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1. Introduction 
 Membrane technology is one of the most promising ways to produce high quality water [1-4]. 
Desalination and water reuse has been long acknowledged as a feasible mainstay to address this grand 
challenge by offering safe and clean water in many arid areas, coastal regions or remote locations. 
Particularly for water-scarce countries such as Middle Eastern and North Africa Countries that have 
attempted and implemented all other measures to secure fresh water, desalination may serve as the most 
viable approach to supply fresh water.  
Membranes and other nanoporous materials have been considered as the essential technologies to 
address global water shortage problem [5]. Extensive product line of water and wastewater filtration 
systems such as conventional pressure driven seawater and brackish water reverse osmosis (RO), 
nanofiltration (NF), ultrafiltration (UF) and microfiltration (MF) as well as osmotically driven forward 
osmosis (FO) and pressure retarded osmosis (PRO) have been introduced in the market [6].!Up to now, 
only cellulose triacetate (CTA)-based and polyamide (PA)-based membranes have been successfully 
used in the SWRO plants for reliable water securing since the first finding of an outstanding 
semipermeable membrane of cellulose-based polymers in 1957 by Reid [7, 8]. Cellulose acetate 
membranes (CAMs) are commonly used in the reverse osmosis (RO) desalination of brackish. The 
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advantage of using CAMs for this process is that they have favorable chemical and materials properties 
[9]. CAMs are relatively stable and chlorine tolerant, they have a neutral surface charge, and due to 
available surface hydroxyl groups they can be readily derivative. Furthermore, they are reproducible, 
biodegradable, biocompatible, and are relatively low cost because they derive from naturally occurring 
cellulose [10]. Application of CAMs is restricted to some extent due to the buildup of biological matter 
at the membrane surface; a phenomenon known as biofouling [11]. 
Biofouling on membranes can be described as an irreversible deposition and accumulation of bioorganic 
matter onto the surface of the membranes. This type of fouling is caused by the attachment of 
microorganisms to the membrane surface and the subsequent growth of colonies on the surface. During 
the last years, plant extracts were employed as new sources for functional groups in industrial 
applications such as antiscalants [12-15] and corrosion inhibitors [16] in order to develop new 
green chemicals for safe environment.  Also, it was found that the addition of sunflower (Helianthus 
annuus) seeds extract to cellulose acetate composite increased the hydrophilicity of the memberane and 
improved its performance [17]. As known, plant extracts can be considered as a rich source 
of natural chemical compounds that can be extracted by simple methods [12,13]. 
The genus Cymbopogon proximus (halfabarr) of the family Gramineae, locally known as Halfa-bar, is 
an aromatic, densely tufted grass growing wildly in Upper Egypt [18]. The Cymbopogon proximusis 
highly reputed in folk medicine as an antispasmodic and urolithiasis (renal stone removal), and diuretic 
agent, and for gout. The plant is used in the treatment of prostate inflammation, kidney disease, inhibition 
of kidney shrinkages, anthelminthic and for stomach pains.  El-Nezhawy et al, 2014 reported that 
proximol has antioxidant activity [19]. This antioxidant activity of proximol was attributed the plant 
contents of flavenoids, ruten and quericetine that are well known antioxidant so it have efficacy against 
the deterioration in renal functions. Aqueous extract of Cymbopogon proximusis was investigated as 
inhibitor of steel [20] and Zinc corrosion [21]. 
The main objective of this work is to improve the performance and antifouling properties of CA-RO 
membrane by adding extract of Cymbopogon Proximus during membrane preparation process using 
phase-inversion technique. The modified membranes will be characterized by Fourier transform infrared 
(FTIR), contact angle, and scanning electron microscopy (SEM) techniques. The performance of the 
pristine and modified membranes will be assessed for water desalination using water flux and salt 
rejection measurements. 
 
