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Abstract: The present study involved analyzing the impact of Normalized Difference 
Vegetation Index (NDVI), a measure of vegetation density, on Land Surface 
Temperature (LST) and its role in the formation of Surface Urban Heat Island (SUHI) 
effect in Alappuzha district, Kerala. Imagery from Landsat TM, Landsat OLI and 
TIRS for the years 1988 and 2020 was utilized to evaluate the correlation between 
NDVI and SUHI. The land area corresponding to each NDVI category were 
quantified. The results revealed that NDVI of the study area declined from 1 in 1988 to 
0.56 in 2020, resulting in an increase in maximum and mean LST. LSTMax increased 
from 32.98°C in 1988 to 37.44°C in 2020. LSTMean which was 25.66°C in 1988 
increased to 26.88°C in 2020. The decrease in NDVI led to a rise in the high SUHI 
classes such as Middle, Strong and Stronger by 128.62%, 47.66% and 47.66% 
respectively. A negative correlation was observed between NDVI and LST, with 
Pearson coefficients of – 0.4874 for 1988 and – 0.4097 for 2020, indicating that NDVI 
might be utilized as an important indicator to analyze LST and SUHI effects. 

 

 

1. Introduction 
 The rapid urbanization of any region often brings about significant changes in their Land Use and 
Land Cover (LULC) patterns, resulting in the conversion of natural landscapes into artificial surfaces 
and impervious structures (Kuang et al., 2019). This transformation contributes to the increase in 
Land Surface Temperature (LST) by enhancing the absorption of solar radiation and reducing the 
loss of long-wave radiation, which ultimately affects local climatic conditions (Faqe Ibrahim et al., 
2017). Increase in impervious surfaces elevates surface temperatures resulting in genesis of Urban 
Heat Island (UHI) effects (Carpio et al., 2020), wherein urban areas tend to have warmer 
temperatures than their rural counterparts (Carpio et al., 2020; Hussain et al., 2022). The reduction in 
vegetative cover due to urban sprawl further exacerbates this effect by diminishing the cooling 
effects provided by green spaces through shade and evapotranspiration (Xiong et al., 2012; Chkird et 
al., 2024).  
 Research into UHI effects often involves analyzing LST variations, which reflect the different 
thermal responses of various land covers (Streutker, 2003). Remote sensing technology has proven 
effective in these studies, allowing for detailed assessments of LST and its correlation with land 
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cover changes (Zhou et al., 2013; Siddique et al., 2020). Vegetation indices such as the Normalized 
Difference Vegetation Index (NDVI) are commonly used to evaluate changes in vegetation cover, 
which can indicate shifts in LULC and their impact on LST (Lo and Quattrochi, 2003).  
 Several studies have explored the relationship between LULC changes, LST, and UHI across 
various global cities. For example, Julien et al. (2011) examined temporal analysis of NDVI on LST 
in Iberia, while Mallick et al. (2008) and Dutta et al. (2021) focused on LST variations in Delhi. 
Impact of Land cover changes on LST in Bangalore (Santhosh and Shilppa, 2023) and impact of 
Land cover indices on LST in Ahmedabad (Mathew et al., 2022) and Surat (Vasanthawada et al., 
2022) have been reported. Significant correlations between Urban expansion and increased surface 
temperatures have also been reported for Chennai (Amirtham et al., 2009), Jaipur (Chandra et al., 
2018) Pune (Gohain et al., 2021) and Raipur (Guha et al., 2022). 
 Global research on Urban Heat Island (UHI) dynamics frequently employs Landsat imagery and 
remote sensing indices. The link between LST and vegetation for UHI analysis have been examined 
in Indianapolis, (Weng et al., 2004), Wuhan (Zhang et al., 2012), Skopje (Kaplan et al., 2018) and in 
Mekelle City (Tesfamariam et al., 2023). In India, Grover and Singh (2015) analyzed NDVI and UHI 
in Delhi and Mumbai. Aggarwal and Misra (2018) found NDBI to be a better SUHI intensity 
indicator than NDVI in Bangalore and New Delhi. Increased surface temperature associated with 
urbanization, negatively impacting vegetation has been reported by Mathew et al. (2017) for Jaipur. 
Bora and Bora (2023) analyzed LULC changes in Charaideu district, Assam, using NDVI and 
Normalized Difference Moisture Index (NDMI).  
 In Kerala, there is a lack of information depicting the relationship between NDVI and LST, 
particularly in Alappuzha district. While some research has been conducted in neighboring regions 
like Ernakulam (Radhakrishnan and Geetha, 2022), Kottayam (Anitha et al., 2023) and Kollam 
(Mathew and Varghese, 2022), the specifics of Alappuzha’s LULC changes and their impacts on 
LST and SUHI remain underexplored. Therefore, this study aims to fill this gap by analyzing the 
effects of NDVI on SUHI phenomena in Alappuzha district from 1988 to 2020, employing advanced 
geospatial techniques to provide a detailed understanding of these dynamics. 
 

