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Abstract: The global increase in human activities has resulted in higher levels of heavy metals 

in groundwater, which can pose a health risk through contaminated drinking water. This study 

assessed the concentrations of selected heavy metals in 32 groundwater samples in Iyuku, 

Ikpeshi and environs, Edo State. The metals were analyzed using Atomic Absorption 

Spectrometer (AAS). The evaluation of health risks involved determining the chronic daily 

intake (CDI), Hazard Quotient (HQ), Hazard Index (HI), and cancer risks linked to the metals. 

The average concentrations of most heavy metals were within the safety limits set by the WHO 

and EPA for drinking water, except for iron, which had an average concentration of 1.28mg/l. 

The Average concentration of heavy metals was in decreasing order 

Fe>Zn>Cu>Mn>Ni>Pb>Cd. The overall hazard index including both ingestion and skin 

contact risks was 1.547, exceeded the safety threshold for children, indicating potential non-

carcinogenic health hazards and was 0.592 for adults, which is below the threshold for concern. 

Ingestion was identified as the primary exposure route. Additionally, the lifetime cancer risk 

from lead exposure was within acceptable levels for drinking water. Still, there was a 

significant total carcinogenic risk from Nickel (Ni) in the groundwater which was 2.29×10⁻³ 

for children and 8.74×10⁻⁴ for Adults, with children being more at risk than adults. The health 

risk assessment of groundwater can be crucial for effective monitoring and management of 

water resources in this area. 

 

 

1. Introduction 

The mechanization of mining in Nigeria began in 1939, driven by private enterprises. Since then, 

environmental degradation and public health issues associated with mining have worsened (Nwogha et 

al., 2017). Despite research on these issues, mechanized quarrying continues to contribute to 

environmental hazards, particularly through the release of heavy metals. While these metals are naturally 

present, their elevated concentrations pose significant risks to humans and other organisms (Qasem et 

al., 2021; Shakya and Agarwal, 2020; Karim et al., 2019). 
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Water is much more than just a human need; it is the most vital element for life ( Alilouch et al., 2017). 

Therefore the sources of water of in an area play a central role in the satisfaction of the drinkable water 

requirements, in irrigation and in domestic use (El Mountassir et al., 2017). In water systems, heavy 

metals are typically found in trace amounts, but even low concentrations can be toxic, damaging cell 

membranes, altering enzymes, and compromising DNA (Wu et al., 2016). Chronic exposure to these 

metals can lead to a range of health issues, including gastrointestinal problems, kidney dysfunction, and 

even cancer (Egorova and Ananikov, 2017; Fernandez Azevedo et al., 2012; Cobbina et al., 2015). The 

toxicity of metals like mercury and lead can cause severe health complications, including renal failure 

(Bernnhoft, 2012). Several methods were proposed to remove these toxic metals to secure health and 

animals (Savaranan et al., 2025; El Hammari et al., 2022; Errich et al., 2021; Deghles et al., 2019). 

As global concerns about water quality rise, understanding the contamination of water sources by heavy 

metals is crucial. These metals, though naturally occurring, are increasingly concentrated due to human 

activities like industrial manufacturing and mining (Omonona et al., 2020; Yap and Al-Mutairi, 2021). 

The presence of heavy metals in water can result from natural processes, but human activities such as 

mining are the main sources of contamination (Taylor et al., 2005). Mining contributes to heavy metal 

contamination through tailings and wastewater, which can affect land and water resources, even 

spreading over long distances. 

While some trace metals are essential for life, others, like cadmium and lead, are toxic even in small 

quantities. Heavy metals, with high atomic density, are natural components of Earth's crust but can 

become dangerous when they accumulate in the environment (Garbarino et al., 1995). Their toxic ionic 

forms can bind with biological molecules, creating stable, harmful compounds that are difficult to 

degrade (Duruibe et al., 2007). This study aims to assess both the carcinogenic and non-carcinogenic 

risks associated with heavy metals found in groundwater from Ikpeshi, Iyuku and its surrounding areas 

in Edo North, Edo State, Nigeria. It will also provide data on the concentrations of these heavy metals 

in the groundwater samples.  

