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Abstract: The growing world population is leading to an intensification of 

agricultural practices. The consequence of this is the production of large quantities 

of agricultural waste. However, this lignocellulosic waste can be valorized into 

useful substances in order to reduce the use of chemical fertilizers in agriculture. 

The aim of this study is to characterize cassava peelings with a view to their 

possible use in agriculture. The physical, chemical and thermal properties of 

cassava peelings were examined by SEM, XRD, XRF, CHNSO analysis, FTIR and 

TGA/DTG. These cassava peelings have low ash content (2.8%); low moisture 

content (5.5%); high volatile matter content (76.2%) and high fixed carbon content 

(15.5%). Acceptable levels of carbon (45.19%), nitrogen (1.19%), hydrogen 

(6.18%), sulfur (0.05%), chlorine (0.045%), oxygen (43.73%) and low ratios of 

O/C (0.96) and H/C (0.13) were found. SEM revealed a fibrous and porous 

morphology. Potential toxic elements (As, Cd, Co, Cr, Cu, Ni, Pb, Zn, Ti, Mn, V) 

determined by XRD in this biomass were almost trace. Peaks of crystalline and 

amorphous cellulose and oxides were observed. Hydroxyl, carbonyl and primary 

amine groups were also identified in this biomass. These results show that cassava 

peels can be used as potential raw materials for biochar production for agricultural 

purposes. 

 
 

1. Introduction 

Intensive agriculture generates 11.4 billion tons of biomass per year worldwide (Meza-Sepúlveda 

et al., 2021). The consequence of this practice is the production of large quantities of agricultural 

residues. Agricultural biomass is made up of resources containing non-fossil organic carbon from 

living plants, animals, algae, micro-organisms or organic waste streams (Zörb et al., 2018). It is the 

result of the photosynthesis process that ensures the constitution and maintenance of its structural 

elements such as cellulose, hemicellulose or lignin, which form the rigid skeleton of plant biomass. 

According to Roy and Dias (Roy and Dias, 2017), these polymers contain a large amount of carbon. 
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The latter comes from CO2 taken from the atmosphere during photosynthesis, giving them a high 

energy potential. From a regulatory point of view, European Program Law n°2005-781 on Energy 

Policy Guidelines; defines biomass as the biodegradable fraction of products, waste and residues from 

agriculture, including plant and animal substances from land and sea, forestry and related industries, 

as well as the biodegradable fraction of industrial and household waste (Kumar et al., 2015). 

In general, the quantity of agricultural residues exceeds food production (in terms of edible crop 

parts). More than half of the absolute dry matter of the global harvest consists of agricultural residues 

such as cereal and legume straws, stems, leaves and shoots from tubers, oilseeds, sugar plants and 

vegetables, as well as litter from fruit and nut trees (Smil, 1999; Zörb et al., 2018; Bouknana et al., 

2014). These agricultural residues have similar characteristics. Their basic compositions are generally 

described as lignocellulosic (Inyinbor et al., 2017). Nevertheless, the chemical compositions of these 

residues can vary depending on their sources. 

Huge quantities of agricultural waste generated by plant production represent a danger to the 

environment and human health if not properly managed (Tonini et al., 2018). Practices to reduce or 

eliminate agricultural residues include on-farm burning, which has become very common, particularly 

in developing countries (Andini et al., 2018). Burning waste leads to a loss of soil moisture, which 

reduces the moisture available for crop seeding and negatively affects germination. Burning also affects 

soil fauna, particularly the population of earthworms and beneficial insects (Devi et al., 2017). This 

practice, which generates greenhouse gases (CO2, CO, CH4, N2O, SO2), aerosols, particulates, smoke, 

volatile organic compounds and radioactive gases, exacerbates atmospheric chemistry on a global and 

regional scale (Devi et al., 2017). In addition, smoke emissions can lead to health risks such as lung 

infections, chronic bronchitis and asthma (Kumar et al., 2018). Another common practice of farmers 

is to leave their agricultural waste in the fields. Notwithstanding, this practice seems harmless, 

accumulated waste can contain infested plant material leading to the spread of pests and diseases that 

promote crop loss (Devi et al., 2017). Indeed, various factors, such as the lack of highly skilled 

agricultural labor, the absence of waste management policies in some regions and the poor 

implementation of waste management policies in other places, further intensify the environmental 

burden of unmanaged agricultural waste (Ramya et al., 2017). 