2. Methodology 
 

2.1.  Materials: 
CA (molecular weight of 100,000 g mol–1 and 39.8 wt.% acetyl) was supplied by Aldrich and 1,4 
dioxane ( supplied by Panreac Quimica S.A , Barcelona, Spain). Methanol (purity = 99.5%) and acetone 
(purity = 99%) were received from Labsolve (Lisbon, Portugal). Acetic acid (purity = 99.8%) was 
supplied by BDH Anala R (England), and NaCl was purchased from Merck, Aldrich, and the Egyptian 
Petrochemical Company, Egypt. Egg Albumin powder (purity = 99%) was supplied from Raheja Center, 
Mumbai. 

2.2. Preparation of Cymbopogon Proximus extracts: 
 The leaves were grinding to powdery form after harvesting for 2 h in oven at 70°C. A 5 g of the powder 
was refluxed in 100 mL distilled water for 1 h to prepare stock solution of extract. The refluxed solution 
was filtered to remove any contamination. The stock solution was evaporated to obtain extract residue. 
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2.3.Membranes Preparation:  
CA-RO membranes were prepared using the phase-inversion method [22] in which  mixture 
of acetone (13.5 g), dioxane (27 g) and acetic acid (5 g) were used as solvents for CA (8.45 g), while 
methanol (10.7 g) was used as a nonsolvent. Modified CA-RO membranes were prepared by the addition 
of   0.3g of Cp extract to this mixture. The thickness of RO membranes was previously selected 
(250µm) and spread at a constant speed (10 mm s–1 using a knife of an automatic applicator (Zehntner 
2300-Swiss, Switzerland)).  The prepared CA-RO was then post-treated for 10 min at about 80°C–
85°C, then soaked in deionized water for 24 h. Each membrane was prepared three times for 
reproducibility. 

2.4.Membranes Characterization: 
2.4.1. Chemical structure 
FTIR spectrometer (FTIR LX 18-5255 Perkin Elmer) was used for characterizing the membranes. The 
spectra were recorded in the wave number range of 4,000–400 cm–1. The CA membrane samples had 
been grinded with KBr in a ratio of 1:10 in the powder form to reduce the particle size.  

2.4.2. Morphological investigation 
Morphology of membranes was observed using SEM (XL 30 JEOL). The membranes 
were sputter coated with a thin film of gold under vacuum prior to morphological examination. 
Furthermore, membranes were fractured in liquid nitrogen for cross-sectional images. 

 2.4.3. Hydrophilicity measurements 

Contact angle 
The contact angle of the prepared CA-RO membrane surfaces was measured using Rame hart, 
Instrument, France. A drop of distilled water (2 µL) was placed on the membrane surface (3 cm× 
2 cm) using a microsyringe (Hamilton Company, Reno, NV, USA). The contact angle was measured 
directly within 10 s, at five different positions. 

Water content 
Water content can be defined as the ratio, expressed as a percentage, of the mass of “pore” or “free” 
water in a given mass of the membrane to the mass of the dry membrane [23]. Water content of 
the membranes was obtained after soaking membrane in water for 24 h, and the membranes were 
weighed followed by mopping them with blotting paper. The wet membranes were placed in an oven 
at 85°C for 24 h, after that they were placed in oven under vacuum, and the dry weights of the membranes 
were determined.  
The percentage of water content (WC%) was calculated using the following equation  

               Water content %= (Ww- Wd)*100/ Ww                             (1) 

Where Ww and Wd represent the weights of wet and dry samples, respectively. 

2.5. Membrane performance 
The performance tests (salt rejection and water flux) for membrane sample (area 42 cm2)   were done 
using a cross flow RO unit (CF042, Sterling, USA).  Saline salt solutions of NaCl of 10,000 ppm and pH7 
were used. The determination of the total dissolved salt of the permeate water was measured with a pH 
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and conductivitymeter (430 portable, Jenway, England). The water flux (F) and salt rejection (R) values 
were obtained using Eqs. (2) and (3): 

F = V/A*t                                                                           (2)                                               

where V is the total volume of water passing through the membrane (L), A is the membrane area (m2), 
and t is the time (h). 

R = (Co – Cmemb)x 100/Co                                                    (3)                          

where Co is salt concentration in the feed water side and Cmemb. is the salt concentration in the permeate 
side of the membrane [24]. 