2. Methodology 
2.1 Study Area  

Alappuzha (Figure 1), a smallest district in Kerala, is situated between latitudes 9° 06' 36" and 
9° 53' 30" N and longitudes 76° 19' 03" and 76° 41' 33" E longitudes. Bordered by Ernakulam to the 
north, Kottayam and Pathanamthitta to the east, the Lakshadweep Sea to the west, and Kollam to the 
south, it spans 1,414 Km2. The 2011 census reported a population of 2,127,789, with a density of 
1,504 people per square kilometer. The district features a sandy landscape with lagoons, rivers, and 
canals, and lacks significant elevations except for some hillocks in the eastern parts between 
Bharanikkavu and Chengannur. The Ambalappu, Cherthala, Karthikappally, and Kuttanad Taluks are 
located in lowland areas. Approximately 80% of the district is coastal, with a coastline of 82 
kilometers, while the remaining 20% is midland. Alappuzha is unique in Kerala for having no high 
land or forested areas, with waterbodies covering 13% of the district and much of the area below sea 
level. The climate is hot and moist along the coast and slightly cooler and drier inland, with an 
average temperature of 25°C and annual rainfall of 2,763 mm. 
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Figure 1. Map of the study area 

2.2. Data Acquisition 
In this study, Four Landsat images (path/row: 144/53 and 144/54) were obtained from the United 

States Geological Survey (USGS) website (htts://earthexlorer.usgs.gov/) for two different years. 
Landsat 5 TM (1988) and Landsat 8 OLI/TIRS (2020) were based on the remark of minimum cloud 
cover and of the same month (January) to achieve marginal atmospheric and seasonal effects (Emran 
et al., 2018). Table 1 presents a description of the three Landsat datasets utilized in the study. 

 

Table 1. Characteristics of Landsat images used for the study. 

Satellite Sensor Path/Row Date of Image 
Acquisition 

Spatial 
Resolution 

Cloud Cover 

Landsat -5 Thematic Mapper 
(TM) 

144/53 19/01/1988 30 9 
144/54 6 

Landsat -8 Operational Land 
Imager (OLI) and 
Thermal Infrared 

144/53 27/01/2020 30 0.78 
144/54 14.30 

 

2.3. Image Mosaicking 
 The study area spanned two image rows (53 and 54). Mosaicking was performed to merge 
these into a single raster image, which involved dealing with overlapping areas where Digital 
Number (DN) values varied. The 'Maximum' Mosaic Method was chosen to assign the highest value 
to overlapping areas, avoiding '0' values. Additionally, the 'Match' Mosaic Colour Mode was used to 
ensure consistent color mapping during the process. 
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2.4. Retrieval of LST 
Satellite image data is stored as a Digital Number (DN), which provide an indirect 

representation of the spectral radiances from objects on the ground. To calculate LST, images from 
Landsat 5 (band 6) and Landsat 8 (band 10) are utilized. Even though Landsat 8 has two thermal 
bands (bands 10 and 11), band 11 is not used according to USGS recommendation, due to the high 
calibration uncertainty. As a result, only band 10 is used in this study's LST calculation (Ihlen, 2019; 
Barsi et al., 2014). The process of deriving LST from Landsat TM and Landsat OLI involves slight 
differences in the calculation of spectral radiance (Lλ). 