At present, there are no quantitative, global methods for accurately estimating the potential of 

biomass worldwide as a raw material or energy source (Dutuit and Gorenflot, 2008). However, many 

researchers are looking to develop innovative bioproducts that can contribute to environmental and 

energy issues, as well as to future demand for food, soil and water (Veiga et al., 2017). With this in 

mind, new technologies have been developed aimed at transforming different biomasses, into higher 

value-added products. These can be used to retain nutrients in the soil (Glaser et al., 2002). Another 

strategy is to optimize the thermal treatment process in the procedures by which biomass is transformed 

into biochar, such as in boilers and industrial furnaces, reducing gas emissions generating specific 

biochar structures with desirable properties for use in poor soils (Veiga et al., 2017).  

Côte d'Ivoire has a strong cassava-based diet (ˋattiéké, placali, attoukou, gari) (Patricio Mendez del 

Villar et al., 2017). Annual cassava processing generates 1,250,000 tons of wet cassava peelings in 

Côte d'Ivoire (Patricio Mendez del Villar et al., 2017). Cassava peel represents around 8% to 15% of 

the cassava root, on a dry basis (Howeler, 2001). These cassava peels are little used in animal feed and 

are very little valued. Mineral contents have been reported in satisfactory proportions, with a carbon 

content of 48.7% by weight and, a significant percentage of sodium, calcium, potassium and nitrogen 

(Kongkiattikajorn and Sornvoraweat, 2011). Little is known about the physical, chemical and thermal 

characteristics of these cassava peelings for agricultural purposes. 
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In this study, the physical, chemical and thermal characterizations of cassava peelings were 

examined in order to assess their potential as a candidate for biochar production. The reason for 

choosing this raw material is due to its abundance, low cost and year-round availability. 

2. Materials and Methods 

2.1 Raw material 

Cassava peelings (Figure 1) were purchased from ̀ attiékéˊ producers in Yamoussoukro, central Côte 

d'Ivoire. 

 

Figure 1. Cassava peelings (Hamissou et al., 2023) 

These peels were washed with water to remove cassava residues, then sun-dried for 7 days. The 

dried cassava peelings were then crushed and sieved to obtain grain sizes of 250 µm or less (Figure 2), 

and stored in plastic bottles for analysis. 

 

 Figure 2. Cassava peeling powder (CPP) 

2.2 Characterization of cassava peel powder 

2.3 Determination of moisture content, volatile matter and fixed carbon content  

Moisture and ash contents were determined according to Khouloud (2020). Two grams (2 g) of the 

sample placed in a crucible is oven-dried at 105°C until its mass stabilizes. After cooling in a desiccator, 

the sample is weighed. The moisture content (MC) is given by Eqn. 1: 

𝑀𝐶(%) =
𝑚2 − 𝑚3

𝑚2−𝑚1
× 100                                                                                           𝐄𝐪𝐧. 𝟏   
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With : 

𝑚1 = empty crucible mass (g) ; 

𝑚2= mass of crucible with sample before drying (g) ; 

𝑚3= mass of crucible with sample after drying (g). 

With regard to ash content, the sample is placed in a muffle furnace heated to 575°C under air for 3 

hours until ash is obtained without the presence of black spots (carbon residues). After cooling, the 

combustion residue is weighed to determine the ash content (AC) of the sample from Eqn. 2: 

𝐴𝐶(%) =
𝑚3 − 𝑚1

𝑚2−𝑚1
× 100                                                                                             𝐄𝐪𝐧. 𝟐    

With : 

𝑚1 = empty crucible mass (g); 

𝑚2= mass of crucible with sample before thermal oxidation (g); 

𝑚3= mass of crucible with sample after thermal oxidation (g). 

