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1. Introduction 
 Aiming to design a forecast system, it is necessary to perform a quantitative verification to assess 
model performance based on the weather systems that are intended to predict. The assessment of model 
accuracy relies on the ability to generate verification statistics that compare the model output to actual 
observations. This is especially difficult for high-resolution model verification that requires time, as well 
as spatial forecast verification. Systematic forecast verification can assist in overcoming difficulties in 
predicting the weather by allowing the quality of the forecasts to be assessed and to track and identify 
errors and document improvements in the system [1].  
Previous papers [2,3] present a comprehensive evaluation of the used forecasting system for surface and 
upper level continuous observations. In this paper, the results from WRF are evaluated and compared 
with those of satellite data to assess the impact of the previously used model representations on 
precipitation and cloud fraction predictions. Radar and rain gauge networks have been the primary tools 
for precipitation and cloud analyses, but satellite products can be very useful when forecasting for a 
number of different weather events, particularly in areas with poor coverage from radar and rain gauge 
data [4]. Because the quantitative accuracy of satellite remote sensing products is affected by various 
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factors related to uncertainties associated with satellite data, atmospheric and terrain properties, 
validating numerical weather-prediction model (NWP) using different satellite products over different 
regions and weather conditions is needed. This study investigated the performance of the developed 
forecasting system using different satellite-based products for a challenging winter precipitation forecast 
event over north Africa and Morocco, on December 3-4, 2019. There are many methods available to 
evaluate and validate precipitation and cloud fractions, among which the categorical metrics method is 
the most popular. Categorical metrics computed from newly modified neighborhood verification 
approach [5,6] are a bit superior to continuous metrics [7] but give credit only to the close forecasts. 
Categorical metrics include scores such as probability of detection (POD), critical success index (CSI), 
success ratio (SR), bias, accuracy (ACC) and Heidke skill score (HSS)... They are derived from the 
analysis of a contingency table (hits, misses, false alarms, correct rejections). Like Taylor diagrams [8] 
for continuous metrics, Roebber performance diagrams [9] provides a way to visualize a number of 
measures of forecast quality including POD, false alarm ratio, contingency bias, and CSI in a single 
diagram and give more in-depth information about the model performance. Given the strengths and 
weaknesses of each metric, it is often desirable to utilize multiple scores in order to assess the overall 
quality of the forecasts. 

In this paper, we produced model validation statistics using the Model Evaluation Tools (MET) tool 
[10] which includes a set of verification tools to compute multiple scores in order to assess and evaluate 
the performance of the forecast. In this case, different evaluation methods were combined, and different 
multivariable diagrams were used which offer a more comprehensive approach to assess the ability of 
the model to predict weather parameters and events. The technical design of the numerical weather 
prediction system used in the experiments and the results exploring synoptic charts and the major 
changes related to the passage of the cold fronts associated with the case study used for the forecast 
model's evaluation were already explained in previous works [2,3]. The next section gives a quick 
summary of the different model configurations used and explains the technique selected for the model 
evaluation. The neighborhood technique deployed to the assessment of the precipitation and cloud 
fraction gridded forecasts with respect to satellite products are presented in section 2 and 3, respectively. 
The summary and conclusions are given in section 4. 

 

1.(Data and Methodology 
1.1.(Model System Design 

The Weather Research and Forecasting Model (WRF) is a numerical weather-prediction model that 
has been used for many applications including operational forecasting and research purposes [11-16]. A 
configuration of the real-time NWP system was setup to support the daily forecasting operations, using 
the Unified Environmental Modeling System (UEMS) to manage and to produce daily runs on a regional 
grid over northern Africa and Morocco. A prototype weather forecast system has been developed and 
applied with careful configuration. In the current set up the model runs one time per day for a period of 
72 hours and is initialized with GFS forecasts. The simulated region is given in Figure 1. We use a two-
layer nesting scheme: the mother domain (D1) covers north Africa with a resolution of 12 km, and the 
inner domain (D2) includes the Moroccan region with a horizontal resolution of 4 km. As weather 
forecasting system requires a big amount of computing resources and the simultaneous use of many 
processors, the model is running on the High Performance Computing facility of the CNRST. Detailed 
weather domain research parameters and forecasting are given in Table 1. The model configurations and 
evaluation protocols for continuous variables are described in detail in previous papers [2,3]. Two 
different configurations were statistically evaluated over the region: (1) the Mellor–Yamada–Nakanishi–
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Niino (MYNN) scheme (gfs1 and GVF1 in Table 1) [17-19], and (2) the Yonsei University scheme 
(YSU; gfs2 and GVF2 in Table 1) [20,21]. 

