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Abstract: This study analyzes the inhibition activity of four nitroimidazole derivatives 

on copper corrosion in orthophosphoric acid. The activity of these compounds : 2-(2-

(4-chlorobenzylidene)hydrazinyl)-3-nitroimidazo[1,2-a]pyridine (CHNP), 2-(2-(3-

cyanobenzylidene)hydrazinyl)-3-nitroimidazo[1,2-a]pyridine (CYNP), 2-(2-(3-

bromobenzylidene)hydrazinyl)-3-nitroimidazo[1,2-a]pyridine (BNP), and 2-(2-(2,4-

dichlorobenzylidene)hydrazinyl)-3-nitroimidazo[1,2-a]pyridine (DNP), were 

evaluated using the mass loss technique and density functional theory (DFT) with 

B3LYP functional and 6-311G(d,p) base set. It was observed that the inhibition effect 

of these compounds intensified with the combined increase in concentration and 

temperature. Experimental results show that inhibition efficiency (IE) follows the 

following order: IE (CYNP) > IE (DNP) > IE (BNP) > IE (CHNP). Thus, CYNP stands 

out for its remarkable inhibition activity, reaching a maximum efficiency of 98.11% 

at 323 K and at a concentration of 2.10-4 M. The inhibition activity of these compounds 

is closely linked to their ability to donate and accept electrons from copper. The 

nucleophilic sites of this class of molecules, which are mainly made up of heteroatoms, 

and the electrophilic sites, mainly represented by carbon atoms, play a key role in their 

action mechanism. 

 

1. Introduction 

Nitrimidazoles are organic compounds derived from imidazole, widely used in medicine and 

biology for their antimicrobial and anticancer properties (Crowell et al., 2003; Upcroft et al.,2006). 

However, the use of certain organic and inorganic compounds as metal corrosion inhibitors has raised 

concerns in recent years, not least because of their potential toxicity (Milošev et al., 2016; Namitha et 

al., 2024; Arrousse et al., 2021; Hammouti et al., 2011; Karra et al., 2025). The application of these 

inhibitors in various industrial sectors, such as aeronautics, automotive, agriculture and pipelines, 

requires effective protection of metal equipment while minimizing environmental impacts. 

Contemporary research is therefore focusing on corrosion inhibitors that are less toxic, environmentally 

friendly and biodegradable. This concern has led researchers to explore the anticorrosive properties of 
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various plant extracts and therapeutic compounds (Gasparac et al.,2000; Shubhra et al., 2019; Jmiai et 

al.,2021; Lanzhou et al., 2020; Oubahou et al., 2024).  

More recently, bibliometric analyses have been emerged to discover more information about 

the scope of research, collaboration between countries and institutions, most prolific authors, and 

emerging research (Huan and Guan, 2020; Xiao and Li, 2021; Aichouch et al., 2025). In this focus, a 

bibliometric analysis can be conducted on “corrosion & imidazole” to show the prolific authors, the 

most cited papers as well as the countries published on the use of imidazole derivatives as corrosion 

inhibitors. Figure 1 exposed the evolution of publication against the years from 1981 to 2024. During 

this period, 721 papers were collected using Scopus. The number of publications increases to reach 90 

in 2024. The most published authors are: Kokalj (Solovenia, 20 papers), Stupnišek-Lisac (Croitia, 17 

papers), Rbaa (Morocco, 16), Zarrouk (Morocco, 14), Galai (Morocco, 12), Lakhrissi (Morocco, 12), 

Guo (China, 11), Ouakki (Morocco, 11), etc (Figure 2). The most cited paper belongs to Bereket et 

al., (2002), with more 330 citations.     

 
Figure 1: Evolution of publication against the years (1981-2024) 

 
Figure 2: Classification of the most published authors 
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The affiliation comparison indicates that Ibn Tofail university is the most published (72 papers), 

followed by the Chinese Academy of Science (38 papers), and University of Zagreb (26 papers) … 

But China is the first published (245 papers); India (90 papers), Saudi Arabia (58), Morocco (57) and 

US (52). The VOS viewer indicates also the formation of teams shown by circles at different colors 

(Figure 3). The Moroccan researchers at four colors (Zarrouk indicated by blue node, Rbaa (pink), 

Hammouti (Green) and Ebn Touhami (Orange)) and each color visualize the cluster (group of authors 

in collaboration) 

 
Figure 3: Author’s clusters via VOS viewer 

 

With this in mind, four imidazole derivatives were tested in this work to assess their corrosion-

inhibiting capabilities. These tests were carried out in a solution of orthophosphoric acid, a fluid 

commonly used in industry for operations such as descaling pipes and cleaning metal equipment, but 

which also exposes such equipment to corrosion (Spainhour et al., 2014). Damage caused by this 

phenomenon can result in considerable replacement costs. Furthermore, it is crucial to protect materials 

such as copper in order to prevent production stoppages and ensure infrastructure safety (Zarrouk et 

al., 2012; Hualiang et al., 2020). In the field of metal corrosion inhibition, several approaches are used. 

