
J. Mater. Environ. Sci. 5 (4) (2014) 1288-1297                                                                                              K.F.Khaled et al. 

ISSN : 2028-2508 

CODEN: JMESCN 

 

1288 
 

 

 

 

Corrosion inhibition of mild steel by some sulfur containing  

compounds: Artificial neural network modeling 

 
K.F. Khaled

1,2
*, N. S. Abdel-Shafi

2,4
 

1Materials and Corrosion Laboratory, Chemistry Department, Faculty of Science, Taif University, Saudi Arabia 
2Electrochemistry Research Laboratory, Chemistry Department, Faculty of Education, Ain Shams Univ., Roxy, Cairo, Egypt 

3 Chemistry Department, Faculty of Science, Hail University, Saudi Arabia 

 

Received 20 Nov 2013, Revised 08 Feb. 2014, Accepted 22 Feb. 2014 

*Corresponding Author. E-mail: k.khaled@tu.edu.sa ; Tel: (+966550670425) 

 

Abstract 
Advances in corrosion inhibition studies revealed that the relationship between structure of the inhibitor molecules and 

their inhibition efficiencies is essentially a non-linear and highly complex process particularly out of reach of classical 

statistical modeling techniques. The non-linearity of the corrosion process forced us to look for other solutions to track this 

complex process. Application of Artificial Neural Networks (ANNs) may provide better and more comprehensive results. 

In this work ANNs were used to predict the inhibition efficiencies of ten sulfur containing compounds on the corrosion of 

mild steel in hydrochloric acid solutions. A (6-3-1) network was adopted to predict the corrosion inhibition efficiencies of 

the sulfur containing compounds. The descriptors (inputs) were obtained using quantum chemical calculations. Highest 

occupied molecular orbitals, EHOMO, lowest unoccupied molecular orbitals, ELUMO, energy gap, (ELUMO-EHOMO), molecular 

area, molecular volume and total dipole moments were selected as the ANN inputs to predict the corrosion inhibition 

efficiencies (output).  

 

Keywords: Artificial Neural network; Corrosion inhibitor; Quantum chemical descriptors 

 

1- Introduction 
The reliable prediction of corrosion behavior is a fundamental requirement for the effective control of corrosion. At 

first sight, this is relatively easy. There is an extensive corrosion literature, and we can simply look up the relevant 

information. Unfortunately, real world corrosion never seems to involve quite the same conditions as have been 

tested before and there is also the difficult question of the inherent variability of the corrosion process[1]. 

Several attempts to use neural network modeling in the corrosion science have been made in the last three decades. 

An early published attempt to apply a neural network to a corrosion problem was that of Smets and Bogaerts [2]. 

They developed a series of neural networks to predict the SCC of type 304 stainless steel in near-neutral solutions as 

a function of chloride content, oxygen content and temperature [3]. They conclude that the neural networks are adept 

at many classification tasks such as data analysis, which require the ability to match large amounts of input 

information simultaneously and generate categorical or generalized output. They successfully applied neural 

networks for the prediction of the SCC risk of austenitic stainless steels. They firstly developed a neural network 

describing the SCC risk of steel type 304 as a function of the temperature and the chloride concentration. Secondly, 

they used the neural networks to estimate the SCC risk of the same material as a function of the oxygen and chloride 

concentration. Finally, they combined the effect of the three parameters (temperature, chloride concentration, and 

oxygen content) on the occurrence of SCC for austenitic chromium-nickel stainless steels in high-temperature water. 

Bassam et al[4] proposed a neural network model that can predict the corrosion type in a steel pipeline as a function 

of four input parameters (inhibitor concentration, experimental time, real experimental impedance component, and 

imaginary impedance experimental component) and exhibit a good ability for generalization. The neural network 

model was successfully trained with experimental database and validated with a fresh database (in the specified range 

of key operating conditions) 

Urquidi-Macdonald et al[5] developed a neural network model for predicting the number and depth of pits in heat 

exchangers. No information about the network size or number of training point was given, even though there appear 

mailto:k.khaled@tu.edu.sa


J. Mater. Environ. Sci. 5 (4) (2014) 1288-1297                                                                                              K.F.Khaled et al. 