Volatile matter content was determined using the method described by Abderahim (2019). 1.00 g 

of PEM is introduced into a porcelain crucible. The sample is then heated in the absence of air at 900°C 

for 7 min in a muffle furnace. After cooling in a desiccator for 10 min, the sample is weighed again. 

The percentage of volatile matter (VM) is determined by measuring the mass loss of the sample after 

subtracting the mass due to moisture. The fixed carbon content (FC) is calculated from the moisture, 

ash (mineral matter) and volatile matter contents. It is obtained from the following equation (Zohra, 

2019): 

FC (%) = 100 − (MC + AC + VM)                                                                                             𝐄𝐪𝐧. 𝟑 

2.4 Elemental analysis 

The contents of carbon (% C), hydrogen (% H), nitrogen (% N), sulfur (% S) and chlorine (% Cl) 

were determined according to the procedures described in European standard EN 15104:2011. 

Analyses were performed in a universal analyzer (Elementar Vario MACRO-Cube). Oxygen content 

(% O) was quantified by difference according to the formula below: 

O (%) = 100 − (% C + % H +   % N + % S +  % AC)                                              𝐄𝐪𝐧. 𝟒  

2.5 Determination of trace metals and oxides 

The determination of trace metals and oxides in the sample was carried out by X-ray fluorescence 

spectrometry (XRF) using a Newton XL3T spectrometer. The analysis consisted in determining the 

trace metallic elements and oxides contained in the sample. 

2.6 Determination of crystalline structure  

The crystallinity of the biomass powder was analyzed using a German SIEMENS X-ray 

diffractometer. The analysis was carried out to determine the nature of the crystalline and amorphous 

species present on the surface of the materials.  

2.7 Determination of surface functional groups 
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Fourier transform infrared spectroscopy was used to identify the surface functional groups present 

in the biomass sample. This analysis was carried out using a German micromeritics spectrometer in the 

infrared region over a range from 650 to 4000 cm-1.   

2.8 Analysis of biomass surface morphology 

The surface morphology of the sample was observed using a Japanese HITACHI-4800 

spectrophotometer. 

2.9 Thermogravimetric analysis (TGA)  

In order to study the thermochemical behavior of the biomass used, (ATG) and (DTA) analyses 

were carried out. The thermal behavior of the sample was carried out using a Dutch-made Perkin Elmer 

ATG 4000 analyzer, under a nitrogen atmosphere, with a heat ramp from 10 ºC min-1 to 950 ºC. 

3. Results and Discussion 

3.1 Physical characteristics of cassava peelings 

The physical and chemical analyses carried out on the raw material justify its quality for biochar 

production. Table 1 shows some of the physical characteristics of cassava peelings. 

Table 1. Basic physical characteristics of cassava peeling powder 

Parameters Values 

Moisture content (%) 5.5 

Volatile matter (%) 76.2 

Ash content (%) 2.8 

 

The moisture content in the biomass studied is low (5.5%). This is lower than that found by Flores 

et al., (2017), who found a content of around 7% in agricultural residues. This low moisture content in 

biomass favors biochar production, as it not only reduces thermal energy but also shortens the time 

required and facilitates the pyrolysis process (Tripathi et al., 2016). In addition, an ash content (2.8%) 

of less than 10% was determined in the biomass studied. This low ash content indicates that cassava 

peelings can have an excellent adsorption capacity, as ash is an inactive filler which reduces the 

performance of an adsorbent by obstructing the pores and crowding the exchange surface (Diop et al., 