Among them, density functional theory (DFT), derived from computational chemistry, is proving to be 

a powerful tool. It relies on sophisticated computational methods and tools, such as numerical 

simulations and mathematical models, to analyze reaction mechanisms and interpret experimental 

results (Mohamed et al., 2018; Saha et al., 2015). This approach permits to resolve the chemical 

ambiguities associated with organic compounds and predict their behavior on metal surfaces. The tool 

is particularly valuable as it offers the possibility of exploring with great precision the molecular 

compounds reactivity in situations where direct experimentation would be complex or costly (Gökhan 

and Semra B et al., 2009). The aim of this study is to establish a correlation between the molecular 

properties of imidazole derivatives and their effectiveness as copper corrosion inhibitors in 

orthophosphoric acid.  
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2. Material and Methods 

2.1 Synthesis mechanism of the molecules used  

The four molecules used in our study were synthesized and analyzed by a team from the Matter 

Constitution and Reaction Laboratory at University of Felix Houphouët-Boigny, Ivory Coast. The 

synthesis mechanism is illustrated by the reaction diagram in Figure 4. 

 

Figure 4. Synthesis procedure of imidazole derivatives used  

2.2 Weight loss test 

Cylindrical copper samples, 1 cm high and 0.25 cm in diameter, were initially weighed (m1) 

using an analytical balance. These samples were then immersed in 50 ml of 2M orthophosphoric acid 

solution, either with or without an imidazole derivative at the desired concentration. Four 

concentrations 6.10-5M, 9.10-5M, 10-4M, 2.10-5M derived from the different inhibitors were prepared 

from 2M H3PO4. After one hour (1h), the samples were removed from the solution, brushed, rinsed 

thoroughly with distilled water, dried and reweighed (m2). This procedure was carried out at two 

separate temperatures, 298 K and 323 K. Weight loss (Δm = m1 - m2) was then determined. From these 

measurements, copper corrosion rate ( 𝑤 ) and inhibition efficiency (IE) of each molecule were 

calculated according to appropriate relationships: 

w =  
m2−m1

St
                                                              Eqn. 1                                                                                                                     

𝐼𝐸(%) =
w0−w

w0
× 100                                               Eqn. 2                                                                                                        

𝑤0 et  𝑤 (expressed in g.cm-2.h-1) are respectively the corrosion rate in the absence and presence of the 

molecule studied, S is the total surface area of copper sample and t is the immersion time. 

2.3 Computation details 

DFT calculations were performed using Gaussian 09W software (Frisch et al., 2009), using 

B3LYP functional and 6-311G(d,p) basis set (Becke, 1993; Lee et al., 1988). These functional uses 

approximations such as the local density approximation (LDA) and the generalized gradient 

approximation (GGA) (Becke, 1988). The molecular structures of the various compounds were 
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optimized using GaussView 5.0 (Table 1). This method is based on idea that energy of a quantum 

system can be determined by its electron density, rather than by the full wave function, which simplifies 

calculations while providing highly accurate results. Quantum chemical calculations are based on 

Kohn-Sham equations, a set of single-particle equations that describe electrons in an effective potential 

(Kohn and Sham, 1965). These equations permit to determine the electron density that minimizes total 

energy of the system (Perdew, 1986). The chemical parameters of global reactivity obtained from these 

DFT calculations include total energy (ET), highest occupied molecular orbital energy (EHOMO), lowest 

unoccupied molecular orbital energy (ELUMO), energy gap (∆E), dipole moment (μ), ionization energy 

(I), electron, affinity (𝐴), electronegativity (χ), global hardness (η), global softness (𝜎), 

electrophylicity index (ω), the fraction of electrons transferred between the inhibitor molecule (∆𝑁). 

The mathematical equations used to calculate these quantum descriptors are shown below. (Rajesh et 

al., 2018), (Mohammed et al., 2024), (Žaklina et al., 2021) (Kumar et al., 2019):  
 

𝐼 = −𝐸𝐻𝑂                                                                                                      Eqn. 3  

𝐴 = −𝐸BV                                                                                                    Eqn. 4   

∆𝐸 = 𝐸BV − 𝐸𝐻𝑂                                                                                    Eqn. 5 

𝜇𝑃 = (
𝜕𝐸

𝜕𝑁
)

𝜈(𝑟)
= −𝜒                                                   Eqn. 6 

𝜒 =
𝐼+𝐴

2
=  −

𝐸𝐵𝑉 +𝐸𝐻𝑂

2
                                                Eqn. 7 

𝜎 =
1

𝜂
=

2

𝐼−𝐴
                                                               Eqn. 8 

𝜂 =
𝐼−𝐴

2
=  

𝐸𝐵𝑉−𝐸𝐻𝑂

2
                                               Eqn. 9 

𝜔 =
𝜇𝑃

2

2𝜂
=

(I+A)2

4(I−A)
                                               Eqn. 10 

∆𝑁 =
𝜒𝐶𝑢−𝜒𝑖

2(𝜂𝐶𝑢+𝜂𝐶𝑢)
                                                        Eqn. 11 

In our study, the theoretical values of 𝜒𝐶𝑢 = 4.98 𝑒𝑉 (Pearson et al., 1988) and hardness  𝜂𝐶𝑢 = 0 ( 

Pearson et al., 1988) have been used for copper.  