 

Figure 1. The two WRF model domains used in the study. 

Table 1.  The different configurations used to run the UEMS system over Morocco and north Africa. 
Configuration Detail gfs1 and GVF1 specifications gfs2 and GVF2 specifications 

Model grid: Domain D1 365x281 with 12-km spacing 365x281 with 12-km spacing 
Model grid: Domain D2 427x445 with 4-km spacing; 1-way nesting 427x445 with 4-km spacing; 1-

way nesting 
Vertical sigma levels 42 levels; pressure top of 30 hPa 42 levels; pressure top of 30 hPa 

Domain D1 time step 72 seconds 72 seconds 
Short/Long wave radiation 
parameterization 

RRTMG RRTMG 

Microphysics scheme Lin 5-class  Lin 5-class  
Convection 
parameterization 

Multi-scale Kain-Fritsch (D1 only) Multi-scale Kain-Fritsch (D1 only) 

Planetary boundary layer Mellor-Yamada Nakanishi Niino (MYNN2) Yonsei University (YU)  

Land surface model Noah Noah 
Initialization and 
integration 

0000 UTC, 72-hour forecasts, once daily 0000 UTC, 72-hour forecasts, 
once daily 

Initial/Boundary 
conditions 

NCEP GFS model 0-72-h forecasts in 3-h 
intervals  

NCEP GFS model 0-72-h 
forecasts in 3-h intervals  

land use categories 
datasets 

gfs1: MODIS data 
GVF1: daily real-time global NESDIS VIIRS 
GVF product 

gfs2: MODIS data 
GVF2: daily real-time global 
NESDIS VIIRS GVF product 

Sea surface temperature 
(SST) 

gfs1: NCEP Real-Time Global; fixed for 
simulation 
GVF1: SPoRT Sea Surface Temperature data 

gfs2: NCEP Real-Time Global; 
fixed for simulation 
GVF2: SPoRT Sea Surface 
Temperature data 

Land surface initialization GFS 0-h soil temperature/moisture GFS 0-h soil temperature/moisture 
 

The influences of different green vegetation fraction (GVF) input data and Sea Surface Temperature 
data on the WRF forecast fields were studied using NESDIS/VIIRS green vegetation fraction (GVF) 
data and SPoRT Sea Surface Temperature (SST) data. For gfs1 and gfs2 (Table 1) surface properties and 
SSTs are imported from MODIS data with good spatial resolution and NCEP fixed Sea surface 
temperature. GVF1 and GVF2 (Table 1) correspond to the incorporation of daily global NESDIS/VIIRS 
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green vegetation fraction (GVF) data, which are generated in real-time by NOAA [22,23] and daily 
SPoRT Sea Surface Temperature data [24].  

Daily accumulated precipitation and mean cloud fraction forecasts from a simulation using the 
Advanced Research WRF (ARW) dynamics is examined and evaluated. These forecasts were initialized 
at 0000 UTC and integrated over north Africa (D1) during a most intense prevailing synoptic weather 
condition associated with cold fronts passage which took place between 03 December 2019 and 04 
December 2019. More information about results exploring synoptic charts, the major changes related to 
this event and the evaluation of the used forecasting system for surface and upper level continuous 
observations were explained in previous works [2,3]. 

1.2.(Evaluation Method 
Over some parts of Africa, a major concern for the verification of numerical weather prediction 

systems, is the scarcity of in-situ, surface, upper level and rain gauge observations, which adversely 
affects the model forecast skill. Fortunately, satellites cover almost all of Earth’s surface, and are 
employed to derive high-quality observations to help fill these data voids. The precipitation outputs of 
the WRF model were compared with precipitation data estimated by CMORPH [25] and IMERG [26] 
satellite products, and cloud data produced from MODIS imagery [27-29] were used to evaluate the 
model skill in representing the spatial pattern and timing of cloud fraction forecasts. 