2022). This precursor is therefore acceptable for biochar production. Ash contains metals and inorganic 

matter such as P, mainly in the form of oxides in biomass residues. It defines the quality of a biomass 

in combustion, determining its non-combustible content (Nieto-Delgado et al., 2011). Thus, a high ash 

content could negatively affect the yield of biochar production (Pereira et al., 2014; Li et al., 2017 

Tomczyk et al., 2020;). Volatile matter content is another important parameter, as it gives an indication 

of the reactivity and ease of ignition of an organic material. According to Canales-Flores and Prieto-

García, (2016), volatile matter content is the parameter responsible for pores in the structures of 

carbonaceous materials. Indeed, during biomass pyrolysis at high temperatures, volatile matter is 

released, leading to the formation of porous structures (Canales-Flores and Prieto-García, 2016). In 

this study, a high volatile matter content (76.2%) was found. This indicates that the agricultural biomass 

in the study is a good candidate for pyrolysis, since it will gradually release volatile matter in a 



Grema et al., J. Mater. Environ. Sci., 2023, 14(12), pp. 1582-1594 1587 

 

controlled manner. This release will lead to carbon enrichment in the precursor. Moreover, it falls 

within the range reported for other similar precursors used in biochar preparation (69-84%) (Canales-

Flores and Prieto-García, 2016). 

3.2 Chemical characteristics of cassava peelings 

The carbon, hydrogen, oxygen, nitrogen, sulfur and chlorine contents of cassava peelings are shown 

in Table 2. 

Table 2. Elemental and summary characteristics of cassava peelings 

Parameters Values 

Carbon (%) 45.19 

Hydrogen (%) 6.18 

Nitrogen (%) 1.92 

Sulfur (%) 0.05 

Chlorine (%) 0.045 

Oxygen (%) 43.73 

Fixed carbon (%) 15.5 

H/C 0.13 

O/C 0.96 
 

According to Tripathi et al., (2016), carbon, oxygen and hydrogen contents are not only used to 

predict the calorific value of biomass but are also the main contributors to the energy content of 

biomass. As table 2 shows, the carbon content (45.19%) is the highest in the biomass studied. This 

result shows that this biomass could be a good precursor for biochar or activated carbon. Indeed, 

according to Nieto-Delgado et al., (2011), a good biochar or activated carbon precursor should have a 

carbon content between 40 and 90%. The oxygen content of this biomass is 43.73% and the hydrogen 

content is 6.18%. The relatively high carbon and oxygen contents confirm that we are dealing with a 

woody, agricultural biomass (Flores et al., 2017). Thus, the presence of these elements leads to greater 

char formation as well as a high calorific value of the materials (Tripathi et al., 2016). In contrast, 

nitrogen, sulfur and chlorine are present in low quantities, as shown in table 2. This result is favorable, 

as high nitrogen and sulfur contents in biomass would lead during pyrolysis to the release of gas 

mixtures (SOx, NOx) that are toxic and pollute the environment (Flores et al., 2017; Tripathi et al., 

2016). These results also prove that the feedstock examined in this study is a good precursor for biochar 

production. Fixed carbon provides important information on biomass quality, as it is the most resistant 

part remaining in the biochar after pyrolysis (Veiga et al., 2017). It also indicates the amount of non-

volatile organic matter present in the biomass and the high calorific value thus directly reflecting the 

biochar's permanence in the soil. The fixed carbon found in the study biomass is 15.5%. This value is 

higher than that found by Emiola-Sadiq et al., (2021). The H/C and O/C ratios found in the biomass 

studied are 0.13 and 0.96 respectively. These are high and similar to those found by Veiga et al.,( 

2017).  Zheng et al., (2013), report that high ratios (H/C and O/C) indicate the presence of aromatic 

structures in biomasses. Also, when biomass undergoes thermal treatment, it tends to be more 

carbonaceous due to thermal degradation of hemicellulose, some of the oxygen and aromatic 

components are lost (Angın, 2013; Lee et al., 2013; Veiga et al., 2017; Zheng et al., 2013). Thus, H/C 

and O/C ratios tend to decrease with increasing temperature during pyrolysis, giving rise to a material 

that is more resistant to degradation. 