ISSN : 2028-2508 

CODEN: JMESCN 

 

1289 
 

to be rather little. Hence there must be some doubt about the consistency of the predictions obtained. On the other 

hand the predicted evolution of pit depth and number does appear plausible[3]. 

Smets and Bogaerts[6] used "artificial intelligence" approach (i.e. combination of different knowledge 

representations, such as neural networks and expert systems) to provide better (phenomenological) models of the 

SCC problem in boiling water reactor environments. Such models can help engineers and utilities to predict and 

manage the potential risks of SCC in boiling water nuclear reactors. Silverman and Rosen[7] jointed artificial neural 

networks with an expert system in order to foretell the type of corrosion from polarization curves. Inputs to the 

networks included the passive current density, the pitting potential and the re-passivation potential, while outputs 

were the risks of crevice, pitting and general corrosion. Two approaches were used: independent networks for each 

type of corrosion, and a single combined network producing all three outputs. The expert system was used to 

understand the outputs produced by the two approaches. 

This combination of neural network with an expert system ‘supervisor’ offers interesting possibilities; although in 

this particular case it seems probable that the available training set (87 examples) was not really adequate to describe 

the dependence of the type of corrosion on the seven input variables [3]. Hence a larger training set could have lead 

to neural networks that were sufficient by themselves[3]. Again, Silverman [8] also applied neural network methods 

to the prediction of service behaviour of polymeric linings from experimental data. Inputs to the network were 

parameters obtained from a short-term solvent uptake test, while the output was a pass-fail description of service 

behaviour[3]. Taking into account the inherent complexity of this problem the results obtained seem hopeful. For 

example, the neural network was able to produce a correct prediction for three out of four examples of a lining 

material that was not included in the training data [3].  

Khaled et al. [9, 10] used artificial neural network model to predict the inhibition efficiency of thiophene and its 

derivatives. The predictions were validated and were reliable. The neural network analysis produced instantaneous 

results of corrosion inhibition efficiency. 

Artificial neural networks (ANNs) have been used to model tribological processes and have provided promising 

results [12]. The main functions performed by ANNs were predictions (model) and classifications of the process. 

Prediction may be used for diagnosis, accelerated life-time testing, on-line control of manufacturing processes that 

involve wear and prediction of the main properties of the mechanical systems, during the conceptual design stage. 

Both supervised and unsupervised models were used successfully to model the process. P. Srinivasa Pai et al. [12], 

used neural networks to model the microabrasion–corrosion processes of two tribological couples, a polymer/mild 

steel (as a function of load and potentials and in a carbonate/bicarbonate solution of pH 9.8) and ceramic/lasercarb 

coating (as a function of load and pHs of different solutions. The results clearly demonstrate that artificial neural 

networks, ANNs can be effectively used to model tribocorrosion processes and there is a need for conducting further 

experiments and data acquisition in order to model the process in a more effective manner. Ben-Hain and Macdonald 

[13] used the neural network model to forecast the influence of various parameters on the acidity of simulated brines. 

The solutions were based on sodium and magnesium chlorides; the network inputs were sodium and magnesium 

cations concentration and the temperature, and the output was the predicted pH value. A training set of more than 

hundred points were used for training, and a network with only two hidden nodes in a single layer was used, and the 

network achieved a good result. The prediction error was of the same order as the experimental error. 

Cottis [1] presented a very good survey about applications of artificial neural networks in corrosion science. He 

concluded that artificial neural networks have generally been claimed to be successful in modeling various types of 

corrosion behavior. However, it is difficult to evaluate the quality of the model that is provided by a neural network 

with many input variables, and many studies have only validated the performance of the neural network to a limited 

extent [1]. Also, in this study; Cottis mentioned that there is a need to provide an indication of the confidence that can 

be placed in the prediction of a neural network. This requires further work towards developing the necessary 

techniques. 