3. Results and Discussion 

3.1  Weight loss analysis 

Weight loss results were used to determine the inhibition efficiency (IE) of each compound. 

Table 2 and Figure 5 Analysis shows that the inhibition efficiency of each compound increases with 

temperature and concentration. IE (CYNP) > IE (DNP) > IE (BNP) greater than IE (CHNP). It also 

emerges that the CYNP compound exhibits the highest inhibition efficiency at 323 K and at 

concentration of Cinh = 2.10-4 M. This remarkable performance suggests that CYNP binds significantly 

to copper surface at high temperatures. This strong adsorption can be attributed to the cyanide group (-

CN) presence in molecular structure. 
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Table 1. Compounds studied in this work. 

 

The different inhibition efficiency values of the molecules studied at 298K and 323K are listed in Table 

2. These results are illustrated in Figure 4. Similar results have been obtained in the literature (Yujie 

et al., 2019; Gadow et al., 2019). 
 

Table 2. IE values of the compounds studied 

Names Molecular structure Optimized structure 

2-(2-(4-

chlorobenzylidene)hydrazinyl)-

3-nitroimidazo[1,2-a]pyridine  

(CHNP) 

 

 

 

 

2-(2-(3-

cyanobenzylidene)hydrazinyl)-3-

nitroimidazo[1,2-a]pyridine  

(CYNP) 

 

 
 
 

 

2-(2-(3-

bromobenzylidene)hydrazinyl)-

3-nitroimidazo[1,2-a]pyridine 

(BNP) 

 

 

 
 

 

2-(2-(2,4-

dichlorobenzylidene)hydrazinyl)

-3-nitroimidazo[1,2-a]pyridine 

(DNP) 

 

 

 IE(%) 

T(K) Cinh(M) CHNP CYNP BNP DNP 

 

298 

6.10-5 28.71 42.85 31.42 35.71 

9.10-5 41.43 81.42 54.29 72.86 

10-4 68.57 88.57 77.28 85.71 

2.10-4 91.71 95.14 93.57 94.29 

 

323 

6.10-5 61.11 77.78 64.44 72.22 

9.10-5 76.67 89,89 77.78 87.78 

10-4 82.22 93.71 85.55 92.22 

2.10-4 95.66 98.11 95.14 96.67 
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Figure 5. Evolution of IE for each inhibitor at 298 K and 323 K 

3.2 Analysis of theoretical calculations 

3.2.1 Correlation between global descriptors and inhibition efficiency 
 

DFT calculations were used to determine global reactivity descriptors. The values of these 

descriptors are listed in Table 3. The ability of an organic compound to transfer electrons to a suitable 

acceptor is determined by the highest occupied molecular orbital energy (EHOMO) (Yujie et al.,2017). 

Indeed, a high value of EHOMO indicates a marked tendency of the compound to yield electrons to a 

suitable acceptor (Yujie et al.,2017). The order of EHOMO values for the compounds studied is as 

follows: EHOMO (CYNP) > EHOMO (CHNP) > EHOMO (BNP) > EHOMO (DNP), suggesting that CYNP 

compound has the greatest propensity to transfer its electrons to copper, and may therefore be more 

adsorbed on its surface compared to the other compounds. These theoretical results agree with the 

experimental data. On the other hand, the lowest unoccupied molecular orbital energy (ELUMO) of the 

compounds follows the order: ELUMO (CHNP) < ELUMO (DNP) < ELUMO (BNP) < ELUMO (CYNP). 

According to the literature, a low ELUMO value indicates an increased capacity to accept electrons (Yujie 

et al.,2017), (Abdallah et al.,2021). Thus, CHNP and DNP compounds possess a high ability to accept 

electrons from copper, which can be attributed to the presence of chlorine in their structure. These 

electron transfers between the inhibitors and the metal suggest the formation of covalent bonds, 

promoting the creation of a protective layer on metal surface (Abdallah et al.,2021). HOMO and 

LUMO orbitals are shown in Figure 6. 
 

The values of ionization energy (I) and electron affinity (A) corroborate the existence of strong 

interactions between each inhibitor and the metal. These intense interactions explain the compounds' 

excellent inhibition properties. Indeed, low ionization energy and high electron affinity values of the 

inhibitors reveal their instability, suggesting that these molecules are highly  

reactive. As for the energy gap (∆E), the following order is observed: ∆E (CHNP) < ∆E (CYNP) < ∆E 

(DNP) < ∆E (BNP). The lower the energy difference between the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO), the greater the exchange between 

molecule and metal (El-Mokadem et al., 2023; Bochuan et al., 2020).  
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Table 3. Global reactivity descriptor values 

 

The values obtained show that the molecules studied are reactive, as the energy required to 

extract an electron from the last occupied orbital is relatively low. CHNP compound, with the lowest 