In this study, 24-hourly accumulated precipitations and mean cloud fractions forecasts are compared 
to those from satellites using Grid-Stat tool, by applying the neighborhood-based technique and 
thresholds to the grids to compute contingency-table statistics for the entire domain. The satellite 
products have been interpolated to model resolution from their native resolution and accumulation period 
also have been matched with the forecast. The evaluation of the WRF precipitation and cloud cover was 
carried out through two approaches: (1) quantification of the accuracy or discrepancy between WRF 
estimates and satellite products; and (2) analysis of the capacity to detect precipitation and cloud patterns. 

In the first evaluation approach, precipitation and cloud fraction data were considered as continuous 
variables and three indicators, through Taylor diagram, were used to measure the accuracy or discrepancy 
between the forecasts and the satellite estimates: the correlation, the normalized root-mean-square 
(RMS) difference, and the standard deviation. For the second approach, precipitation and cloud fraction 
observations were considered categorical events and the following indicators will be used: false alarm 
rate (FAR), probability of detection (POD), critical success index (CSI), and frequency bias (bias) 
(details can be found in the textbooks of Wilks [30]). The recommended verification measures for 
forecast categories are: (i) forecasts of the event occurrence meeting or exceeding specific thresholds, 
(ii) forecasts of event amount, (iii) probability forecasts of event meeting or exceeding specific 
thresholds, (iv) verification of ensemble probability distribution. In this work, quantitative precipitation 
and cloud fractions forecasts verification analysis has been conducted using the four grid scores of the 
(i) category.  

For fuzzy or neighborhood verification, Grid-Stat compares the forecasts and observations at grid 
points in a neighborhood surrounding the point of interest rather than comparing a single point from both 
fields. With these verification techniques, the user chooses a distance within which the forecast event 
can fall from the observed event and still be considered a hit [10]. In MET tools neighborhood 
verification is implemented by defining a square search window around each grid point. Within the 
search window, the number of observed events is compared to the number of forecasted events [10]. For 
this study various spatial scales were chosen. The size of the radius of influence considered varied from 
12-km (1 grid point) up to 180-km (15 grid points).  
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The metrics and diagnostics used for scoring arise by defining an event from both the forecast and the 
observation grids. The event is defined by the use of a category or a threshold that serves as the basis for 
determining “hits” or “misses”, which follows the established theoretical framework for evaluating 
deterministic binary forecasts. This framework computes the skill of the forecast by counting the number 
of times the event was observed (or not) and forecasted (or not) in a contingency table.  

To carry out the calculation of the category indicators, a 2x2 contingency table was used as a tool, 
since it allows a summary view of the frequency in which the event is detected (precipitation or cloud 
cover threshold X≥X0) or not (X<X0) by the model or the satellite product. There are 4 possible 
combinations: (1) hit (a), both the model and the satellite detect the event; (2) false alarm (b), the model 
detects the event, but the satellite does not; (3) miss (c), the satellite detects the event, but the model not; 
and (4) correct rejection (d), neither the model nor the satellite detect the event. Table 2 illustrates a 
typical 2×2 contingency table along with associated definitions.  

Table 2. The 2×2 contingency table containing general classification terms. 
  Satellite Observation 

 Event detected Yes (X≥X0) No (X<X0) 
 

Forecast 
Yes (X≥X0) Hits (a) False alarms (b) 
No (X<X0) Misses (c) Correct rejections (d) 

The POD, also known as hit rate, is the fraction of precipitation events detected by the model. This 
indicator is sensitive to hits but ignores false alarms, so it must be used in conjunction with the FAR. 
The FAR is the fraction of forecasted events that did not occur, which is sensitive to false alarms, but 
ignores misses. The CSI is the fraction of correctly forecasted events without considering the correct 
rejections. The bias measures the ratio of the frequency of forecast events to frequency of observed 
events, and reveals whether the model over forecasts or under forecasts. A value of one indicates a perfect 
situation with no bias, a score over one represents over forecasting, and less than one represents 
undertreating, and it must be used in conjunction with the other three indicators. Table 3 presents the 
indicators, the equations used for their calculation, their range and their optimal value; a is the total of 
hits, b is the total of false alarms, and c is the total of misses. 