On continuation of our works on using neural networks to model the corrosion inhibition efficiency[9, 10], The aim 

of this work is to present a predictive model for the experimental corrosion inhibition data of mild steel by ten sulfur 

containing in hydrochloric acid solutions [11]. The molecular structures of the ten thio (sulfur) containing 

compounds namely: 6-thioguanine (TG), 2,6-dithiopurine (DTP), 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol 

(APTT), N’-(3,4-dihydroxybenzylidene)- 3-{[8-(trifluoromethyl)quinolin-4-yl]thio} propane hydrazide (DHBTPH), 

3-{[8-(trifluoromethyl)quinolin-4- yl]thio}-N’-(2,3,4-trihydroxybenzylidene)propane hydrazide (TQTHBH), 5-(1H-

1,2,4-triazole-1-alkyl)-1,3,4-oxadiazole-2-thiol (TAOT), N’-[4-(diethylamino) benzylidine]-3-{[8-(trifluoromethyl) 

quinolin-4-yl]thio}propane hydrazide (DEQTPH), Quinolin- 5-ylmethylene-3-{[8-(trifluoromethyl)quinolin-4-
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yl]thio}propanohydrazide (QMQTPH), 3,5-bis(4-methylthio phenyl)-4H- 1,2,4-triazole (4-MTHT), N-(2-thio 

benzimidazolyl methyl) isatin- 3-isonicotinoyl hydrazone (TBIH) are presented in Table 1. 

The selected sulfur containing compounds were previously reported as corrosion inhibitors for mild steel in 1.0 M 

HCl solution at 30 C [11]. 

 
Table 1: Inhibition efficiencies and molecular structures of the studied inhibitor series 

 Inhibitor Name Structure 
Inhibition 

Efficiency [11] 

1 
6-thioguanine 

(TG) 

 

77.9 

2 
2,6-dithiopurine 

(DTP) 

 

85.9 

3 
4-amino-5-phenyl-4H-1,2,4-

triazole-3-thiol 

(APTT) 

 

86.1 

4 

N'-(3,4-dihydroxylbenzylidene)-3-

{[8-(trifluoromethyl)quinolin-4-

yl]thio}propanohydrazide 
(DHBTPH) 

 

88.4 

5 

5-((1H-1,2,4-triazol-1-yl)methyl)-

4H-pyrazole-3-thiol 

(TAOT) 

 

89.1 

6 

(E)-N'-(4-

(diethylamino)benzylidene)-3-((8-

(trifluoromethyl)quinolin-4-

yl)thio)propanehydrazide 
(DEQTPH) 

 

91.8 

7 

(E)-N'-(naphthalen-1-ylmethylene)-

3-((8-(trifluoromethyl)quinolin-4-

yl)thio)propanehydrazide 

(QMQTPH) 

 

93.1 
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 Inhibitor Name Structure 
Inhibition 

Efficiency [11] 

8 

3-{[8-(trifluoromethyl)quinolin-4-

yl]thio}-N'-(2,3,4-

trihydroxybenzylidene)propane 

hydrazide 

(TQTHBH) 
 

88.9 

9 

3,5-bis(4-methylthiophenyl)-4H- 

1,2,4-triazole 

(4-MTHT) 

 

96.8 

10 

N-(2-thio benzimidazolyl methyl) 

isatin- 

3-isonicotinoyl hydrazone 

(TBIH) 

 

98.04 

 

2. Computation details 
Geometrical parameters of all stationary points for the investigated sulfur containing compounds are optimized by 

employing analytical energy gradients. The generalized gradient approximation (GGA) within the density functional theory 

was conducted with the software package DMol3 in Materials Studio of Accelrys Inc. [14]. All calculations were 

performed using the Becke-Lee-Yang-Parr (BLYP) exchange correlation functional and the double numerical with 

polarization (DNP) basis set [15-17], since this was the best set available in DMol3. A Fermi smearing of 0.005 hartree and 

a real space cutoff of 3.7 Å was chosen to improve the computational performance. All computations were performed with 
spin polarization. 

