs analysis was performed with the use of Matlab software version 2009a Neural Fitting tool (nftool) 

toobox on a data set of 2-alkyl and 2,6-dialkyl-4-X-phenols [16]. 

A number of individual models of ANN were designed built up and trained. Generally the network was built 

for tree layers; one input layer, one hidden layer and one output layer were considered [17]. The input layer 

was consisted of fifteen artificial neurons of linear activation function. The number of artificial neural in the 

hidden layer was adjusted experimentally. The hidden layer consisted of 20 artificial neural. One neuron 

formed the output layer of sigmoid function activation. The architecture of the applied ANN models is 

presented in figure 2. 

 
Figure 2: The ANNs architecture 

 

The data subjected to ANN analysis was randomly divided into three sets: a learning set, a validation set and a 

testing set. Prior to that, the whole data set was scaled within the 0 to 1 range.  

The set of phenolic compounds of the cytotoxicity were subjected to the ANN analysis. First, for the learning 

set of compounds, i.e., 21 ortho alkyl substituted 4-X-phenols were used. ANN models were designed, built 

and trained. The learning set of data is used in ANNs to recognize the relationship between the input and output 

data. Then for the revision of ANN model designed and selected, the validation set of three compounds was 

used. Testing set with three compounds was provided to be an independent evaluation of the ANN model 

performance for the finally applied network. 

In this study, we selected the Sigmoid as a basis function [18]. The operation of the output layer is linear, 

which is given as below: 





kn

1j

kjkjk b(X)hw(X)y  

Where yk is the k
th
 output layer unit for the input vector X, wkj is the weight connection between the k

th
 output 

unit and the j
th
 hidden layer unit and bk is the bias allows a transfer function “non-zero” given by the following 

equation:  

 


y)y(Bias  

Where y is the measured value and 


y  is the value predicted by the model  

The accuracy of the model was mainly evaluated by Root Mean Square Error (RMSE). Formula as follows: 





n

1i

2

predexp )p(p.
n

1
RMSE  

Where n = number of compounds, pexp = experimental value, ppred = predicted value and summation is over all 

patterns in the analyzed data set [19,20]. The scripts were run on a personal PC. 

 

2.2.4 DFT calculations 

DFT (density functional theory) methods were used in this study. These methods have become very popular in 

recent years because they can reach similar precision to other methods in less time and less cost from the 

computational point of view. In agreement with the DFT results, energy of the fundamental state of a 
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polyelectronic system can be expressed through the total electronic density, and in fact, the use of electronic 

density instead of wave function for calculating the energy constitutes the fundamental base of DFT [21-23] 

using the B3LYP functional [24,25] and a 6-31G* basis set. The B3LYP, a version of DFT method, uses 

Becke’s three-parameter functional (B3) and includes a mixture of HF with DFT exchange terms associated 

with the gradient corrected correlation functional of Lee, Yang and Parr (LYP). The geometry of all species 

under investigation was determined by optimizing all geometrical variables without any symmetry constraints.  

 

3. Results and discussion 
 A QSAR study was carried for a series of 21 ortho alkyl substituted 4-X-phenols, in order to determine a 

quantitative relationship between structure and cytotoxicity. 

Table 2 shows the values of the calculated parameters obtained by DFT/B3LYP 6-31G (d) calculations and by 

ACD/ ChemSketch program from the fully optimized structures of ortho alkyl substituted 4-X-phenols. 

 
Table 2: the values of the fifteen chemical descriptors 

 

3.1. Principal component analysis  
The set of descriptors encoding the 21 ortho alkyl substituted 4-X-phenols, topologic, electronic and energetic 

parameters are submitted to PCA analysis [26]. The first three principal axes are sufficient to describe the 

information provided by the data matrix. Indeed, the percentages of variance are 46.26%; 33.57% and 9.70% for 

the axes F1, F2 and F3, respectively. The total information is estimated to a percentage of 89.53%. 

The principal component analysis (PCA) [27] was conducted to identify the link between the different variables. 

Correlations between the sixteen descriptors are shown in Table 3 as a correlation matrix and in Figure 3 these 

descriptors are represented in a correlation circle. 

The Pearson correlation coefficients are summarized in the following table 3. The obtained matrix provides 

information on the negative or positive correlation between variables. 