 

2. Methodology 

2.1. Regional geology of the Study area 

Iyuku, Ikpeshi and environs area communities in Edo North, Edo State, Nigeria. is part of the 

southwestern section of the country's basement complex, which forms part of the Pan-African Mobile 

Belt. The region's geology is shaped by ancient crystalline rocks from the Precambrian era, including 

schists, granites, and gneisses, altered during the Pan-African Orogeny about 600 million years ago. The 

area is characterized by hills and valleys formed through faulting and folding (Oloto and Anyawu, 2013).  

2.2 Local geology 

The study area, Awa, is located in the southwestern part of Nigeria's basement complex, between 

latitudes 7° 07' 24"N and longitudes 6° 17' 03"E. The region is primarily composed of granite, gneiss, 
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and schist, with a dendritic drainage system. The climate follows a tropical wet-dry cycle, with the rainy 

season from April to October and the dry season from November to March. The average annual rainfall 

ranges from 1,000 to 1,500 mm, with the heaviest rainfall in July and August, and a brief mid-August 

break (Olowojoba et al., 2016). 

2.3. Methodology 

Sample collection: 

Groundwater samples from the study area was obtained from boreholes and hand dug wells used by the 

local population. GPS coordinates were used to locate and mark each sample. To prevent contamination, 

clean, sterilized polyethylene bottles were used, and the initial liters were discarded to avoid surface 

runoff contamination. Samples were labeled with a unique site code, date, and time, then placed in an 

ice-packed cooler at 4°C for transport to the laboratory (APHA, 2005; USEPA, 2013; Mgbenu and 

Egbueri, 2019).  

2.4. Laboratory analysis 

A total of 32 groundwater samples were analyzed for toxic metal concentrations. The samples were first 

filtered using 0.45 µm membrane filters to remove particulate matter, ensuring accurate metal 

measurements. After filtration, they were stored in clean, labeled containers to prevent contamination. A 

50 mL portion of each sample was treated with concentrated nitric acid (HNO₃) for acid digestion, which 

helps break down organic material and dissolve metals attached to particles (APHA, 2005). The samples 

were then heated in digestion vessels to ensure complete digestion. Toxic metals were analyzed using 

Atomic Absorption Spectrometry (AAS), a precise method for detecting low metal concentrations (Ukah 

et al., 2018). 

2.5. Carcinogenic and Non Carcinogenic risk assessment  

Chronic daily intake (CDI) estimates the average daily exposure to a contaminant over a certain period 

(Nyambura et al., 2020). CDI was determined using the eqn 1 and 2 and values presented in Table 1. It 

is used in the cancer risk formula to estimate the probability of developing cancer as a result of that 

exposure. 

Chronic Daily Intake (CDI): 

𝐶𝐷𝐼(𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛). =
𝐶∗𝐼𝑅∗𝐸𝐹∗𝐸𝐷

𝐵𝑊∗𝐴𝑇
                                            eqn 1 

𝐶𝐷𝐼(𝑑𝑒𝑟𝑚𝑎𝑙) =
𝐶∗𝑆𝐴∗𝐾𝑃∗𝐸𝑇∗𝐸𝐹∗𝐸𝐷∗𝐶𝐹

𝐵𝑊∗𝐴𝑇
                                 eqn. 2 

 

2.5.1 Carcinogenic risk 

This is typically estimated using the Incremental Lifetime Cancer Risk (ILCR), which represents the 

likelihood of an individual developing any form of cancer over their lifetime due to daily exposure to a 

specific amount of a carcinogenic element (Sultana et al., 2017). 
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Cancer Risk (CR):  𝐶𝑅 =  𝐶𝐷𝐼 ∗  𝐶𝑆𝐹                         Eqn. 3 

CSF = Cancer Slope Factor 

Table 1: Summary of exposure assumptions used to calculate carcinogenic and non-carcinogenic 

risk assessment through Ingestion and Dermal exposure. 