∆E value, nevertheless shows the lowest inhibition activity. According to the literature, too small an 

energy gap, around 2.5 eV, is associated with an increased tendency of the molecule to lose or acquire 

electrons (Glaydson et al., 2017). This phenomenon is not conducive to the stability of the layer formed 

on the metal, leading to a reduction in inhibition efficiency. On the other hand, molecules with an 

energy gap between 3.5 and 5 eV show the best inhibition activity, suggesting optimal reactivity, 

facilitated by the presence of several heteroatoms such as nitrogen and oxygen in their structure, which 

favors electronic exchange with the metal. These observations are corroborated by similar results in 

the literature (Abdelkader et al.,2014; Fateh et al., 2020; Bochuan et al., 2018; Bochuan et al., 2019), 

and are consistent with experimental data.  

Some researchers argue that low values of dipole moment (µ) favor the accumulation of 

inhibitor molecules on the metal surface, thus enhancing inhibition efficacy (Lingjie et al.,2012; Lei et 

al.,2014). Consequently, the low dipole moment values observed for the compounds may justify their 

high inhibition efficiency. CHNP compound, on the other hand, exhibits the highest softness value (σ) 

and the lowest hardness (η), suggesting that this molecule is softer and reacts more readily with copper 

to form a complex capable of reducing metal dissolution in the solution studied (Obot et al.,2010; 

Manilal et al.,2019). However, these theoretical results are not entirely consistent with experimental 

observations. Positive values for the fraction of electrons transferred and electronegativity indicate 

electron transfer between the inhibitors and the metal. The values of the fraction of electrons transferred 

(∆N) are less than 3.6 and follow the following order: ∆N (CYNP) > ∆N (BNP) > ∆N (CHNP) > ∆N 

(DNP). These values justify the good inhibition performance of the molecules studied obtained 

experimentally (Tigori et al.,2022). 

The highest ∆N value obtained with CYNP mentions that it adsorbs strongly to copper surface. 

This strong adsorption confirms its greater inhibiting power compared with the others. These data are 

consistent with experimental results. The high values of the electrophilicity index (ω) obtained confirm 

the electrophilic character of each inhibitor (Savaş et al., 2016).  

 

Descripteurs quantiques CHNP CYNP BNP DNP 

EHOMO (eV) -6.4467 -6.1314 -6.5574 -6.8071 

ELUMO (eV) -3.7435 -2.4309 -2.4956 -2.9370 

Energy gap E (eV) 2.7032 3.7005 4.0618 3.8701 

Dipole moment µ (D) 4.9905 3.6131 5.4077 7.2696 

Ionization energy I (eV) 6.4467 6.1314 6.5574 6.8071 

Electron affinity A (eV) 3.7435 2.4309 2.4956 2.9370 

Electronegativity   (eV)  5.0951 4.2812 4.5265 4.8721 

global hardness   (eV)  1.3516 1.8503 2.0309 1.9351 

Global  softness  𝜎 (eV)-1 0.7399 0.5405 0.4924 0.5168 

Fraction of electron transferred N 0.0426 0.1889 0.1117 0.0279 

Electrophylicity index  9.6034 4.9530 4.0443 6.1335 

Total energy ET  (Ha) -1423.8901 -1056.4401 -3537.9119 -1883.4833 
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Inhibitors Orbital HOMO Orbital LUMO 

 

CHNP 

 

 

 

 

 

CYNP 

 

 

  

 

 

BNP 

  

 

DNP 

 

 

 

  

Figure 6. HOMO and LUMO orbitals of inhibitors 

 

Consequently, these compounds are more likely to readily accept electrons from the metal or undergo 

nucleophilic attack. We observe that for each compound η> 0 and total energy (ET), ET < 0. The 

negative total energy values associated with each inhibitor suggest charge transfer from these 

molecules to the metal (Kumar et al., 2019), implying favorable reactivity conducive to marked 

adsorption by each inhibitor to copper surface. CYNP has the highest total energy, indicating that the 

effectiveness of this compound lies in the process of charge transfer. This phenomenon enables the 

molecule to easily release electrons, which compensate for the electron deficit created in the copper 

when it dissolves in the acid. Similar observations have been made in previous studies (Sourav et 

al.,2015; Abdallah et al.,2022; Rashmi et al., 2025). 

 

3.2.1 Local reactivity 

Local reactivity sites were identified using local    reactivity descriptors. These descriptors, the 

Fukui and dual descriptor functions, were derived from Mulliken atomic charges. The mathematical 

relationships used to calculate these descriptors are expressed as follows (Damej et al., 2021; Hualiang 

et al., 2012):                         
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• Nucleophilic attack 

  𝑓𝑘
+ = 𝑞𝑘(𝑁 + 1) − 𝑞𝑘(𝑁)                             Eqn. 12 

• Electrophilic attack 

           𝑓𝑘
− = 𝑞𝑘(𝑁) − 𝑞𝑘(𝑁 − 1)                                Eqn. 13 

          ∆𝑓𝑘(r) = 𝑓𝑘
+ − 𝑓𝑘

−                                         Eqn. 14 

Where 𝑞𝑘(𝑁 + 1), 𝑞𝑘(𝑁) et 𝑞𝑘(𝑁 − 1) are the electronic population of atomic sites k in (𝑁 + 1), 𝑁 et  

(𝑁 − 1) electronic systems.  