The phenomenon of electrochemical corrosion takes place in the liquid phase, so it is relevant to include the effect 

of solvent in the computations. The Self-Consistent Reaction Field (SCRF) theory [18], with Tomasi’s polarized 

continuum model (PCM) was used to perform the calculations in solution. These methods model the solvent as a 

continuum of uniform dielectric constant ( =78.5) and define the cavity where the solute is placed as a uniform series of 

interlocking atomic spheres. Frontier orbital distribution was obtained, at the same basis set level, to analyze the reactivity 

of inhibitor molecules. 

 

2.1 Artificial Neural Networks 

Neural networks are inspired by the way the human brain works. The brain consists of billions of neurons, which are linked 

together into a complex network. A neuron communicates with another by sending an electrical signal along an axon, 

which is a long nerve fiber that connects to the second neuron at a synapse. Each neuron acts as an information processing 

element because the electrical signals sent out by one neuron depend on the strength of the incoming signals at its 
synapses[19]. An artificial neural network consists of an interconnected network of processing elements called nodes. A 

number of simplifying assumptions are made compared with the way that neurons are connected within the brain. It is 

assumed that the nodes are arranged in layers and that the input connections to each node come only from nodes in the 

layer directly below it. Hence, the structure of an artificial neural network looks something like the illustration below. 

 
Figure 1: Structure of an artificial neural network[19] 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TFN-4XK45FW-3&_mathId=mml50&_user=5413195&_cdi=5231&_pii=S0009261409013773&_rdoc=1&_ArticleListID=1187069760&_issn=00092614&_acct=C000052544&_version=1&_userid=5413195&md5=b711b3646c87d1feb18219be6a1c66fc
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The lower layer represents the input layer, in this case, with five inputs labeled X1 through X5. The input layer is used to 

introduce the input (predictor) variables to the network. The upper layer is the output layer. The outputs of the nodes in this 

layer represent the predictions made by the network for the response variables. In this case, there is a single response, 

labeled Z1. This network also contains a single hidden layer with four nodes[19]. In this work six descriptors include 

(molecular orbitals; HOMO and LUMO energy, energy gap, dipole moment, molecular area and molecular volume) the 

single response was the predicted inhibition efficiencies. 

It has been found empirically that a single hidden layer is sufficient for modeling most data sets. Additional 
hidden layers allow the neural network to model more complex functions. As corrosion is a complex and nonlinear 

phenomenon that is too complex to be described by analytical methods or empirical rules, which make it an ideal 

pheromone to be studied using more than one hidden layer in artificial neural networks [10]. Details about the kolmogorov 

theorem that explain how a network with more hidden layers might be able to find a good model more easily are described 

elsewhere [9]. 

Training is the process whereby the connection weights and biases are set so as to minimize the prediction error 

for the network. For a particular set of weights and biases, each of the training cases are introduced to the network and an 

error function is used to determine how well the calculated outputs match the expected output values. As it is, in general, 

not possible to analytically determine where the global minimum of the error function is, an iterative method is used. In 

each training cycle, the value and gradient of the error function are calculated, and the weights and biases are adjusted 

according to the algorithm being used[19]. 

 

3. Inhibitors 

Corrosion inhibition experimental studies for ten sulfur containing compounds namely, 6-thioguanine (TG), 2,6-dithio 

purine (DTP), 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), N’-(3,4-dihydroxybenzylidene)- 3-{[8-(trifluoro 

methyl) quinolin-4-yl]thio}propanohydrazide (DHBTPH), 3-{[8-(trifluoromethyl)quinolin-4- yl]thio}-N’-(2,3,4-trihydroxy 

benzylidene)propane hydrazide (TQTHBH), 5-(1H-1,2,4-triazole-1-alkyl)-1,3,4-oxadiazole-2-thiol (TAOT), N’-[4-(diethyl 

lamino) benzylidine]-3-{[8-(trifluoromethyl) quinolin-4-yl]thio}propane hydrazide (DEQTPH), Quinolin- 5-ylmethylene-

3-{[8-(trifluoromethyl)quinolin-4-yl]thio}propanohydrazide (QMQTPH), 3,5-bis(4-methylthiophenyl)-4H- 1,2,4-triazole 

(4-MTHT), N-(2-thio benzimidazolyl methyl) isatin- 3-isonicotinoyl hydrazone (TBIH) are presented in Table 1.The 

experimental corrosion inhibition efficiencies of these inhibitor candidates have been collected from literature [11]. 