2.4.1. Conversion of DN to 𝑳𝝀 
The first step in LST retrieval is to convert the digital number (DN) of ground objects to 

spectral radiance using equation 1 in the TIRS sensor (Ihlen, 2019; Landsat 7 Data Users Handbook 
Used for Landsat 5). The calculation of 𝐿" from thermal bands of Landsat TM/ETM+ and OLI/TIRS 
is carried out using the equation provided below.  
For Landsat 5, 

   L# =
$%!"#$&%!%&'

()'()!"*&)'()!%&)
× (Q+,- − Q+,-!%&) + L./0       Eqn. 1                                            

In the above equation, Lλ represents Spectral Radiance, L.12$corresponds to maximum spectral 
radiance (15.303 for TM and 17.04 for ETM+), LMIN signifies for the minimum spectral radiances 
(1.238 for TM), Q+,-!"*  stands for the maximum Digital Number (DN) Value (255), Q+,-!%& denotes 
the minimum DN value (1), QCal represents the DN of band 6. 
 
The values for LMAX, LMIN, Q+,-!"*  and Q+,-!%& were obtained from metadata file associated with 
Landsat images. For Landsat 8 OLI thermal band, top of atmospheric radiance (L#) was computed 
using the method described below (Chander and Markham, 2003). 
For Landsat 8, 

Lλ = ML * Qcal + AL        Eqn. 2 
 

Where, ML denotes the multiplicative rescaling factor specific to the band, with a value = 0.0003342; 
Qcal represent the DN corresponding to band 10; AL indicates the additive rescaling factor for the 
band, which is 0.1.  
 
Conversion of 𝐿" to TB (At-satellite brightness temperature): The TB from spectral radiance was 
derived from the following equation (Eqn. 3) 

𝑇𝐵 = 3+
/45,-./

678
                 Eqn. 3 

TB denotes the satellite brightness temperature measured in Kelvin (K), while K1 and K2 refer to the 
calibration constants unique to the TM and OLI & TIRS Sensors, respectively. The values of K1 and 
K2 were 607.76 and 1260.56 for Landsat 5TM, 666.09 and 1287.71 and 1321.0789 for Landsat 8 
OLI, respectively (Landsat 5 obtained from Landsat 7 Data Users Handbook 2019; Landsat 8 Data 
Users Handbook 2019). 
Kelvin (K) to Celsius (0C) degrees 

𝑇𝐵 = 3+
/45,-./

678
− 273.15                          Eqn. 4   
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2.4.2. LST Calculation 
The obtained temperature values, known as black body temperatures, were adjusted for 

spectral emissivity (Ɛ) to derive the LST. The Emissivity correction was performed based on the type 
of land cover, utilizing NDVI values for each pixel, as outlined by Snyder et al. (1988). The 
corrected LST was then calculated following the method described by Artis and Carnahan (1982). 

LST = 5 9:
76(#∗9:/=)∗-4(Ɛ)

6             Eqn. 5           

Where, LST expressed in degrees Celsius (°C). The symbol λ represents the wavelength of the 
emitted radiance in meters, with a value of 11.45 meters for Landsat 5 (Band 6)) and 10.8 meters for 
Landsat 8 (Band 10).  

𝝆 = h*c/s = 1.4388*10-2 m K                                  Eqn. 6 
K represents constant with a value of 14388μm K, h denotes Planck’s constant, which has a value 
6.626*10-34 J s. The s refers to the Boltzmann constant, value at 1.38 * 10-23 J/K. Lastly, c represents 
the velocity of light, approximately 2.998*108 m/s. 

Land surface emissivity (Ɛ) = 0.004*PV+0.986                  Eqn. 7 
Apply the equation in the raster calculator, the value of 0.986 corresponds to a correction value of the 
equation. 
Where the Proportion of vegetation (PV) can be calculated as; 
                                     PV = Square ((NDVI – NDVIMin) / (NDVIMax – NDVIMin)            Eqn. 8 
Generally, the NDVIMinimum and NDVIMaximum values can be directly conveyed through the image. 
NDVI can be calculated as: 

NDVI = Float (NIR-RED)/Float (NIR+RED)                Eqn. 9 
For Landsat 5 Float (4-3)/ Float (4+3) 
For Landsat 8, Float (5-4)/ Float (5+4). 