2.6.Antifouling properties measurements: 
 Static protein adsorption of the membrane: 

 Adsorptive fouling was evaluated by immersing the membrane in egg albumin as protein feed solution 
[25]. As described in previous works [17], the amount of adsorbed protein was determined by measuring 
the concentration of the protein solution before and after adsorption. The concentration of protein was 
measured using UV spectrophotometer (UV-1601, Shimadzu, Japan). The relative protein adsorbed 
(RP%) was used to identify the extent of adsorptive fouling. 

RP% = Co – Ca / Co  x 100 

where Co and Ca are protein concentrations before and after membrane soaking, respectively. 

 Fouling attachment monitoring: 

For fouling investigation, different Membrane samples, 2.5 cm x 2.5 cm in size, submerged in 
Mediterranean seawater for 15 days [17]. The dried membrane surface was observed by scanning 
electron microscope (SEM) after coating with a gold layer. The density of the microbes on the membrane 
surface was investigated from the SEM images. 
 

3. Results and Discussion 
3.1. Membrane characterization: 

Figure 1 presents the cross-section micrograph of prepared membranes showing non-porous structure of 
pristine membrane which consisted of a skin-layer on the top surface and finger-like pores under this 
layer. The top skin layer of cellulose acetate membrane was generated by solvent evaporation while 
finger-shaped voids were formed after annealing treatment [26]. On other hand, cross-section 
micrograph of modified membrane showing mini-pores in the skin layer which are responsible for 
rejecting the salt. These mini-pores gradually enlarge from the top surface to the underside of the 
membrane in which very large channels are apparent. This unique morphology of this modified 
membrane indicates that extract exhibited the pore-forming effect during membrane formation. 
The FTIR spectra of pristine and modified CA membrane are illustrated in figure 2.  As seen, the 
modified membrane has OH functional group (3000–3750 m-1) which makes the membrane more 
hydrophilic. Moreover, the additional peak at 1640–1630 m_1clarifies the adsorption of water, which 
not only assists in the make and break of hydrogen bonding of water but also causes easy permeation of 
water across the membrane [ 27]. Also, the band at 1,731 cm–1 is corresponding to the C=O bond of the 
carboxylic group. In addition, the peaks at 2,932 cm–1 is assigned to the C–H bending, while the band at 
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1,049 cm–1 probably corresponds to the stretching modes of C–O ether. It is reported that studied extract 
is rich with flavonoids, triterpenoids, which contain many functional groups in addition to phenolic 
structures [28]. 
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Fig. 1. SEM images of surface, bottom, and cross section of pristine CA-RO membrane and modified 
membrane containing Cymbopogon proximus extract. 

 

Fig. 2: FTIR spectra of (a) pristine CA-RO membrane and(b) modified membrane containing 
Cymbopogon proximus extract. 

3.2. Hydrophilicity Examinations: 
In order to evaluate the surface hydrophilicity of prepared membranes, the water contact angles and 
water content of these membranes were measured and presented in figure 3 and Table 1. It is clear that 
the addition of the extract decreases the values of the contact angle from 65.4 to 55.8 (which means 14.7 
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% decreasing rate) which indicates hydrophylicity improvement, on other hand, water content of 
modified membrane increased than pristine one (from 71.3 to 73.6 %). It is reported that contact angle 
and water content are affected by pore size and wettability of internal pore channels [29]. The above 
results can be discussed on the basis that the existence of hydrophilic functional groups in the extract 
leads to the improvement of hydrophilicity of the modified membrane which plays an important role in 
improving the resistance of the fouling [30-32]. 

!
!!!!!!!!!!!!!!!!!!a!

!
!!!!!!!!!!!!!!!!!!!!b!

Fig. 3. Contact angles of pristine membrane (a),  and  modified membrane (b). 
 

Table 1: Water content and contact angle for studied membranes.  