Grema et al., J. Mater. Environ. Sci., 2023, 14(12), pp. 1582-1594 1588 

 

3.3 Trace metals and oxides 

Table 3 shows the results for trace metals and oxides in the raw material. The potential toxic 

elements (As, Cd, Co, Cr, Cu, Ni, Pb, Zn, Ti, Mn, V) determined in the biomass are virtually trace, as 

shown in table 3. Silicon (SiO2), potassium (K2O) and calcium (CaO) oxides are the most abundant in 

the biomass studied (cassava peelings). The existence of these metal oxides could be explained by the 

use of chemical fertilizers (absorbed by the plants) in cassava fields by farmers on the one hand, and 

by the physical and chemical properties of the soils on the other.  

Table 3. Percentages of trace metals and oxides 

Trace metals 
Values   

(ppm) 
Metal oxides Values (%) 

As 0.002 MgO 2.091 

Mo 0.002 Al2O3 4.841 

Pb 0.002 SiO2 23.059 

Zn 0.002 P2O5 3.734 

Cu 0.002 SO3 3.329 

Ni 0.002 K2O 28.1 

Co 0.002 CaO 23.76 

Mn 0.005 TiO2 1.424 

Cr 0.003 MnO 0.214 

Ti 0.016 Fe2O3 3.568 

V 0.002 ZnO 0.0782 
 

3.4 Analysis of the cassava peeling powder diffractogram 

The diffractogram of cassava peel powder is shown in Figure 3. Crystalline and amorphous cellulose 

peaks were observed near 2θ = 18° and 2θ = 22°. These similar crystalline and amorphous cellulose 

peaks were observed in mango leaf biomass by Akhtar et al., (2016). 

 

 

 

 

 

 

 

Figure 3. Diffractogram of cassava peelings powder. 

Peaks located at 2θ = 28° and 2θ = 68° in the biomass correspond to quartz (SiO2). Peaks present at 

2θ = 38°, 2θ = 48° and 2θ = 58° could be attributed to the existence of metallic impurities (K, Ca, Mg 
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etc.) and inorganic components such as potassium oxide(K2O), calcium oxide (CaO) and many others 

(Table 3).  

 

3.5 Fourier transform infrared (FTIR) spectrum of CPP 

The spectrum acquired by Fourier transform infrared spectroscopy (Figure 4) provided information 

on the chemical groups present in the biomass structure. 

 

Figure 4. Infrared spectrum of cassava peel powder 

The band observed in the 3360 -3000 cm-1 range represents the hydrogen-related stretching band of 

OH groups, originating from the glycosidic bonds of cellulose or the hydroxyphenyl, guaiacyl and 

syringyl groups of lignin (Akhtar et al., 2016; Mothé and Miranda, 2009). The peak at 2926 cm-1 can 

be attributed to asymmetric and symmetric C-H stretching in the methyl and methylene groups. This 

peak also corresponds to the aliphatic parts of cellulose and hemicellulose (Akhtar et al., 2016). The 

band observed at 2102 cm-1 can be attributed to Si-H stretching (Flores et al., 2017). In addition, the 

bands in this region are representative of an inorganic hydride or oxide (Bledzki et al., 2010). The peak 

observed in the wavelength range 1650-1580 cm-1 corresponds to N-H bending in the primary amine. 

This result corroborates with that found by Flores et al., (2017). The peak at 1420.1 cm-1 is attributed 

to bending in the CO plane (Adeniyi et al., 2022; Odeyemi et al., 2023). Peaks at 1148 cm-1 and 1077.2 

cm-1 are attributed to stretching in the CO plane (Anas et al., 2022, 2021; Odeyemi et al., 2023). These 

oxygenated groups indicate the presence of the lignin faction of cassava peel (Odeyemi et al., 2023; 

Silva et al., 2022). Bands at 861cm-1; 764.1 cm-1, and 704.5 cm-1 correspond to the presence of 

hydrogen alkene in out-of-plane bending mode (Adeniyi et al., 2022; Emenike et al., 2022; Odeyemi 

et al., 2023). 