 

Table 3. Forecast metrics calculated in this study. 
Indicator Equation Range Perfect Score 
Probability of detection (POD) POD = a/(a+c) [0, 1] 1 
False alarm rate (FAR) FAR = b/(a+b) [0, 1] 0 
Critical success index (CSI) CSI = a/(a+b+c) [0, 1] 1 
Frequency bias index (FBI) FBI = (a+b)/(a+c) [0, ∞] 1 

 

 The overall performance of precipitation and cloud fraction forecasts were tracked on a daily basis as 
well as cumulatively throughout the entire experiment (domain D1). Since none of the calculated scores 
alone is capable to completely assess the quality of a forecasting system, the four defined performance 
indexes were computed and visualized in a single diagram using Roebber Performance Diagram [9]. 

2.(Evaluation of Precipitation 
2.1.(Satellite precipitation estimates 

Forecasters view and analyze precipitation from multiple sensors, including radars, gauge networks, 
and satellites. While daily scale precipitation data is available from multiple sources, very few reliable 
sub-daily rainfall estimates are available over the African region. Advances in satellite tools for 
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precipitation analysis are showing great promise in such areas with poor coverage from weather radars 
and rain gauge networks. Satellite-based products become crucial to provide appropriate temporal and 
spatial resolution in regions with the scarcity in availability of surface weather observations. In this case 
the merged satellite guidance provides useful details about the movement and evolution of heavy rainfall 
systems [4,25,26]. This study investigated the performance of our model forecast using two high-
resolution global satellite-based precipitation products: the climate prediction center MORPHing 
technique (CMORPH) and the latest version of the Integrated Multi-SatellitE Retrievals for the Global 
Precipitation Mission (GPM) algorithm (IMERG-V06), over the north Africa (D1).  

Climate Prediction Center Morphing Technique (CMORPH) produces global precipitation data at very 
high temporal and spatial resolution [25]; The data are gridded at 0.07277 degrees’ resolution (8 km at 
the equator) with a temporal resolution of 30 minutes. The technique uses precipitation estimates derived 
from low orbiter satellite microwave observations, and whose features are transported via spatial 
propagation information that is obtained entirely from geostationary satellite IR data. CMORPH binary 
files are available at the NCEP website 
(https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V0.x/RAW/8km-30min/). 

The American National Aeronautics and Space Administration (NASA) and the Japan Aerospace 
Exploration Agency (JAXA) launched the Global Precipitation Measurement (GPM) Core Observatory 
satellite on 2014 [31]. IMERG is the level 3 products of the GPM mission and is available in three 
product types: Early, Late, and Final; the first two types are near real time with a latency time of four 
and 12 h after observation, respectively. The final run with latency of up to two months after observation 
requires gauge analysis correlation and produces a product that is expected to have the best accuracy and 
quality [26]. This study utilized the IMERG Final run with 0.1°x0.1° spatial resolutions and 30 min 
temporal resolution; It includes TRMM-era data going back to June 2000, and can be downloaded from 
https://gpm.nasa.gov/data/directory. The IMERG algorithm inter-calibrates, merges, and interpolates all 
satellite-based microwave data together with microwave-calibrated IR satellite data [26]. Version 6 of 
IMERG is the latest version of the IMERG algorithm since its inception in 2014. The product includes 
different new features, such as full inter-calibration to the GPM combined instrument dataset, increasing 
the maximum precipitation threshold from 50 to 200 mm/h, the use of an updated rain retrieval algorithm, 
and incorporation of the Advanced Technology Microwave Sounder (ATMS) dataset. 

Prior to any comparison, significant data processing was needed for the two used satellite products 
due to the need for reformatting to raster datasets over the study area, to be regridded to unified grids 
and aggregated to daily temporal resolution.  