EXPOSURE 

FACTOR 

SYMBOLS UNITS ADULTS CHILDREN REFERENCE 

Exposure 

frequency 

EF      Years       365       365 (Duggal et 

al., 2017) 

Ingestion rate IR      L/day          2        1.5  

Body weight BW      Kg        70        20  

Average time AT      Years      25550      3650  

Exposure 

time 

ET    Hours/day      0.58       1 (USEPA, 

2004) 

Skin surface 

area 

SA         cm²     18000       6600 (USEPA, 

2004) 

Conversion 

factor 

CF      L/cm3      0.001       0.001  

Kp= Skin permeability coefficient for Cu, Pb, Mn and Fe is 0.001, kp for Ni is 0.0002, and 0.0006 for 

Zn in this study. (Edokpayi et al., 2018) 

Table 2:  Reference dose of selected heavy metals via ingestion and dermal pathways and cancer 

slope factor (CSF) (Joseph et al., 2022; USEPA, 2002) 

Heavy metals    Pb   Fe   Cu   Ni   Zn    Mn   Cd 

        

Reference 

dose(ingestion) 

0.0035    0.7    0.04   0.02    0.3   0.024   0.00002 

Reference dose 

(dermal) 

0.000525    0.14    0.012   0.0054    0.06 0.00096 0.00002 

CSF 0.0085      -       -   0.91        -       -   0.38 

 

2.5.2 Non Carcinogenic risk:  

Evaluated using the Hazard Quotient (Das et al., 2020) 

HQ =  
𝐶𝐷𝐼

𝑅𝐹𝐷
                                                                    Eqn. 4 (Das et al., 2020).  
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2. Cumulative Hazard Index (HI): For multiple contaminants, the cumulative hazard index is calculated 

by summing the individual hazard quotients (HQs). The total of all the hazard quotients represents the 

overall potential health risk, or hazard index (Wongsasuluk et al., 2014)  

𝐻𝐼 = ∑ HQ                                                                   Eqn. 5   (Wongsasuluk et al., 2014) 

An HI value of less than 1 is considered safe, while an HI value greater than 1 indicates potential non-

carcinogenic risk 

3. Results and Discussion  

3.1 Physico-chemical assessments 

The result of concentration of heavy metals (Fe, Zn, Cu, Pb, Cd, Mn, Ni, Ca, Mg, K, and Na) analyzed 

in 32 groundwater samples and their comparison with WHO and U.S. EPA standards (WHO, 2011; EPA, 1992) 

is presented in Table 3. Iron concentrations in groundwater samples ranged from 0.285 mg/L to 2.754 

mg/L, with an average of value of 1.28 mg/L.  Zinc (Zn) levels ranged from 0.186 mg/L to 0.952 mg/L 

with an average value 0.63 mg/L and Copper (Cu) ranged from 0.126 mg/L to 0.564 mg/L with mean 

value of 0.48 mg/L.  Manganese (Mn) ranged from 0.011 mg/L to 0.089 mg/L with mean value of 0.052 

mg/L, and Nickel (Ni) ranged from 0.010 mg/L to 0.056 mg/L with an average value of 0.034 mg/L. 

In this study, the mean concemtration of heavy metals and alkaline earths were in decreasing order of 

Mg>K>Fe>Ca>Zn>Cu>Na>Mn>Ni>Pb. Among heavy metals investigated, it was observed that Iron 

(Fe) and Manganese (Mn) concentration exceeded the WHO's recommended limit of 0.3 mg/L and 

0.05mg/L respectively. Previous studies have shown that Fe and Mn naturally exist in groundwater sources 

(Hamer et al., 2020; Koopmann et al., 2020). This finding is in agreement with (Eyankware et al., 2019) 

who attributed high maganese concentration in groundwater to industrial activities. 

Table 3: Concentrations of heavy metals in groundwater samples (mg/L) and comparison with WHO and 

USEPA standards (WHO, 2011; USEPA, 1992). 