3.6 Morphology of raw material (cassava peelings)  

Figure 5 shows the SEM image of cassava peelings. Fibrous and porous structures can be observed, 

which are suitable characteristics for obtaining carbonaceous materials such as biochars and activated 

carbons (Canales-Flores and Prieto-García, 2016). 
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These structures make it easy to decompose or transform biomass during pyrolysis. According to 

the literature, a good precursor for biochar production should have a porous and fibrous structure, as 

under these conditions, oxygen can easily diffuse inside the particle during combustion. In addition, 

volatile matter can be gradually released (Gani and Naruse, 2007). Based on the results of this 

observation, the raw material could be a good potential precursor for biochar production. 

 

 Figure 5. Cassava peel powder viewed with a scanning electron microscope (SEM) 

3.7 Thermograms of CPP 

Figure 6 shows the results of the thermal analysis carried out on cassava peelings. These results 

provide valuable information concerning the thermal decomposition (pyrolysis) of the biomass studied 

in this work. 

 

Figure 6. ATG/DTG curve for cassava peelings 



Grema et al., J. Mater. Environ. Sci., 2023, 14(12), pp. 1582-1594 1591 

 

Figure 6 shows three phases of mass loss in the biomass studied. The first phase (between 30°C and 

200°C) is generally attributed to the loss of water and evaporation of certain volatile compounds in the 

biomass (Emiola-Sadiq et al., 2021; Flores et al., 2017). The second phase (200°C and 500°C) is 

produced when the biomass is completely devoid of moisture. It could be attributed to the degradation 

of hemicellulose as well as a small amount of cellulose (Veiga et al., 2017). This is the main pyrolysis 

region where most of the sample mass is lost (Emiola-Sadiq et al., 2021). These results are in agreement 

with those found by some authors who indicate that hemicelluloses, the least thermally stable 

compounds, decompose at rather low temperatures (200°C -250°C) (Flores et al., 2017; Ousmaila et 

al., 2018; Raveendran and Ganesh, 1998). According to the same authors, cellulose decomposes in a 

narrowed temperature range of 300°C- 400°C and 325°C- 375°C. The third phase (III) observed could 

be attributed to lignin decomposition and further degradation of coal residue to ash (Emiola-Sadiq et 

al., 2021). These results are in line with those reported by Gani and Naruse, (2007) who indicate that 

the thermal behavior of biomass depends on its own components such as cellulose and lignin content. 

Conclusion 

Cassava peelings were characterized to determine their chemical, physical and thermal 

compositions in order to assess their potential as feedstock for biochar production. On the basis of the 

results obtained, the biomass samples show suitable chemical, physical and thermal characteristics to 

be considered as a good biochar precursor. Carbon content above 40%, ash content below 5%, moisture 

content below 10%, volatile matter content above 75%, fixed carbon content (15.5%), porous, fibrous 

morphology and chemical functional groups were found. Potential toxic elements determined in the 

biomass were almost trace, and peaks of crystalline and amorphous celluloses and metal oxides were 

observed. Thermal decomposition of the biomass took place in three stages attributed respectively to 

water loss and evaporation of certain volatile compounds (30°C-200ºC); degradation of hemicellulose 

and a small amount of cellulose (200°C -500ºC); decomposition of lignin (500°C -800ºC) and further 

degradation of charcoal residues to ash. These results show that the selected biomass has acceptable 

characteristics and can be considered a good potential precursor for biochar production for agricultural 

and environmental purposes. This research proposes viable, environmentally friendly solutions for 

disposing of agricultural waste and transforming it into value-added products such as biochar. 
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