The values of these local reactivity parameters are given in Table 4, 5, 6 and 7 

 

Table 4. Mulliken atomic charge values, 𝑓𝑘
+; 𝑓𝑘

− et ∆𝑓𝑘(r) of CHNP 

 

 

Atoms 𝑞𝑘(𝑁 + 1) 𝑞𝑘(𝑁) 𝑞𝑘(𝑁 − 1) 𝑓𝑘
+ 𝑓𝑘

− ∆𝑓𝑘(r) 

1  C  -0.023016 -0.059576 0.007418 0.03656 -0.066994 0.103554 

2  C 0.025551 -0.091978 -0.005503 0.117529 -0.086475 0.204004 

3  C   0.011621 0.307045 0.019172 -0.295424 0.287873 -0.583297 

4  C   -0.019097 0.050544 -0.005283 -0.069641 0.055827 -0.125468 

5  C   0.071905 -0.157116 0.007254 0.229021 -0.16437 0.393391 

6  H   0.000934 0.122357 -0.000556 -0.121423 0.122913 -0.244336 

7  H   -0.001289 0.129347 0.000628 -0.130636 0.128719 -0.259355 

8  H   0.000591 0.186666 -0.000731 -0.186075 0.187397 -0.373472 

9  H   -0.003315 0.123137 -0.00051 -0.126452 0.123647 -0.250099 

10  C  0.100311 0.294401 0.013172 -0.19409 0.281229 -0.475319 

11  C  -0.000323 0.300321 0.044229 -0.300644 0.256092 -0.556736 

12  N 0.234635 -0.260531 -0.003988 0.495166 -0.256543 0.751709 

13  N  0.106591 -0.207597 -0.003631 0.314188 -0.203966 0.518154 

14 H 0.046612 -0.338122 0.001974 0.384734 -0.340096 0.72483 

15  N  0.015707 -0.353352 -0.009502 0.369059 -0.34385 0.712909 

16 C 0.024101 0.11954 0.017005 -0.095439 0.102535 -0.197974 

17 C 0.112706 -0.159174 -0.001964 0.27188 -0.15721 0.42909 

18 C 0.007411 -0.063683 0.001685 0.071094 -0.065368 0.136462 

19 C 0.002512 -0.016221 -0.00157 0.018733 -0.014651 0.033384 

20 C 0.135906 -0.203686 0.005697 0.339592 -0.209383 0.548975 

21 C -0.01497 -0.006128 -0.003344 -0.008842 -0.002784 -0.006058 

22 C 0.077829 -0.003701 0.010791 0.08153 -0.014492 0.096022 

23  H  -0.001072 0.105775 -0.000096 -0.106847 0.105871 -0.212718 

24 H -0.000687 0.124433 0.000063 -0.12512 0.12437 -0.24949 

25 H -0.000056 0.132145 0.00016 -0.132201 0.131985 -0.264186 

26 H -0.004772 0.133758 -0.004656 -0.13853 0.138414 -0.276944 

27  N -0.016055 0.082426 0.283798 -0.098481 -0.201372 0.102891 

28  O  -0.009827 -0.297765 0.300486 0.287938 -0.598251 0.886189 

29 O 0.054269 -0.234143 0.329076 0.288412 -0.563219 0.851631 

30 H 0.000352 0.211603 -0.00015 -0.211251 0.211753 -0.423004 

31  Cl 0.066834 -0.054248 0.000158 0.121082 -0.054406 0.175488 

32  H  -0.001901 0.083523 -0.001282 -0.085424 0.084805 -0.170229 
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Table 5. Mulliken atomic charge values, 𝑓𝑘
+; 𝑓𝑘

− et ∆𝑓𝑘(r) of CYNP 

 

The atom in the molecule with the highest values of 𝑓𝑘
+ and ∆𝑓𝑘(r) is more susceptible to 

nucleophilic attack. While the atom with the highest 𝑓𝑘
− and the value of ∆𝑓𝑘(r) is more prone to 

electrophilic attack. 

Analysis of the various tables confirms that the atoms O (28), N (13), N (11) and N (14) are the likely 

sites for nucleophilic attack within the compounds CHNP, CYNP, BNP and DNP, respectively. These 

sites act as active electron capture centers. Each inhibitor can thus receive copper electrons from these 

sites. As for the electrophilic attack centers, the atoms capable of donating electrons to the metal in the 

CHNP, CYNP, BNP and DNP molecules are C (3), C (11), C (5) and C (28), respectively. These attack 

sites are shown in Table 1, where green and orange circles surround the centers for electrophilic and 

nucleophilic attacks respectively. It was observed that the nucleophilic sites of the molecules analyzed 