Figure 2 shows the 24-h accumulated precipitation of the different products in their original spatial 
resolution over north Africa and southern Europe. The image is divided as a table, In the first column 
CMORPH images were placed, the second column denotes the images referring to IMERG images and 
the third to forecasted precipitations. All the images in the first line refer to 03 December 2019, and the 
second line denotes the images referring to 04 December 2019. The comparisons considered whether the 
simulations were able to reproduce the shape, position and intensity of precipitation. Note that only the 
GVF1 configuration for WRF forecasts were presented in Figure 2. For 03 December 2019, it is noted 
that the WRF simulations managed to detect the presence and location of the precipitation range, 
however it showed more intense precipitation compared to satellite products over the highest terrain 
areas of the Middle Atlas Mountains. In the following day, the model overestimates precipitation over 
the highest terrain areas of Middle Atlas Mountains, and underestimates it over the northeast Tunisia. In 
general, the satellite rainfall products and the forecasted one show some similarities about the extent of 
rainfall systems, shape, and position although the magnitude of the rainfall may be different. Also, 
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IMERG data showed large bands of low precipitations and more intense rainfall compared to CMORPH 
and forecasted precipitations. 

 
Figure 2. 24-h accumulated precipitation of domain D1 from 0000 UTC 3 December 2019 to 2300 UTC 4 

December 2019 for each precipitation product at their original spatial resolutions. 

2.2.(Taylor diagrams 
The Taylor diagrams in Figure 3 have been used to analyze how closer or how far the four 

configurations used (gfs1, GVF1, gfs2, and GVF2) match the satellite-based rainfall products over the 
parent domain D1. These diagrams visualize the relative skill of the different model configurations in 
terms of normalized standard deviation (σ), normalized RMS and Pearson’s correlation coefficient (r). 
The black cross symbol (OBS) represents the skill of the model that perfectly reproduces the 
observations, where r is 1, normalized RMS is 0, and the normalized standard deviation is 1. The green-
scale background represents the skill score which provides further guidance for interpreting the model 
performances.   

The variability is represented by the normalized standard deviation (σ) of the observed and forecasted 
values. The blue arc line in Figure 3 corresponds to normalized standard deviation value of 1; If σ <1 the 
forecast has less variability than the observation, whereas if σ >1 the forecast has more variability than 
the observation. The red dashed lines highlight the centered RMS values which measure the differences 
between the predicted and the observed values. Yellow dashed lines are correlation coefficients values 
(r), which measure the linear relationship between forecasted and observed variables.  

For 03 December 2019 (forecast leading time 24), the verification against IMERG data (left panel of 
the Figure 3) for the four forecast configurations show generally poor predictive skill for 24-h 
accumulated precipitation, with the best performing configuration, GVF2, having a correlation 
coefficient of 0.6 and normalized RMS error around 0.8. All model’s configurations underestimate the 
diurnal variability of observed IMERG precipitation by 45-50%. In particular, the variability from the 
gfs1 and GVF1 configurations is only 50% of the observed value. In the following day (forecast leading 
time 48), the different forecast configurations used get even worse skills; diurnal variability of observed 
IMERG precipitation is underestimated by 60-65%. 
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The validation of the four-configuration using CMORPH data (right panel of the Figure 3), shows that 
the model performs better than the case when comparing with IMERG data. The scores indicate strong 
skill in the diurnal variability (σ ~ 0.9-1) but nearly the same correlation coefficients as those found when 
comparing with IMERG (r ~ 0.5–0.6). Again the best performing configuration is GVF2 and the forecast 
skill decreases a little bit in the following day. In this case the diurnal variability of observed CMORPH 
precipitation is underestimated by 10-20%.  

 
Figure 3. Taylor diagrams comparing the 24-h accumulated rainfall for the four used forecast configurations 
with: IMERG observations versus forecast lead time (left panel); CMORPH observations versus forecast lead 

time (right panel). Observation is presented by the black cross symbol (x) on the x-axis (OBS). 
As a conclusion, IMERG and CMORPH precipitation products present similar patterns, but have 

differences in diurnal variability. The underestimation of the diurnal variability of observed CMORPH 
precipitation at the forecast leading time 48 is consistent with the underforecast of accumulated 
precipitation over the northeast Tunisia observed on 04 December 2019 (in Figure 2). 

2.3.(Performance diagrams 
By analogy to Taylor [8], who exploited the geometric relationship between three measures of model 

performance (correlation, normalized root-mean-square difference, and standard deviation) to represent 
them in a single diagram, Roebber proceeded in a similar fashion with dichotomous (Yes/No) forecasts 
[9]. He showed that the probability of detection (POD), false alarm ratio (FAR), critical success index 
(CSI), and bias are geometrically related and consequently can be plotted in a single diagram. For good 
forecasts, success ratio (SR=1-FAR), POD, CSI, and bias approach unity, such that a perfect forecast 
lies in the upper right of the diagram (the dark green zone in diagrams of Figures 4 and 5). Deviations in 
a particular direction will show the relative differences in SR and POD, and consequently CSI and bias. 
This visual representation is preferable to simple tables, and immediate visualization of differences in 
performance is obtained. 