 

4. Results and discussion 
4.1 QSAR study using the artificial neural network 
Artificial neural networks in this work are presented from the perspective of their potential use as modeling tools in 

quantitative structure–activity relationships (QSAR) research. Neural networks are characterized by topology, 

computational characteristics of their elements, and training rules [20].  
The quality of the inhibition efficiencies data was assessed and the presented in Table 2. The distribution of the 

experimental data in Table 1 shows accepted normal distribution which enables us to start building a correlation 

matrix. The normal distribution behavior of the studied data in Table 1, was confirmed by the values of standard 

deviation, mean absolute deviation, variance, skewness and kurtosis presented in Table 2 after applying a univeriate 

analysis. Univeriate analysis is a technique used for generating statistics independently for the experimental 

inhibition efficiencies in Table 1. The skewness and kurtosis are the most important parameters . Skewness is the 

third moment of the distribution, which indicates the symmetry of the distribution. As the skewness is negative, the 

distribution of data values within the column is skewed toward negative values. For a symmetrical distribution, the 

skewness is zero. Kurtosis is the fourth moment of the distribution, which indicates the profile of the column of data 

relative to a normal distribution. Univariate analysis calculates Fisher kurtosis, which subtracts 3.0 from the 

definition above. For a normally distributed data set, it gives a value of 0.0. If the kurtosis is positive, the distribution 

of data in the column is more sharply peaked than a normal distribution. If the kurtosis is negative, the distribution is 

flatter than a normal distribution [21, 22].  

Descriptors for the ten sulfur containing compounds are presented in Table 3. Quantum chemical parameters 

calculated in presence of solvent molecules as presented in computational details section are depicted in Table 3. 

These compound’s descriptors and properties are used for developing quantitative structure activity relationships and 
property prediction. 

Table 3 presents the quantum chemical descriptors that will be used to build a correlation matrix. These descriptors 

include the HOMOs, LUMOs, energy gap, total dipole moment, molecular area and volume. 
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Table 2:Univariate analysis of the experimental inhibition efficiencies data 

  B : Experimental Inhibition Efficiencies 

Number of sample points 10 

Range 20.14000000 

Maximum 98.04000000 

Minimum 77.90000000 

Mean 89.60400000 

Median 89 

Variance 30.51730000 

Standard deviation 5.82307000 

Mean absolute deviation 4.26480000 

Skewness -0.34085500 

Kurtosis -0.64955400 

 

Table 3: Descriptors for sulfur containing compounds calculated using quantum chemical method 

Inhibitor 

Abbreviation 

[11] 

Experimental 

Inhibition 

Efficiencies[11] 

HOMO 

(eV) 

LUMO 

(eV) 

Energy 

gap 

(LUMO-

HOMO), 

eV 

Total 

Dipole 

Moment 

(e Å) 

Surface 

Area 

(Å2) 

Molecular 

Volume 

(Å3) 

Neural 

Network 

Prediction 

for 

Experimental 

Inhibition 
Efficiencies 

DTP 85.90 -9.28 -4.23 5.05 2.53 176.41 140.91 90.04 

4-MTHT 96.80 -8.13 -1.17 6.96 6.63 364.40 295.52 96.79 

TG 77.90 -8.20 -1.24 6.97 2.67 180.27 140.58 83.85 

APTT 86.10 -8.41 -0.86 7.55 5.18 213.85 174.26 86.10 

DEQTPH 91.80 -8.33 -1.44 6.89 9.57 531.97 441.11 91.80 

DHBTPH 88.40 -8.50 -2.02 6.48 10.08 478.26 392.00 93.75 

QMQTPH 93.10 -8.39 -1.48 6.91 11.17 487.91 405.20 93.10 

TAOT 89.10 -9.48 -1.44 8.04 4.71 188.99 149.89 89.10 

TBIH 98.04 -8.90 -3.62 5.27 3.54 431.31 377.17 98.01 

TQTHBH 88.90 -7.91 -1.23 6.68 5.79 459.73 374.30 88.91 

 
Correlation matrix presented in Table 4 illustrates all possible pairwise correlation coefficients for a set of 