Atoms 𝑞𝑘(𝑁 + 1) 𝑞𝑘(𝑁) 𝑞𝑘(𝑁 − 1) 𝑓𝑘
+ 𝑓𝑘

− ∆𝑓𝑘(r) 

1  C  -0.025201 0.064697 0.046944 -0.089898 0.017753 -0.107651 

2  C 0.04184 0.350828 0.442186 -0.308988 -0.091358 -0.21763 

3  C   0.018315 -0.082441 -0.080791 0.100756 -0.00165 0.102406 

4  C   -0.015826 -0.075741 0.109146 0.059915 -0.184887 0.244802 

5  C   0.09895 -0.109658 -0.040533 0.208608 -0.069125 0.277733 

6  H   0.000712 0.164264 0.004146 -0.163552 0.160118 -0.32367 

7  H   -0.000634 0.143532 0.015315 -0.144166 0.128217 -0.272383 

8  H   0.000442 0.125819 -0.000988 -0.125377 0.126807 -0.252184 

9  H   -0.003683 0.113821 0.001409 -0.117504 0.112412 -0.229916 

10  N   0.064783 -0.443342 0.031408 0.508125 -0.47475 0.982875 

11  C  0.264971 0.391924 -0.069345 -0.126953 0.461269 -0.588222 

12  C   -0.073486 0.395754 0.098325 -0.46924 0.297429 -0.766669 

13  N  0.278387 -0.402105 0.023502 0.680492 -0.425607 1.106099 

14  N 0.223521 -0.302582 0.066986 0.526103 -0.369568 0.895671 

15  C   -0.017045 0.166387 0.017084 -0.183432 0.149303 -0.332735 

16 C 0.03734 -0.104376 0.103977 0.141716 -0.208353 0.350069 

17 C -0.014607 -0.092239 -0.031725 0.077632 -0.060514 0.138146 

18 C 0.043824 -0.06472 0.06158 0.108544 -0.1263 0.234844 

19 C 0.002771 0.049258 0.023431 -0.046487 0.025827 -0.072314 

20 C -0.003033 -0.106137 -0.008787 0.103104 -0.09735 0.200454 

21 C 0.034282 0.061206 0.012152 -0.026924 0.049054 -0.075978 

22 C -0.001674 0.135194 -0.004979 -0.136868 0.140173 -0.277041 

23  H  0.000393 0.114031 0.000978 -0.113638 0.113053 -0.226691 

24 H -0.001698 0.118132 -0.003236 -0.11983 0.121368 -0.241198 

25 H -0.000003 0.120758 0.00021 -0.120761 0.120548 -0.241309 

26  C -0.001597 0.278294 -0.00076 -0.279891 0.279054 -0.558945 

27  N 0.003776 -0.460288 0.013948 0.464064 -0.474236 0.9383 

28  N -0.032557 0.299469 0.117739 -0.332026 0.18173 -0.513756 

29 O -0.014248 -0.362742 0.104035 0.348494 -0.466777 0.815271 

30  O 0.0921 -0.447571 0.055423 0.539671 -0.502994 1.042665 

31  H 0.015716 0.103747 -0.001807 -0.088031 0.105554 -0.193585 

32  H  -0.00081 0.31429 0.001342 -0.3151 0.312948 -0.628048 

33  N   -0.016021 -0.457462 -0.108314 0.441441 -0.349148 0.790589 
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are made up of heteroatoms, which act as electron capture centers. These heteroatoms, which are 

oxygen and nitrogen, transfer their electrons to the carbon atoms within each molecule via the mesomer 

effect, making them electron-deficient. These electron-deficient centers then receive electrons from 

copper, while the carbon atoms, as electrophilic centers, transfer electrons to copper, which loses them 

during dissolution. 

 

Table 6. Mulliken atomic charge values, 𝑓𝑘
+; 𝑓𝑘

− et ∆𝑓𝑘(r) of BNP 

Atoms 𝑞𝑘(𝑁 + 1) 𝑞𝑘(𝑁) 𝑞𝑘(𝑁 − 1) 𝑓𝑘
+ 𝑓𝑘

− ∆𝑓𝑘(r) 