The overall performance of selected configurations was tracked on a daily basis as well as 
cumulatively throughout the entire experiment domain (D1) using Roebber Performance Diagrams, 
pictured in Figures 4 and 5. Dashed labeled lines represent bias scores, while green contours are CSI. 
Note that unbiased forecasts will be represented by any point on the 450 line. Figure 4 shows the 
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performance diagrams of 24-h accumulated precipitation forecast versus precipitation thresholds (1, 5, 
10, 25 and 50mm) with respect to IMERG observations (first column), and CMORPH data (second 
column) for the four used configurations. 

 
Figure 4. Performance diagrams summarizing the POD, SR, CSI and bias. Shown are daily accumulated 

precipitation forecast performances versus precipitation thresholds (1, 5, 10, 25 and 50mm) with respect to 
IMERG observations (first column), and CMORPH data (second column) for the four used configurations. 

Green curved contours represent CSI and dashed diagonal lines represent the bias. 
 

All the images in the first line refer to 03 December 2019, and the second line denotes the images 
referring to 04 December 2019. The width of the neighborhood grids over which verification is 
performed is 1, so only grid point to grid point matching was done in this case. For 03 December 2019, 
the objective verification against IMERG data (left top panel of the Figure 4) supports that at lighter 
thresholds of 1 and 5mm, gfs2 and GVF2 forecast configurations have a noticeable wet bias (bias > 1) 
and at the higher threshold of 25 and 50mm, they have a dry bias (bias < 1). In this case, forecasts are 
slightly unbiased at thresholds of 10mm. Except, for 1mm threshold where precipitation forecasts are 
relatively unbiased, gfs1 and GVF1 have a noticeable dry bias at higher thresholds. In the following day 
(left bottom panel), the forecast skill decreases and there is a large under forecasting bias for all types of 
forecasts. The validation of the four configurations using CMORPH data (right top panel), shows that 
the model overestimates observed precipitations at lighter thresholds of 1, 5 and 10mm, and 
underestimate precipitations at the higher threshold of 25 and 50mm. For the next day (right bottom 
panel), forecasts have a wet bias at lighter thresholds of 1 and 5mm and they have a dry bias at higher 
thresholds of 25 and 50mm.  
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The data demonstrate the meteorological challenge of forecasting heavy precipitation, the performance 
decreases with rainfall intensity. Also, the gfs2 and GVF2 show higher values of POD statistics, if 
compared to the simulations with the gfs1 and GVF1 configurations, but are also biased high at 
thresholds of 1, 5 and 10mm. The high values of POD statistics may be due to the increase of areas 
covered with rainfall, if the Yonsei University scheme is used. Another discovery of this study was 
finding a threshold that marks the steep drop of forecast scores which is 25mm. So there is an apparent 
limitation in the model’s ability to simulate heavy precipitation events. 

Figure 5 shows performance diagrams valid for the two days of the experiment for GVF2 configuration 
at two different thresholds: 1mm (first column) and 10mm (second column). In this case computed skill 
metrics with respect to IMERG and CMORPH observations are compared for different neighborhood 
sizes (1, 5, 11 and 15 grids) over which neighborhood statistics are accumulated. These figure supports 
that forecast performance improves with increasing spatial scale, and as rain threshold increased the 
forecast performance worsened at all scales. 

 
Figure 5. Performance Diagrams summarizing the SR, POD, bias, and CSI for daily accumulated precipitation 

forecast performances versus number of grid boxes over which statistics are accumulated (1, 52, 112 and 152) for 
1mm (first column) and 10mm (second column) thresholds. 