Metals                                 Mean                                     WHO Standard             EPA Standard 
 

Fe 1.28125    0.3 0.3 

Zn 0.6319      5   5 

Cu 0.4812   1.3   2 

Pb 0.001 0.015 0.01 

Cd 0.000 0.005 0.003 

Mn 0.0527  0.05  0.1 

Ni 0.0336  0.1 0.07 

Ca 1.1199    - 100 

Mg 5.0855    -  50 

K 3.0572    -    - 

Na 0.2301    - 200 
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High iron and manganese levels can cause health issues like gastrointestinal distress and organ 

damage, especially in individuals with conditions like hemochromatosis (EPA, 2021)., indicating 

the need for further monitoring and potential treatment. The concentrations of Zinc (Zn) and 

Copper (Cu) in the groundwater samples were below the (WHO, 2011 and USEPA 1992). limits, 

both also within safe limits. Although high concentrations of manganese have been associated with 

neurological effects (EPA, 2021), the levels detected in this study were within safe limits, and 

nickel concentrations were also below the 0.1 mg/L guideline. 

The study found that calcium (Ca) and magnesium (Mg) concentrations in groundwater (1.1199 

mg/L for Ca and 5.0855 mg/L for Mg) were within acceptable ranges and did not pose non-

carcinogenic health risks. Lead (Pb) and cadmium (Cd), known carcinogens, were largely absent 

or below detectable levels, suggesting low carcinogenic risks from these metals. However, lead is 

linked to neurotoxicity and kidney damage, particularly in children, and cadmium is associated 

with renal issues and bone demineralization (WHO, 2011). Sodium (Na) concentrations, though 

not immediately concerning, could pose a cardiovascular risk for those with pre-existing 

conditions if consumed chronically, while potassium (K) levels were within safe limits, posing no 

significant health risks. However, some scientist believe that to evaluate the effects and health risk 

of exposure to heavy metals, more is needed to pay attention to the amount and concentration of 

these metals and ground water sources should be examined with other indicators (Dashtizadeh et 

al., 2019). In a study, (Barzegar et al., 2019) investigated the concentration of heavy metals for 29 

samples of drinking water sources in Western Iran. The results of their research showed that the 

average concentration of some trace elements such as As, Pb and Zn was higher than the standards 

announced by the (WHO, 2011; Barzegar et al., 2019). In another study, (Dashtizadeh et al., 2019) 

evaluated the levels of heavy metals in the ground water sources of Zahedan city (south of Iran). 

Their research showed that the average levels of total trace metals were lower than the limits 

declared by the (USEPA 1992 and WHO, 2011).  They also believed that based on these guidelines 

and standard, drinking water sources in Zahedan city lack health risks (Dashtizadeh et al., 2019). 

 3.2 Human health risk assessment  

The presence and distribution of heavy metals in groundwater samples may increase the risks to 

human health through various exposure routes (ingestion and dermal). The Assessment of human 

health hazards and risks involved the estimation of the type and level of negative health impacts 

that can develop in humans on exposure to toxic metals (USEPA, 2010) 

3.2.1 Non carcinogenic risks 

Human health risk evaluation is the process of assessing the nature and extent of potential adverse 

health effects in humans exposed to toxic metals in contaminated environments (Mohammadi et 

al., 2019). In this study, health risks caused by ingestion and dermal exposure to toxic metals in 

groundwater were considered. The hazard quotient (HQ) was evaluated for both children and 
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adults via ingestion and dermal pathways to determine potential non-carcinogenic risks associated 

with metal exposure. The results indicated that for children, the HQ values via ingestion followed 

the decreasing order: Cu > Mn > Zn > Ni > Fe > Pb > Cd, while the dermal exposure pathway 

showed the trend: Cu > Mn > Fe > Zn > Ni > Pb > Cd. In contrast, adults exhibited a different 

pattern. For ingestion, the HQ values were ranked as: Cu > Mn > Zn > Fe > Ni > Pb > Cd, whereas 

the dermal pathway followed the order: Mn > Cu > Fe > Zn > Pb > Ni > Cd as shown in Table 4 

and Table 5. 

The hazard index for both adults and children followed a similar decreasing trend with Cu > Mn 

> Zn > Fe > Ni > Pb > Cd via ingestion and dermal pathways.  

Table 4: Summary of the Chronic daily intake (CDI), Hazard Quotient (HQ) Hazard Indices (HI) 

and Carcinogenic Risk (CR) associated with the ingestion and dermal exposure to selected heavy 

metals in groundwater among children in the study area.  