1  C  0.013066 0.06038 0.005511 -0.047314 0.054869 -0.102183 

2  C -0.01183 -0.161966 -0.002502 0.150136 -0.159464 0.3096 

3  C   0.048721 -0.063311 0.005145 0.112032 -0.068456 0.180488 

4  C   -0.010242 -0.094024 -0.001717 0.083782 -0.092307 0.176089 

5  C   0.033556 0.310086 0.006338 -0.27653 0.303748 -0.580278 

6  H   -0.000991 0.175389 0.003426 -0.17638 0.171963 -0.348343 

7  H   0.000999 0.121327 0.000141 -0.120328 0.121186 -0.241514 

8  H   -0.002551 0.120554 -0.00014 -0.123105 0.120694 -0.243799 

9  H   0.001217 0.127213 0.000394 -0.125996 0.126819 -0.252815 

10  N   0.003324 -0.3346 0.006314 0.337924 -0.340914 0.678838 

11  N 0.200649 -0.279024 -0.003154 0.479673 -0.27587 0.755543 

12  N 0.05614 -0.230419 0.006099 0.286559 -0.236518 0.523077 

13  H  0.002208 0.209251 0.001237 -0.207043 0.208014 -0.415057 

14  C 0.022335 0.129142 0.009062 -0.106807 0.12008 -0.226887 

15  C  -0.051435 -0.101158 -0.001944 0.049723 -0.099214 0.148937 

16 C 0.152345 -0.016883 0.006733 0.169228 -0.023616 0.192844 

17 C 0.035692 -0.154904 -0.000647 0.190596 -0.154257 0.344853 

18 C -0.018576 -0.004693 0.000891 -0.013883 -0.005584 -0.008299 

19 C 0.026171 -0.187417 -0.000819 0.213588 -0.186598 0.400186 

20 C 0.103432 -0.031694 0.00371 0.135126 -0.035404 0.17053 

21  H 0.001745 0.11959 0.000032 -0.117845 0.119558 -0.237403 

22  H -0.007514 0.140384 -0.004578 -0.147898 0.144962 -0.29286 

23  H  0.000418 0.114711 0.000046 -0.114293 0.114665 -0.228958 

24 H -0.005247 0.121064 -0.000229 -0.126311 0.121293 -0.247604 

25  C -0.012439 0.28279 -0.006881 -0.295229 0.289671 -0.5849 

26  C 0.282518 0.306481 0.045093 -0.023963 0.261388 -0.285351 

27  N -0.029901 0.075835 0.287286 -0.105736 -0.211451 0.105715 

28  O  0.04248 -0.266193 0.259327 0.308673 -0.52552 0.834193 

29 O 0.076992 -0.220479 0.374314 0.297471 -0.594793 0.892264 

30  Br 0.048478 -0.002584 -0.000019 0.051062 -0.002565 0.053627 

31  H -0.001215 0.094217 0.000479 -0.095432 0.093738 -0.18917 

32  N -0.000546 -0.359067 0.001053 0.358521 -0.36012 0.718641 
 

The carbon atoms that are the most likely sites for electrophilic attack share a double bond within 

each compound, enabling them to easily supply electrons to the copper. These electron transfers testify 

to the favorable interaction between each compound studied and copper. These observations explain 

the ability of the derivatives in question to effectively protect copper in acidic solution, during pickling 

and washing processes. 
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Table 7. Mulliken atomic charge values, 𝑓𝑘
+; 𝑓𝑘

− et ∆𝑓𝑘(r) of DNP 

Atoms 𝑞𝑘(𝑁 + 1) 𝑞𝑘(𝑁) 𝑞𝑘(𝑁 − 1) 𝑓𝑘
+ 𝑓𝑘

− ∆𝑓𝑘(r) 

1  C  0.006487 0.040543 0.070008 -0.034056 -0.029465 -0.004591 

2  C 0.003793 0.311201 0.11413 -0.307408 0.197071 -0.504479 

3  C   0.00226 -0.090723 -0.039992 0.092983 -0.050731 0.143714 

4  C   0.00919 -0.05888 0.151235 0.06807 -0.210115 0.278185 

5  C   -0.003979 -0.153171 -0.047316 0.149192 -0.105855 0.255047 

6  H   -0.000292 0.167955 -0.004843 -0.168247 0.172798 -0.341045 

7  H   -0.000057 0.130688 0.001501 -0.130745 0.129187 -0.259932 

8  H   -0.000189 0.125106 -0.009434 -0.125295 0.13454 -0.259835 

9  H   0.000223 0.126398 0.001896 -0.126175 0.124502 -0.250677 

10  N   -0.002345 -0.342557 0.067332 0.340212 -0.409889 0.750101 

11  N  0.015706 -0.341721 -0.056296 0.357427 -0.285425 0.642852 

12  C  0.000516 0.201446 0.126648 -0.20093 0.074798 -0.275728 

13  N  0.270248 -0.260509 0.005494 0.530757 -0.266003 0.79676 

14  N 0.399885 -0.228992 0.037668 0.628877 -0.26666 0.895537 

15  C  -0.023757 0.151581 0.021096 -0.175338 0.130485 -0.305823 

16 C -0.001724 -0.149685 0.031367 0.147961 -0.181052 0.329013 

17 C 0.005004 0.089397 -0.008149 -0.084393 0.097546 -0.181939 

18 C 0.013523 -0.205165 0.041902 0.218688 -0.247067 0.465755 

19 C 0.006491 -0.017696 -0.005957 0.024187 -0.011739 0.035926 

20 C -0.005966 -0.053603 0.0075 0.047637 -0.061103 0.10874 

21 C 0.033181 -0.054345 0.015515 0.087526 -0.06986 0.157386 

22  H -0.000028 0.144438 0.000226 -0.144466 0.144212 -0.288678 

23  H  -0.000444 0.125899 0.000153 -0.126343 0.125746 -0.252089 

24 H 0.000115 0.111931 -0.000503 -0.111816 0.112434 -0.22425 

25 H 0.016668 0.198554 0.001019 -0.181886 0.197535 -0.379421 

26  Cl 0.17921 0.029862 0.002589 0.149348 0.027273 0.122075 

27  Cl   0.010792 -0.043622 0.000602 0.054414 -0.044224 0.098638 

28  C 0.021894 0.370905 0.025967 -0.349011 0.344938 -0.693949 

29  N -0.003356 0.109582 0.15499 -0.112938 -0.045408 -0.06753 

30  O   0.000961 -0.237553 0.166616 0.238514 -0.404169 0.642683 

 31  O  0.020415 -0.281439 0.128567 0.301854 -0.410006 0.71186 

 32  H  0.025574 0.084176 -0.001532 -0.058602 0.085708 -0.14431 
 

3. 3 Mechanism of inhibition action of compounds studied. 