3.(Evaluation of Cloud Fraction 
3.1.(Satellite cloud fraction estimates 

For the evaluation of cloud cover, we use the Moderate Resolution Imaging Spectroradiometer 
(MODIS) Collection 6.1 cloud fraction product from both Terra (MOD06_L2) and Aqua (MYD06_L2) 
[31,32], over the northern Africa and southern Europe. MODIS is a 36!channel spectroradiometric sensor 
that was installed on board both Terra and Aqua sun-synchronous, near-polar satellite platforms, which 
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were launched in December 1999 and May 2001, respectively. The different orbital paths of the two 
platforms gives different overpass times at morning (Terra descending node 1030 local time) and 
afternoon (Aqua ascending node 1330 local time) over the equator, which allows MODIS to observe the 
earth two times during the day.  

MODIS has a 1 km2 field of view mapping to a swath of approximately 2330 km with global data 
archived every day. It observed the earth from a 700-km altitude (± 55 degrees’ view scan). So it had 
approximately global coverage every 1–2 days on a daily basis with a repeat cycle of 16 days 
(http://modis.gsfc.nasa.gov). The MODIS data are organized into 5-minute sections called granules. 
Each granule contains 2030 lines of data, and each line is composed of 1350 pixels. The MODIS cloud 
product contains both physical and radiative cloud properties, including cloud mask, cloud particle phase 
(clouds versus snow, ice versus water) mask, cloud top temperature/pressure/height, cloud optical depth 
and effective cloud particle radius. We leveraged the availability of collocated MODIS (MOD06_L2 and 
MYD06_L2) data over the experiment domain from both Terra and Aqua to calculate 24-h mean cloud 
fraction. Figure 6 presents example of 24-h mean cloud cover fraction images from the satellite product 
and WRF GVF1 simulations for the first day (first line) and the second day (second line) of the case 
study. The locations of forecasted cloudy regions correspond to the satellite-derived image, but there is 
some discrepancy in cloud fractions in some regions. Cloud fraction bias is relatively large over southern 
Tunisia during the first day, but relatively small over Tunisia during the first day and the southern of 
Morocco during the two days of forecast. Note that, in general the two satellite 24-h average cloud 
fraction spatial distribution maps show similar patterns. 

 

 
Figure 6. Regridded 24-h mean cloud fraction from 0000 UTC 3 December 2019 to 2300 UTC 4 December 

2019 for each cloud product. 

3.2.(Taylor diagrams 
The Taylor diagrams in Figure 7 have been used to analyze the skill of the four used configurations 

(gfs1, GVF1, gfs2, and GVF2) over the parent domain D1. In general, the four configurations show 
similar skills for the two forecast days and light differences can be seen when comparing skills with 
respect to the two used satellite products. All model’s configurations underestimate the diurnal variability 
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of observed satellites cloud fraction by about 25% (normalized standard deviation ~ 0.75), and have a 
correlation coefficients values of 0.5-0.55 and a normalized RMS error around 0.85. 

 
Figure 7. Taylor diagrams comparing the 24-h mean cloud fraction for the four used forecast configurations 
with: AQUA observations versus forecast lead time (left panel); TERRA observations versus forecast lead 

time (right panel) 

3.3.(Performance diagrams 
Figure 8 shows the performance diagrams of 24-h mean cloud fraction forecast versus cloud fraction 

thresholds (20, 40, 60, and 80%) with respect to Aqua (first column), and Terra observations (second 
column) for the four used configurations.  

 
Figure 8. Performance diagrams summarizing the POD, SR, bias, and CSI. Shown are daily mean cloud 

fraction forecast performances versus cloud fraction thresholds (20, 40, 60, and 80%) with respect to Aqua 
observations (first column), and Terra data (second column) for the four configurations used. Dashed diagonal 

lines represent the bias, and green curved contours represent CSI. 
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Images in the first line refer to 03 December 2019, and those in the second line refer to 04 December 
2019. Only grid point to grid point matching was done in this case. 

The 24-h average cloud fraction skills with respect to the two satellites show similar results, and the 
validation of the four configurations shows similar results with an underestimation of observed cloud 
fractions for all thresholds (bias<1). Again, the performance decreases with cloud fraction intensity; the 
loss of skill is largely owing to a decreased POD, while SR slightly decreases from 0.85 to 0.65.  As for 
precipitation, we can find a threshold that marks the steep drop of forecast scores. So at threshold higher 
than 80%, there is a clear limitation in the model’s ability to simulate cloud cover fractions. 