descriptors. In Table 4, we identify the highly correlated pairs of variables, and therefore redundancy in the data set 

will be identified [10]. Each cell of the matrix corresponds to the correlation between two columns of Table 3. The 

correlation coefficients lie between -1.0 and +1.0. A value approaching +1.0 indicates that the two columns are 

highly correlated and a value approaching -1.0 also indicates a high degree of correlation, except that the data 

changes values in opposite directions. A correlation coefficient close to 0.0 indicates very little correlation between 

the two columns. The diagonal of the matrix always has the value of 1.0. To aid in visualizing the results, the cells in 

the correlation matrix grid are colored according to the correlation value in each cell. A standard color scheme is 

used when the correlation matrix is generated: +0.9 ≤X≤+1.0 (orange), +0.7≤ X<+0.9 (yellow), -0.7<x>+0.7 (white), 

-0.9 <x>-0.7 (yellow) and -1.0 ≤x≤-0.9 (orange) [10, 22]. 

A regression analysis of the descriptor variables presented in the correlation matrix in Table 4 compared 

against the measured corrosion inhibition values in Table 1 [23, 24]. There are many more descriptor variables than 

measured inhibition values, so we have reduced a number of descriptors that did not highly correlates with each 

other. Typically, a ratio between two and five measured values for every descriptor should be sought to prevent over 

fitting. 
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Table 4: Correlation matrix of the studied variables 

 

Experimental 

Inhibition 

Efficiencies[11] 

HOMO 

(eV) 

LUMO 

(eV) 

Energy 

gap eV 

Total Dipole 

Moment (e Å) 

Surface 

Area 

(Å2) 

Molecular 

Volume (Å3) 

Experimental 

Inhibition 

Efficiencies[11] 

1.00 -0.03 -0.17 -0.20 0.37 0.61 0.63 

HOMO (eV) -0.03 1.00 0.61 0.20 0.37 0.47 0.45 

LUMO (eV) -0.17 0.61 1.00 0.90 0.38 0.10 0.06 

Energy gap, eV -0.20 0.20 0.90 1.00 0.27 -0.14 -0.17 

Total Dipole 

Moment (e Å) 
0.37 0.37 0.38 0.27 1.00 0.77 0.75 

Surface Area (Å2) 0.61 0.47 0.10 -0.14 0.77 1.00 0.99 

Molecular Volume 

(Å3) 
0.63 0.45 0.06 -0.17 0.75 0.99 1.00 

 
Table 5: Summary of input data for neural network training 

Number of rows requested 10 

Number of rows used 10 

Number of rows omitted due to invalid row description 0 

Number of rows omitted due to invalid data 0 

Number of columns requested 7 

Number of columns used 7 

Number of columns omitted due to invalid column description 0 

Number of columns omitted due to invalid data 0 

Number of cells omitted due to invalid data 0 

Number of cells replaced by default value 0 

The major drawback of regression analysis is the danger of overfitting. This is the risk that an apparently good 

regression equation will be found which is based on a chance numerical relationship between the y variable and one 

or more of the x variables, rather than a genuine predictive relationship. When an overfitted model is used 

predictively, the predicted values for untested compounds can turn out to be very different from the true values, when 

these are eventually determined, even though the predicted values for the original tested compounds used to derive 

the regression equation were close to the true values. Such a regression equation has no predictive power. Cross 

validation is used to estimate the true predictive power of every regression model to reduce the risk of chance 

overfitting going undetected. It is important to check the results of cross validation as well as the other diagnostics to 

ensure that a regression model has true predictive ability[19]. 

 

Table 6: Cross validation of the input data for neural network training  
r^2 0.999994 

r^2(CV) -0.134644 

Residual Sum of Squares 5.11E-05 

Predictive Sum of Squares 10.2118 

Analysis type Neural Network Training 

Network type Predictor 

Number of hidden layers 1 

Network configuration 6 (Input) - 3 - 1 (Output) 
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Tables 5 and 6 show a summary of the input data for the neural network training set and the cross validation of the 

descriptor values used in the neural network analysis. Table 5 shows that all the studied sulfur containing compounds 

corrosion inhibitor’s data was used in building the QSAR model and these data are validated against the descriptor 

values calculated from quantum chemical calculations [10, 22]. 