 MW 
MR 

(cm3) 

MV 

(cm3) 

Pc 

(cm3) 
n 

γ 

(dyne/cm) 

D 

(g/cm3) 

α 

(cm3) 
ET (Ua) 

EHOMO 

(eV) 

ELUMO 

(eV) 
E 

(eV) 

µ 

debye 

Ea 

(eV) 

λmax 

(nm) 

1 122.16 37.78 120.40 297.50 1.54 37.20 1.01 14.97 -10513.54 -5.72 0.29 6.01 1.49 5.27 235.33 

2 154.16 41.49 135.80 335.60 1.52 37.20 1.13 16.44 -14609.04 -5.26 0.57 5.83 2.22 5.12 242.36 

3 136.19 42.60 136.60 335.20 1.54 36.10 1.00 16.89 -11584.15 -5.53 0.31 5.84 1.43 5.16 240.45 

4 206.32 64.90 221.20 518.30 1.50 30.10 0.93 25.73 -16936.12 -5.70 0.24 5.94 1.94 5.23 237.23 

5 220.35 69.73 237.50 556.00 1.50 30.00 0.93 27.64 -18006.73 -5.52 0.25 5.78 1.87 5.12 242.41 

6 150.22 47.23 153.40 375.40 1.53 35.80 1.00 18.72 -12654.45 -5.65 0.37 6.02 1.59 5.27 235.28 

7 178.27 56.50 188.00 452.30 1.51 33.50 0.95 22.40 -14795.39 -5.74 0.22 5.96 1.81 5.23 236.98 

8 262.43 83.29 287.90 666.40 1.49 28.60 0.91 33.02 -21218.15 -5.54 0.25 5.80 1.86 5.11 242.86 

9 164.24 51.34 170.80 407.90 1.51 32.50 0.96 20.35 -13724.87 -5.75 0.23 6.00 1.71 5.22 237.59 

10 251.32 71.45 233.00 573.80 1.53 36.70 1.08 28.32 -22504.83 -6.53 -2.03 4.50 5.96 4.78 259.60 

11 234.38 74.45 254.00 594.90 1.50 30.00 0.92 29.51 -19077.24 -5.54 0.25 5.80 1.89 5.11 242.50 

12 285.22 72.59 237.40 568.80 1.52 32.90 1.20 28.78 -86947.33 -5.78 -0.14 5.65 3.10 5.02 247.01 

13 206.32 64.90 221.20 518.30 1.50 30.10 0.93 25.73 -16936.30 -5.69 0.16 5.85 1.32 5.87 211.26 

14 164.24 51.34 170.80 407.90 1.51 32.50 0.96 20.35 -13724.87 -5.67 0.16 5.83 1.30 5.12 242.03 

15 122.16 37.78 120.40 297.50 1.54 37.20 1.01 14.97 -10513.53 -5.63 0.21 5.84 1.07 5.14 241.47 

16 126.13 32.95 108.30 267.00 1.52 36.90 1.16 13.06 -12145.00 -5.82 -0.15 5.67 2.03 5.09 243.41 

17 153.14 39.50 115.90 315.40 1.60 54.70 1.32 15.66 -15011.58 -6.75 -2.14 4.61 5.61 4.80 258.93 

18 187.03 40.64 120.30 310.40 1.59 44.30 1.55 16.11 -79454.10 -5.93 -0.24 5.68 2.56 4.98 249.07 

19 138.16 39.63 128.10 316.60 1.53 37.20 1.08 15.71 -12561.30 -5.27 0.16 5.43 2.23 4.98 248.95 

20 150.18 42.98 135.60 345.10 1.55 41.80 1.11 17.04 -13599.56 -6.23 -1.17 5.06 4.30 4.52 247.36 

21 178.27 56.07 187.30 446.90 1.51 32.30 0.95 22.22 -14795.38 -5.68 0.15 5.83 1.34 5.12 242.11 
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* The Polarizability (α) is perfectly correlated with the Molar Refractivity (MR) for r = 1. Both variables are 

redundant. Taking into account these observations, we removed the polarizability (α) order not to distort the rest 

of calculation. 

* The Parachor (Pc) is strongly correlated with the Molar Refractivity (MR) (r=0.999) and the Polarizability (α) 

(r=0.999). 

* The Parachor (Pc) is strongly correlated with the Molar Volume (MV) for r=0.997. 

* The dipole moment (µ) is highly negatively correlated with the gap energy (E) (r= -0.951) and the energy 

ELUMO (r= -0.948). 