Conclusions and Future Direction 
We developed a NWP system based on the WRF model to predict weather over North Africa and 

Morocco. We selected a case study day from a challenging winter precipitation forecast event over north 
Africa and Morocco, on December 3-4, 2019. The WRF forecasts were performed for two domains with 
spatial resolution of 12-km x 12-km (domain D1) and 4-km x 4-km grid (domain D2), and temporal 
resolution of 1 hour. Forecast calculations were carried out using the 55-km GFS forecast data as input 
data with different WRF parameter settings.  The influences of different green vegetation fraction (GVF) 
input data and Sea Surface Temperature data on the WRF forecast fields were studied using 
NESDIS/VIIRS green vegetation fraction (GVF) data and SPoRT Sea Surface Temperature data. For the 
present study, only the forecast fields for domain D1 were compared with the observed data.  

Grid-Stat tool developed by the National Center for Atmospheric Research called Model Evaluation 
Tools was used to compute traditional error statistics and verification metrics to compare the 
performance of the forecast model with observed data for the entire domain. In this study, 24-hourly 
accumulated precipitations and mean cloud fractions forecasts were compared to those from satellites 
using the neighborhood-based technique. The evaluation was carried out through two approaches. In the 
first evaluation approach, precipitation and cloud fraction data were considered as continuous variables 
and three indicators, through Taylor diagram, were used to measure the accuracy of forecasts: the 
correlation, the normalized root-mean-square (RMS) difference, and the standard deviation. For the 
second approach, precipitation and cloud fraction data were considered as categorical events and four 
indicators (POD, FAR, CSI, and bias) were used and visualized in a single diagram using Roebber 
Performance Diagram. We believe that combining these different evaluation methods, and using 
multivariable diagrams offer a more comprehensive approach to assess the ability of the model to predict 
weather events. From this study, the following conclusions can be inferred: 
1.! In general, the satellite products and the forecasted one show some similarities about the extent, 

shape, and position of rainfall and cloud cover fraction systems although the magnitude may be 
different.  

2.! IMERG data showed large bands of low precipitations and more intense rainfall compared to 
CMORPH and forecasted precipitations. Also, IMERG and CMORPH precipitation products present 
similar patterns, but have differences in diurnal variability. 

3.! The validation of forecasted rainfall using CMORPH data, shows that the model performs better than 
the case when using IMERG data. The model overestimates CMORPH observed precipitations at 
lighter thresholds of 1, and 5mm, and underestimate precipitations at the higher threshold of 25 and 
50mm.  

4.! From the performance diagrams we found a threshold that marks the steep drop of forecast scores 
(25mm for 24-h accumulated precipitations and 80% for 24-h mean cloud fractions). So there is an 
apparent limitation in the model’s ability to simulate these events. 



Moustabchir et al., J. Mater. Environ. Sci., 2021, 12(7), pp. 984-999 997 
!

5.! Model forecasts show an underestimation of cloud fraction for all thresholds, and as for 24-h 
accumulated precipitations the performance decreases with the increase of intensity threshold.   

To the authors’ knowledge, this is the first NWP system over this region that uses the WRF model at 
high spatial and temporal resolution for weather forecasting. So there is a further need for more complex 
evaluation of the forecasts for this study area. Spatially-based techniques could present an alternative for 
the high resolution rainfall and cloud fraction forecasts evaluation enabling a better representativeness 
of the uncertainty of these highly variable fields [33]. The MET has proven to be a powerful means 
assessing the accuracy of the WRF model. Consideration must be given to the use of other verification 
methods like the Method for Object-Based Diagnostic Evaluation (MODE) tool which is one of the main 
components of MET [10]. MODE represents a category of spatial verification methods whose purpose 
is to identify localized features and compare them to identify which features best correspond to each 
other, rather than evaluating hits and misses at a point/neighborhood as is done with the contingency 
table.  Errors in precipitation or cloud fractions forecast could occur due to prediction of inaccurate event 
amount or faulty timing of the event or even errors and uncertainties associated with satellite data. In 
fact, satellite products have been released recently, more comprehensive evaluations are still essential to 
better understand error characteristics of these products. Therefore, a more critical analysis and 
evaluation of satellite products is vital to understand their capabilities and their strengths and weaknesses 
before any application in a specific region. 
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