METAL CDIᵢₙg CDI(derm) HQᵢₙg HQ(derm)   HI CRᵢₙg CR(derm) TCR 

Fe 0.09609 4.22×10⁻⁴ 0.13727 0.00301 0.1403      -       -      - 

Zn 0.04739 1.25×10⁻⁴ 0.15797 0.00208 0.1601      -       -      - 

Cu 0.03609 1.58×10⁻⁴ 0.90225 0.1323 0.9154      -       -      - 

Pb 0.000075 3.3×10⁻⁷ 0.02142 0.000628 0.0220 6.375×10⁻⁷     2.8×10⁻⁹ 6.4×10⁻⁷ 

Cd        -       -           -         -     -      -        -     - 

Mn 0.00395 1.73×10⁻⁵ 0.16468 0.01811 0.1827      -        -     - 

Ni 0.00252 2.21×10⁻⁶ 0.12600 0.00041 0.1264 0.002932 2.01×10⁻⁶ 2.29×10⁻³ 

   ∑HQ= 

1.50959 

∑HQ= 

0.03746 

    

Table 5: Summary of Hazard Quotient (HQ) and carcinogenic risk (CR), Hazard Index (HI) and 

Total Carcinogenic risk (TCR) via Ingestion and dermal pathways of heavy metals in 

groundwater for Adults in the study area. 

METALS CDI(ing) CDI(derm) HQ(ing) HQ(derm)     HI CR(ing) CR(derm)   TCR 

Fe 0.03660 1.91×10⁻⁴ 0.05229 0.00136 0.0536      -        -      - 

Zn 0.01804 5.65×10⁻⁵ 0.06018 0.000941 0.0611      -        -      - 

Cu 0.01374 7.17×10⁻⁵ 0.34371 0.00597 0.3496      -        -      - 

Pb 0.00003 1.49×10⁻⁷ 0.00857 0.000284 0.0085 2.55×10⁻⁷ 1.26×10⁻⁹ 2.44×10⁻⁷ 

Cd     -      -      -        -       -      -        -      - 

Mn 0.00150 7.85×10⁻⁶ 0.06273 0.00818 0.0709      -        -      - 

Ni 0.00096 1.002×10⁻⁶ 0.04800 0.000185 0.0482 0.000873 9.12×10⁻⁷ 8.74×10⁻⁴ 

   ∑HQ= 

0.57548 

∑HQ= 

0.01692 
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Although the HI for all metals was below 1, copper was identified as a concern, particularly for 

children, with an HI of 0.915, close to 1, signaling a higher potential risk (Badeenezhad et al., 

2023). 

The calculated HQ values for all metals were below the threshold of 1, suggesting that these metals 

do not pose significant non-carcinogenic health risks (Guerra et al., 2012). In this study it was 

observed that the hazard index (HI) in both children and adults via ingestion and dermal pathways 

suggests non-carcinogenic risk of metals (Tani et al., 2005). The HI for Cu was 0.915 for children 

and 0.349 for Adults respectively (See Table 4 and 5). This indicates that Cu in groundwater pose 

the highest non carcinogenic risks among the heavy metals. Although the Cu had the highest HQs 

and His than those of other metals, they was still lower than 1 indicating that they are likely to 

have weak impact on human health. This findings is in agreement with (Wang et al., 2021) who 

reported non carcinogenic risks of heavy metals in groundwater they investigated. Copper is 

crucial for several enzymes and essential in hemoglobin synthesis (Khan et al., 2014). However, 

excessive ingestion of Cu can cause acute toxicity, leading to gastrointestinal distress, nausea, 

vomiting, and diarrhea (Lam et al., 1985; Pizzaro et al., 1991). Nickel showed no non-carcinogenic 

risk, with an HI of 0.04819 for adults and 0.12641 for children. The most common health issue 

associated with Ni is contact dermatitis, particularly in women, due to dermal exposure, though 

some cases of systemic dermatitis through the oral route have been reported (Veien and Menne 

1990). In this study, Pb was also below the threshold with an HI of 0.00842 for adults and 0.02205 

for children, showing minimal non-carcinogenic risk. However, Pb toxicity is more harmful to 

children, as they excrete less Pb than adults. Lead (Pb) toxicity may cause neurodegenerative 

diseases, impair brain function, lower IQ, and prenatal exposure is linked to fetal abnormalities 

(NRC, 1993; Karri et al., 2018).  