 
Table 3: Correlation matrix (Pearson (n)) between different obtained descriptors  

 pIC50 MW MR MV Pc n γ D α ET EHOMO ELUMO E µ Ea λmax 

pIC50 1                

MW 0,796 1               

MR 0.759 0.930 1              

MV 0.739 0.903 0.996 1             

Pc 0.761 0.922 0.999 0.997 1            

n -0.404 -0.412 -0.648 -0.707 -0.661 1           

 -0.370 -0.443 -0.646 -0.699 -0.649 0.949 1          

D -0.148 -0.097 -0.439 -0.499 -0.456 0.843 0.769 1         

 0.759 0.930 1.000 0.996 0.999 -0.647 -0.646 -0.439 1        

ET -0.239 -0.529 -0.223 -0.168 -0.193 -0.295 -0.100 -0.632 -0.223 1       

EHOMO -0.146 -0.086 0.055 0.116 0.054 -0.562 -0.647 -0.443 0.055 0.117 1      

ELUMO -0.241 -0.119 0.038 0.100 0.032 -0.548 -0.668 -0.461 0.038 0.086 0.940 1     

E -0.298 -0.135 0.020 0.077 0.011 -0.485 -0.624 -0.433 0.020 0.051 0.803 0.958 1    

µ 0.329 0.239 0.048 -0.017 0.054 0.492 0.619 0.491 0.048 -0.187 -0.842 -0.948 -0.951 1   

Ea 0.083 0.007 0.165 0.211 0.163 -0.485 -0.547 -0.454 0.165 0.149 0.509 0.640 0.692 -0.702 1  

λmax 0.065 0.085 -0.103 -0.156 -0.104 0.503 0.552 0.517 -0.103 -0.226 -0.496 -0.642 -0.705 0.706 -0.904 1 

 

Correlation circle: 

Principal component analysis (PCA) was also performed to detect the connection between the different 

variables. The principal component analysis revealed from the correlation circle (Figure 3) shows that the F1 

axis (46.26% of the variance) is mainly due to the Surface Tension (), while the axis F2 (33.57% of the 

variance) is located by the other parameters topologic. 

 
Figure 3: Correlation circle 

 

On the other hand, the projection according to the plan F1-F2 (79.83% of the total variance) of the studied 

molecules (Figure 4) shows that we can discern two groups of molecules: The group 1 (G1) containing the 

compounds with pIC50 ≤ 3.80, the group 2 (G2) containing the compounds with pIC50 > 3.80.  

In this representation, the compound 2 that should be in group 2 (high value of pIC50), but that an exception 

because they contain group which it’s not similar to those of other compounds of this series.  
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Figure 4: Cartesian diagram according to F1 and F2: Separation between two regions 

 

3.2. Multiple linear regressions 
To establish quantitative relationships between cytotoxicity pIC50 and selected descriptors, our array data were 

subjected to a multiple regression linear and were nonlinear. Only variables whose coefficients are significant 

were retained. 

 

3.2.1. Multiple linear regression of the variable cytotoxicity (MLR) 

Many attempts have been made to develop a relationship with the indicator variable of cytotoxicity pIC50, but 

the best relationship obtained by this method is only one corresponding to the linear combination of several 

descriptors selected: the molecular weight (MW), the Molar Refractivity (MR), the Molar Volume (MV), the 

Parachor (Pc), the Refractive Index (n), the Density (D), the total energy ET and the absorption maximum λmax. 

The resulting equation is: 

pIC50 = 69.460 + 4.060 10
-02

×MW + 1.558×MR – 0.1325×MV – 0.147×Pc       46.906×n + 5.821×D + 

7.933 10
-05

×ET – 1.385 10
-02

×λmax       (4) 
For our 21 compounds, the correlation between experimental cytotoxicity and calculated one based on this 

model is quite significant (Figure 5) as indicated by statistical values: 

 

N = 21          R = 0.962          R
2
 = 0.926          RMSE = 0.167 

 
Figure 5: Graphical representation of calculated and observed cytotoxicity by MLR 

The figure 5 shows a very regular distribution of cytotoxicity values depending on the experimental values. 

 

3.2.2. Multiple nonlinear regression of the variable cytotoxicity (MNLR) 

We have also used the technique of nonlinear regression model to improve the structure cytotoxicity in a 

quantitative way, taking into account several parameters. This is the most common tool for the study of 

multidimensional data. We have applied it to Table 2 containing 21 molecules associated with fifteen variables. 