 

2.5. Estimation of NDVI 
The NDVI is commonly utilized for assessing vegetation. It is calculated by taking the 

difference between near-infrared and red reflectance and dividing it by their sum, which provides 
insights into vegetation phenology (Dissanayake et al., 2019). The extraction of NDVI follows the 
method outlined by Tucker (1979) and further developed by Townshend and Justice (1986). NDVI 
value ranges from -1 to 1, where negative values typically indicate the presence of water, while 
positive values signify vegetation. High values correspond to area with dense vegetation.  

NDVI = 0/?&?@A
(0/?6?@A)

                           Eqn. 10 

2.6. Mapping of Surface Urban Heat Island (SUHI) 
The urban heat island (SUHI) is identified from the LST range value by Eqn. 11 (Ullah et al., 

2022). 
SUHI= B&B012

B012
                  Eqn. 11 

T is the LST raster value, and Tmin is the minimum LST value of the study area. 

3. Results and Discussion 
3.1 Analysis of LST 

Figure 2a and b shows the spatiotemporal dynamics of LST in Alappuzha from 1988 to 2020. 
The results show fluctuations in overall LST for the study period. In 1988, the LSTMin was 21.61°C, 
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the LSTMax was 32.98°C, and the LSTMean was 25.66°C. The LSTMin and LSTMax in 2020 were 17.46 
and 37.44°C, respectively, with a mean of 26.88. The spatio-temporal dynamics of LST categories in 
Alappuzha from 1988 to 2020 is illustrated in Figure 2c and Table 2.  

 

 

Figure 2a. Statistical Analysis of LST (oC) of Alappuzha District 

 

Figure 2b. Spatial distribution of LST (oC) range of Alappuzha District 

LST Min LST Max LST Mean LST SD
1988 21,61 32,98 25,66 1,54
2020 17,46 37,44 26,88 1,63
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Table 2. Spatial distribution of LST (oC) class of Alappuzha District from 1988 to 2020 

LST (oC) 
Categories 

LST Classes Area km2 (Area 
in %) 

% Difference 
(1988 to 2020) 

1988 2020 

< 20 Very low 0 7.63 -- 
20 – 25 Low 403.02  

(32.37) 
84.84 
(6.81) 

- 78.95  

25 – 30 Medium 837.12 
(67.23) 

1125.53 
(90.40) 

34.45 

30 – 35 High 4.96 
(0.40) 

26.31 
(2.11) 

430.29 

>35 Very high 0 0.79 
(0.06) 

--  

 

 

Figure 2c. Spatial distribution of LST (oC) classes of Alappuzha District 

LST was categorized into five classes based on temperature range which were (i) very low (<20 
oC), (ii) low (20-25 oC), (iii) medium (25-30 oC), (iv) high (30-35 oC), and (v) very high (>35 oC). In 
1988, there was no area under the very low LST category. By 2020, 7.63 km2 (0.61%) was included 
under this category. The area under low LST which was 403.02 km2 in 1988 decreased to 84.84 km2 
in 2020, recording a decrease of 78.95%. Area under medium LST increased from 837.12 in 1988 to 
1125.53 in 2020, with 34.45% increase. Area under high category in 1988 was 4.96 km2, which 



Anitha & Prabha, J. Mater. Environ. Sci., 2024, 15(9), pp. 1331-1346 1338 
 

increased to 26.31 km2, with a 430.29% growth. The very high LST category was observed only in 
2020 with an area of 0.79 km² (0.06%), which was not prevalent in 1988.  