Contact angle Water content  %  Membrane 

65.40 71.30 % pristine membrane   

55.84 73.6% Modified membrane  
 

3.3. Anti-fouling properties of the membranes: 

Static protein adsorption 
Figure 4 shows that the antifouling performance against protein fouling on pristine and modified 
celluluce acetat memberane. As seen, the addition of Cymbopogon Proximus extract to cellulose acetate 
composite decreases the relative protein adsorption (RP%) from 74.9 to 10.8, and consequently, 
increases the resistivity of the membrane towards adsorptive fouling. This result can be discussed on the 
basis that the extract act as hydrophylicity modifier with more hydrophilic surface which are 
insusceptible to hydrophobic protein molecules. As known, , protein fouling is caused by adsorption of 
protein molecules on the membrane surface and  the adsorptive interaction between foulants and the 
membrane surface is one of the most significant elements for membrane antifouling property. 
The modified   membranes surface contributed to the formation of hydration layers via ionic solvation 
of the charged groups and hydrogen bonds between the amide groups and the water molecules [33]. The 
hydration layers led to a strong repulsive force to protein at a specific distance, and made the protein in 
contact with the membrane surface in a reverse manner [34]. 
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Fig. 4. Static adsorption of protein on pristine and modified membranes. 

 

Fouling attachment on membrane: 
In order to further identify the anti-fouling properties of pristine and modified cellulose acetate 
membrane, their surface morphology after immersion in seawater for 15 days was characterized with 
SEM. As shown in Fig. 5, the microbe’s density on modified membrane was substantially lower than 
that of pristine one.  For the membrane containing the extract, microbial attachment decreased on its 
surface, indicating that it has anti-adhesive properties. This phenomenon may be ascribed to the 
presence of functional groups of plant extract. It was reported that electrostatic interaction between the 
functional groups and cell membrane results in cell death [22]. 

 

 

 

 

 

 

 

 
 

Fig.5. SEM photograph of pristine membrane (a)and modified membrane (b) after immersion in 
seawater for 15 d. 
 

3.4. Effect of extract addition on membrane performance: 
 

The relation between water flux, salt rejection and applied pressure was plotted during the desalination 
process and illustrated in figures 6 and 7. The results in the figures show that modified membrane with 
Cp extract additive has higher water flux values. Also, the salt rejection increased to 96.7%  at 14 bar 
instead of 92.3% for the pristine membrane.  Increasing the pressure over 16 par decreases the salt 
rejection. The decrease of salt rejection with the increase of applied pressure can be attributed to the 
corresponding high fluxes may lead to concentration polarization in the measuring cell, which causing 
a drop in the salt retention [23]. 
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The increase in salt rejection and water flux values  in presence of the additive can be attributed to the 
formation of mini pores and enlarged channels in the dense layer (as previously seen in section 3.1). The 
results well agree with hydrophylicity and surface morphology data which indicated that extract 
increases hydrophylicity of the membrane in addition to acting as pore former. It is reported that the 
change in permeability of the membranes may be attributed to two possible reasons [25]. One is the 
increase in hydrophilicity due to the addition of the plant extract, and or the other is the formation of a 
porous membrane structure. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Variation of permeate water flux of pristine and modified membranes versus feed pressure. 
 

 
 

Fig 7: Variation of the percentage of salt rejection of pristine and modified membranes versus feed 
pressure. 

 

Conclusion 
In this work an improved, and relatively low-cost composite CA membrane was fabricated by a facile 
method using the phase inversion technique. This new composite contains cymbopogon proximus extract 
which is rich in many functionalized groups as proved in FTIR examinations. The SEM micrographs 
proved that this membrane has a unique morphology which shows mini-pores in the skin layer, these 
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mini-pores gradually enlarged from the top surface to the underside of the membrane where very large 
channels are apparent. Contact angle and water content measurements illustrated that addition of the 
extract to membrane composite enhanced its hydrophilicity, and its resistivity to protein adsorption and 
microbial growth. Furthermore, performance tests indicated that the modified membrane showed best 
performance where the salt rejection increased to 96.7% at 14 bar instead of 92.3% for pristine one with 
improved water flux properties. 
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