The cross validation data for the neural network model (Table 6) operates by repeating the calculation 

several times using subset of the original data to obtain a prediction model and then comparing the predicted values 

with the actual values for the omitted data. 

Applying the neural network prediction model generates a model containing predictions corresponding to 

each output of the neural network. The neural network model adds a new column containing a calculation of the 

model (Table 2). Also, residual values of the predictions correspond to each output of the neural network. 

The correlation coefficient r
2
 is the key measure of the predictive power of the suggested model. As the closer the 

value is approaching 1.0, the better the predictive power of the model. For a good model, the r
2
 value should be fairly 

close to 1.0. The correlation coefficient r
2
 for this study is equal to 0.99999, which is reasonably high and indicates 

the predictive power of the model [10, 22]. A closer look at the last column in Table 3 (the predicted inhibition 

efficiency using the neural network model) and comparing the predicted values with the experimental values (column 

2) proves the efficiency of the suggested model.  

Investigation of the neural network analysis (Table 6) in the QSAR study shows that the network 

configuration is six inputs, three hidden layers and one output layer. It has too many degrees of freedom (usually the 

number of network connections between nodes) for the number of observations (rows of data) for which the network 

is being trained. In this study there is one hidden layer with three nodes [10, 22]. 

Experimnetal Inhibition Efficiency

75 80 85 90 95 100
-20

0

20

40

60

80

100

Predicted inhibition efficiencies

Residual values

 
Figure 2: Plot of predicted inhibition and residuals vs. measured corrosion inhibition [22] using NNA. 

 

Figure 2 shows a relation between the predicted values, residual values and the experimental data in Table 1. A 

residual can be defined as the difference between the predicted value in the generated model and the measured value 

for corrosion inhibition. To test the constructed QSAR model, potential outliers have been identified in Figure 3. An 

outlier can be defined as a data point whose residual value is not within cross validated r
2
 values, is also high, even 

though the regression is significant according to the F-test.  

Figure 3 contains two charts. One contains the residual values plotted against the corrosion inhibition 

measurements and the other displays the residual values plotted against Table 5 row number. Each chart contains a 
dotted line that indicates the critical threshold of two standard deviations beyond which a value may be considered to 

an outlier. Inspection of Figure 4 shows that there are no points outside the dotted lines, which make the QSAR 

model acceptable. 



J. Mater. Environ. Sci. 5 (4) (2014) 1288-1297                                                                                              K.F.Khaled et al. 

ISSN : 2028-2508 

CODEN: JMESCN 

 

1296 
 

 
Figure 3: Outlier analysis for inhibition efficiency. 

5. Conclusions 
Advances in corrosion inhibition studies revealed that the relationship between structure of the inhibitor molecules and 

their inhibition efficiencies is essentially a non-linear and highly complex; particularly out of reach of classical statistical 

modeling techniques. Corrosion chemists were forced to look for other solutions. The application of neural networks may 

provide better and more comprehensive results. The Artificial Neural Networks (ANNs) were used to predict the inhibition 

efficiencies of sulfur containing compounds on the corrosion of mild steel in hydrochloric acid solutions. A network 

configuration consists of 6 inputs (quantum chemical descriptors), three hidden layers and one output (predicted inhibition 

efficiency was adopted to predict the corrosion inhibition efficiencies of ten sulfur containing compounds. The descriptors 

(input) were obtained using quantum chemical calculations include,:highest occupied molecular orbitals, EHOMO, lowest 
unoccupied molecular orbitals ELUMO, Energy gap (ELUMO-EHOMO), molecular area, molecular volume and total dipole 

moments were selected as the ANN input to predict the corrosion inhibition efficiencies. The predictions were reliable and 

the output values are within the range used in the training set. The neural network produced almost instantaneous results of 

corrosion inhibitor efficiency. 
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