The results of the LST analysis is suggestive of the fact that LST variations could be due to 
transformations of LULC, which evolve as the areas become urbanized. In 1988, Alappuzha had high 
agricultural areas, vegetative cover and water bodies, hence LST was also less. Over the 32 year 
study period from 1988 to 2020, the maximum temperature increased by 4.46oC reaching 37.44 oC. 
This increase in LST may be attributed to developmental activities, especially built-up areas and 
infrastructure development. The population in the study area grew from 1,865,580 in 1981 to 
2,127,789 by 2011, leading to increased demand for residential, commercial, and infrastructural 
development, contributing significantly to the expansion of built-up land, as has been reported by 
Prasad and Ramesh (2019) subsequently resulting in increase in LST. Reduction in vegetative cover 
and water bodies also contribute to increase in the LSTMax by 4.46oC and LSTMean 1.22oC thereby 
contributing to the expansion of Medium and High LST zones. Our results corroborate with the 
findings of Radhakrishnan and Geetha (2022) who demonstrated increase in LST owing to LULC 
changes in Kerala’s Ernakulam district, showing increase in built-up area by 2% and decline of water 
bodies and wetlands by 1%. The absence of high dense vegetation cover in 2020 (Table 3) would 
have contributed to the generation of very high LST in the Alappuzha region. Rapid expansion of 
urban and/or built-up areas along with impervious materials such as materials used for construction 
and other infrastructure developments are reported as key factors for increase in urban temperatures 
(Guo et al., 2019). The flourishing tourism industry in Alappuzha is another significant driver of the 
increase in built-up area. Tourism, apart from imparting economic benefits to local communities, also 
exerts stress on natural resources and ecosystems. The development of resorts, hotels, restaurants and 
other infrastructures has contributed to the degradation and habitat fragmentation in certain areas of 
the region, further accelerating the expansion of built-up land. 

3.2 Analysis of NDVI 

The statistical analysis and spatial distribution of NDVI range for the years 1988 to 2020 is 
depicted in Figures 3a and b respectively. NDVI values for Alappuzha from 1988 to 2020 indicate 
fluctuations in vegetation health and density over the years. The minimum and maximum NDVI 
values ranged from -0.41 to 1 in 1988 and -0.13 to 0.56 in 2020. The maximum NDVI was 1 in 1988, 
which decreased to 0.56 in 2020, indicating low vegetation density in 2020, compared to 1988. This 
is evident from our results (Table 3) where major changes were effected in the vegetative classes in 
Alappuzha.  

The spatial distribution of NDVI classification for the years 1988 to 2020 is depicted in Figure 
3c and Table 3. In 1988, areas with no vegetation (<0) covered 41.86 km2 (3.36%), which decreased 
to 25.60 km2 (2.06%) in 2020, with 38.85% drop. Very Low vegetation cover was 150.13 km2 
(12.06%) in 1988 which increased to 277.31 km2 (22.27%) in 2020, with 84.71% growth. Sparse 
vegetation witnessed substantial growth from 508.09 km2 (40.81%) in 1988 to 885.46 km2 (71.12%) 
in 2020. Moderate vegetation decreased from 442.01 km2 (35.50%) in 1988 to 56.74 km2 (4.56%) in 
2020. The area covered by highly dense vegetation (>0.60) in 1988 was 103.02 km2 (8.27%) and 
there is no highly dense vegetative cover in 2020. Reduction in green cover results in decreased 
evaporative cooling, thereby causing a rise in LST, as observed in our study. 

LULC changes are closely associated with population growth and urbanization. Prasad and 
Ramesh (2019) reported an increase in the built-up area in Alappuzha from 1973 to 2017. The 
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growing culture of nuclear families has also contributed to the expansion of built-up areas and the 
reduction of vegetative cover. The shift of families toward education and non-agricultural 
employment has reduced the agricultural workforce, resulting in abandoned or repurposed farmland. 
The appeal of jobs in the secondary sector and rising literacy rates have also made agriculture less 
attractive (Firoz et al., 2014), further decreasing the extent of agricultural land and green cover and 
increasing built-up areas.  

 

Figure 3a. Spatial distribution of NDVI range of Alappuzha from 1988 to 2020 

 

Figure 3b. Spatial distribution of NDVI range of Alappuzha from 1988 to 2020 

Min Max Mean SD
1988 -0,41 1 0,4 0,16
2020 -0,13 0,56 0,3 0,11
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Statistical Analysis of NDVI in Alappuzha District
(1988 to 2020)
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Figure 3c. Spatial distribution of NDVI classes of Alappuzha from 1988 to 2020 

Table 3. Spatial distribution of NDVI classes of Alappuzha from 1988 to 2020. 