For children, the total hazard index was 1.54, exceeding the threshold, while the THI for adults 

was 0.592, highlighting a greater non-carcinogenic risk for children (Adesanya et al., 2020). This 

increased risk for children stems from their higher susceptibility to toxicity, influenced by factors 

like lower body weight, developing organs, and faster metabolism, making them more vulnerable 

to the harmful effects of toxic metals at lower exposure levels (Khalid et al., 2022). These findings 

align with those reported in the Tarkwa Mining area of Ghana (Seidu and Ewusi2020), who 

examined the concentrations of heavy metals (Cd, Cu, Zn, As, Pb, Ni, Mn, Fe, Cr) in 39 

groundwater samples from Tarkwa. Their results indicated that the HQ levels for all heavy metals 

were below one, suggesting no non-carcinogenic health risks in the area. Similarly, this study's 

results are consistent with those of (Dessie et al., 2021)  who found HQ values of less than 1 for 

both adults and children for Fe, Cu, Zn, Mn, Ni, Cr, Pb, and As. 

3.2.2 Carcinogenic risks 

Among the heavy metals assessed in this study, lead (Pb) exhibited the lowest carcinogenic risk, 

with estimated values of 6.4 × 10⁻⁷ and 2.55 × 10⁻⁷ for children and adults, respectively, via 
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ingestion, and 2.8 × 10⁻⁹ and 1.26 × 10⁻⁹ via dermal exposure. These values fall well below the 

acceptable risk threshold, indicating minimal concern. In contrast, nickel (Ni) demonstrated the 

highest carcinogenic risk, with ingestion-related values of 2.29 × 10⁻³ for children and 8.74 × 10⁻⁴ 

for adults, and dermal exposure values of 2.01 × 10⁻⁶ and 2.9 × 10⁻³ for children and adults, 

respectively. The cancer risk (CR) values for Ni via ingestion for both age groups, as well as 

dermal exposure for adults, exceeded the (USEPA, 2011)  acceptable limit of 1 × 10⁻⁴, highlighting 

nickel as a potential carcinogenic hazard—particularly for children through the ingestion pathway.. 

This suggests that that they may have a considerable impact on human health in the area; consistent 

with the findings of this study (Mohammadi et al., 2019) reported the Carcinogenic risk of Cr, Cd, 

and Ni in drinking water of khorramabad, Iran. Their research reported carcinogenic risk levels 

exceeding the acceptable threshold, which aligns with our current findings, indicating a substantial 

health concern. This outcome is particularly consistent with the elevated risk associated with nickel 

observed in our study. 

4. Conclusion 

This study aimed to assess the health risks associated with exposure to heavy metals in Iyuku, 

Ikpeshi and environs.  Risk assessment was carried out through dermal and ingestion pathways 

using water samples from the region. The results showed that the average concentrations of heavy 

metals in the groundwater followed this order: Fe > Zn > Cu > Mn > Ni > Pb > Cd. The 

concentration of iron exceeded the maximum allowable limit, while the levels of Zn, Ni, Cu, Pb, 

Cd, and Mn were within the acceptable ranges set by both (WHO, 1995). The hazard quotient 

(HQ) values for these metals were all below 1, indicating a low non-cancer risk. However, the total 

hazard index  (THI) for children was above 1, while for adults, it was below 1, suggesting that 

children face a higher non-carcinogenic risk due to their greater exposure and lower body weight. 

Immediate action is needed, including water treatment measures (e.g., nanofiltration, 

ultrafiltration) and efforts to reduce contamination sources. Public health campaigns and 

awareness programs are also crucial for promoting safe water practices. The government should 

establish a body responsible for eliminating heavy metals from water through both physical and 

chemical methods. Monitoring wells should be sited at strategic locations within the study area in 

order to carryout periodic assessments of contaminant levels in the groundwater. Hence further 

research on direction of groundwater flow in the area should be investigated for proper aquifer 

characterization and contamination control.  
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