The reaction of orthophosphoric acid (H₃PO₄) is a triprotic acid, its dissociation in water follows the 

following steps: 
 

𝐻3𝑃𝑂4 ⇄  𝐻+ + 𝐻2𝑃𝑂4
−                        Eqn. 15      

𝐻2𝑃𝑂4
− ⇄  𝐻+ + 𝐻𝑃𝑂4

2−                     Eqn. 16 

𝐻𝑃𝑂4
2− ⇄  𝐻+ + 𝑃𝑂4

3−                          Eqn. 17 
 

The reaction of this acid with copper (Cu) can occur under a variety of conditions, often dictated by 

the cleaning and descaling processes used on metal pipes and equipment. This reaction can take place 

at ambient or elevated temperatures. Under these circumstances, copper in contact with 

orthophosphoric acid slowly dissolves to give 𝐶𝑢2+, the reaction can be expressed as follows: 
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𝐶𝑢(𝑠) + 2𝐻+ ⇄ 𝐶𝑢2+ +  𝐻2                  Eqn. 18 

Once 𝐶𝑢2+ ions have formed, they can react with phosphate ions to form complexes according to the 

balance shown below: 
 

3𝐶𝑢2+(𝑎𝑞) + 2𝑃𝑂4
3− → 𝐶𝑢3(𝑃𝑂4)2         Eqn. 19 

At low temperatures, the corrosion rate of copper in this acid is generally low. However, as the 

temperature rises, the acid becomes more corrosive, favoring rapid dissolution of copper with the 

release of 𝐶𝑢2+. The addition of a synthesized nitroimidazole derivative to the acid slows down this 

corrosion process, as shown by the experimental results. Indeed, in H₃PO₄ acid, each nitroimidazole 

compound (𝑁𝐼) is protonated and is in equilibrium with its corresponding neutral form (Gadow et al., 

2019), according to the following equation:  
 

3𝑁𝐼 + 𝐻3𝑃𝑂4 ⇄ 3[𝑁𝐼𝐻]3+ + 𝑃𝑂4
3−         Eqn. 20 

The protonated form of each compound interacts with 𝑃𝑂4
3− leading to the formation of a protective 

layer resulting from electrostatic interactions between the charged species of the inhibitor and the 

hydrophosphate ions. This phenomenon corresponds to physisorption. The values of quantum chemical 

parameters such as ΔN, EHOMO, ELUMO and ∆𝐸 observed for each species studied indicate that these 

compounds can exchange electrons with copper via their reactive sites. These electron transfers are 

facilitated by the presence of heteroatoms (N, O) and π electrons of the aromatic rings in each 

compound. Indeed, each molecule has the capacity to supply electrons to empty copper orbitals and 

can also accept electrons from 𝐶𝑢2+, thus forming coordination bonds (Raiedhah et al., 2024). The 

covalent bonds resulting from these exchanges enable each inhibitor to bind easily to copper surface, 

characterizing the phenomenon of chemical adsorption. This adsorption promotes the formation of a 

physical barrier on copper surface, which becomes increasingly robust as temperature and 

concentration increase, explaining the high inhibition efficiency values at higher temperatures. 

Conclusion 

A study of the activity of some nitroimidazole derivatives in the corrosion of copper in 2M 

orthophosphoric acid solution led to the following conclusions: 

❖ Experimental data show that, for an appropriate concentration of 2.10-4 M, all four synthetic 

molecules exhibit notable inhibition activity at high temperatures. This shows that the presence 

of the cyanide (CN) group in CYNP compound promotes intense adsorption of the latter to the 

copper surface, conferring the best inhibition efficiency. 

❖ Theoretical results from density functional theory (DFT) indicate that the heteroatoms (O, N) 

as well as π-bonds present in these derivatives facilitate electron exchange between the 

compounds and copper. This phenomenon testifies to the favorable reactivity of the 

compounds studied. 

❖ The atoms O (28), N (13), N (11), and N (14) constitute the main sites for nucleophilic attacks, 

while the atoms C (3), C (11), C (5), and C (28) act as electrophilic attack centers in the 

respective compounds CHNP, CYNP, BNP and DNP. 

❖ Substituents such as cyanide, chlorine and bromine influenced the inhibition activity of each 

compound studied. 

❖ Theoretical results are in perfect agreement with experimental observations. 
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