 The resulting equation is:                                                                       
pIC50 = 33314,370 + 2,218×MW - 28,170×MR - 5,282×MV + 4,584×P- 43122,751×n + 0,235× - 296,882×D + 6,026 10

-

5
ET + 4,380×EHOMO - 1,609×ELUMO + 0,616×µ - 5,155×Ea - 0,150×λmax - 2,586 10

-3
×MW

2
 + 0,253×MR

2
 + 2,052 

10
-3

×MV
2
 - 3,652 10

-3
×P

2
 + 14155,278×n

2
 - 6,282 10

-2  
×

2
 + 29,759×D

2                                         (5) 
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The obtained parameters describing the topological and the electronic aspects of the studied molecules are: 

N = 21          R = 0.999          R
2
 = 0.999 

 
Figure 6: Graphical representation of calculated and observed cytotoxicity by MNLR 

 

With MLNR was obtained significantly better correlation coefficient R = 0, 999 

Figure 6 shows a very uniform distribution of the cytotoxicity observed values depending on the experimental 

values and the correlation between the experimental results and calculated alter them pIC50. The residual values 

tended to zero which is why we did not graph for prediction residuals. 

As part of this conclusion, we can say that the cytotoxicity values obtained from nonlinear regression are highly 

correlated to that of the observed cytotoxicity comparing to results obtained by MLR method. 

 

3.3. Artificial neural networks ANN 

In order to increase the probability of good characterization of studied compounds, neural networks (ANN) can 

be used to generate predictive models of quantitative structure–activity relationships (QSAR) between a set of 

molecular descriptors obtained from the MLR and observed activity. The ANN calculated cytotoxicity model 

was developed using the properties of several studied compounds. The correlation between ANN calculated and 

experimental cytotoxicity values are very significant as illustrated in figure 7 and as indicated by R and R
2
 

values. 

N = 21          R = 0.956          R
2
 = 0.914          RMSE = 0.0536 

  
Figure 7: Correlations of observed and predicted activities calculated using ANN 

 

The statistic of the three steps of the calculation by the ANNs: training, validation and test are illustrated in 

table 4. 
Table 4: Values obtained by ANNs 

 Samples RMSE R R
2
 

Training 15 0.0535931 0.956284 0.914479 

Validation 3 0.0418975 0.955253 0.912508 

Test 3 0.212149 0.976446 0.953446 

R: correlation coefficient; R
2
: determination coefficient; RMSE: root mean square error. 
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The obtained squared correlation coefficient (R
2
) value is 0.914 for this data set of 2-alkyl and 2,6-dialkyl-4-X-

phenols. It confirms that the multiple nonlinear regression (MNLR) results were the best to build the 

quantitative structure activity relationship models.  

In this part, we investigated the best linear QSAR regression equations established in this study. Based on this 

result, a comparison of the quality of the CPA, MLR and ANN models shows that the MNLR models have 

substantially better predictive capability because the MNLR approach gives better results than MLR and ANN. 

MNLR was able to establish a satisfactory relationship between the molecular descriptors and the activity of the 

studied compounds. 

 
Table 5: Observed values and calculated values of pIC50 according to different methods 

N° pIC50 (obs.)  pIC50 (calc.)  

  MLR NMLR ANN 

     

1 3.020 3.086 3.020 2.8091 

2 3.860 3.634 3.860 3.363 

3 3.200 3.440 3.200 2.890 

4 3.850 3.838 3.850 4.132 

5 4.040 4.035 4.040 4.019 

6 3.260 3.334 3.260 3.105 

7 3.250 3.341 3.250 3.700 

8 3.900 3.954 3.900 3.775 

9 3.730 3.656 3.730 3.591 

10 4.900 4.965 4.900 4.820 

11 3.910 3.975 3.910 3.972 

12 4.110 4.142 4.110 4.161 

13 4.240 4.198 4.240 4.130 

14 3.800 3.594 3.800 3.514 

15 3.040 3.001 3.040 2.813 

16 3.090 3.387 3.090 3.391 

17 3.490 3.454 3.490 3.203 

18 3.460 3.428 3.460 3.669 

19 3.390 3.275 3.390 3.096 

20 3.140 3.143 3.140 3.735 

21 3.800 3.599 3.800 3.655 

 

Conclusion 
In this work we have investigated the QSAR regression to predict the cytotoxicity of phenolic compounds. 

Comparison of key statistical terms like R or R
2
 of different models obtained by using different statistical tools 

and different descriptors has been shown in table 5. 

The study of the quality of the MLR, MNLR and ANN models show that the MNLR result has substantially 

better predictive capability than the other methods. With MNLR approach, we have established a relationship 

between several descriptors and inhibition values pIC50 of several organic compounds based on ortho alkyl 

substituted 4-X-phenols in satisfactory manners. 

Finally, we can conclude that studied descriptors, which are sufficiently rich in chemical, electronic and 

topological information to encode the structural feature may be used with other descriptors for the development 

of predictive QSAR models. 
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