C)oNDVI ( 
Categories 

NDVI 
Classes 

2Area Km 
(Area in %) 

% Difference 
(1988 to 2020) 

1988 2020 
< 0 No 

Vegetation 
41.86 
(3.36) 

25.60 
(2.06) 

-38.85 

0 – 0.25 Very low 150.13 
(12.06) 

277.31 
(22.27) 

84.71 

0.26 – 0.45 Sparse 508.09 
(40.81) 

885.46 
(71.12) 

74.27 

0.46 – 0.59 Moderate 442.01 
(35.50) 

56.74 
(4.56) 

-87.16 

>0.6 Highly dense 103.02 
(8.27) 

0 
(0) 

-100 

 

3.3 Analysis of SUHI 
 The spatial distribution of SUHI for the years 1988 to 2020 is depicted in Figure 4a and Table 
4. The analysis of SUHI-affected areas, categorized into six classes, reveals that from 1988 to 2020, 
the area under the None, weak, and strongest categories, which were 279.33 km², 322.94 km², and 
30.22 km² respectively in 1988, decreased to 26.54 km², 181.62 km², and 23.23 km² in 2020, 
representing a decline of 90.50%, 43.76%, and 23.16% respectively.  
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Figure 4a. Spatial distribution of SUHI classes of Alappuzha from 1988 to 2020 

Conversely, the area under the middle, strong, and stronger categories, which were 287.98 km², 
203.17 km², and 121.46 km² respectively in 1988, increased to 369.89 km², 464.47 km² and 179.35 
km² respectively in 2020, showing a growth of 28.44%, 128.62%, and 47.66% respectively,  
suggestive of a good rate of development in the area. Urbanization of the area, along with loss of 
vegetation cover and its density, leads to increase in LST, which in turn contributed to the expansion 
of SUHI areas. 

Table 4. Spatial distribution of SUHI classes of Alappuzha from 1988 to 2020 

C)oSUHI ( 
Categories 

2Area Km 
(Area in %) 

% Difference 
(1988 to 2020) 

1988 2020 
None 279.33 

(22.43) 
26.54 
(2.13) 

-90.50 

Weak 322.94 
(25.94) 

181.62 
(14.59) 

-43.76 

Middle 287.98 
(23.13) 

369.89 
(29.71) 

28.44 

Strong 203.17 
(16.32) 

464.47 
(37.30) 

128.62 

Stronger 121.46 
(9.79) 

179.35 
(14.40) 

47.66 

Strongest 30.22 
(2.43) 

23.23 
(1.87) 

-23.16 
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3.4 Correlation between LST-NDVI 
 LST and NDVI are highly responsive to environmental changes, with shifts in NDVI 
potentially leading to alterations in LST, and vice versa. Figure 5a and b illustrates a negative 
correlation between NDVI-LST for the years 1988 and 2020, with R² values of -0.4874 and -0.4097, 
respectively. This suggests that areas with dense vegetation experienced lower surface temperatures, 
while regions with sparse or inactive vegetation exhibited higher surface temperatures. 
 

 

Figure 5a. LST-NDVI Correlation in 1988  

 

Figure 5b. LST-NDVI Correlation in 2020 

Dense vegetation reduces the amount of radiation absorbed by the earth’s surface, leading to cooler 
temperatures. This inverse relationship between LST-NDVI has been documented by numerous 
researchers for various study regions such as Kottayam (Anitha et al., 2023), Calicut (Chaithanya et 
al., 2017), Trivandrum, Ernakulam and Kozhikode (Veettil and Grongona, 2018). 

Conclusion 

The result of the present study reveals that Alappuzha’s land uses have been altered significantly.  
Increase in LST associated with LULC changes has triggered the SUHI phenomenon, with LST 
sharing an inverse relationship with NDVI. Alappuzha’s rising temperatures, driven by urban 
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expansion from population growth, economic development, and tourism, have intensified SUHI by 
increasing built-up areas, reducing vegetation, and altering the local energy balance. These changes 
could lead to adverse health, socio-economic, and ecological effects. Monitoring SUHI in relation to 
LST and vegetation indices can guide urban planners and policymakers in promoting ecological 
stability and improving the quality of life. The study recommends increasing urban green spaces to 
mitigate the UHI effect. 
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