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1. Introduction 

Steel processes can be classified into two types: Primary and Secondary steelmaking. The primary 

steelmaking process turns liquid iron from a blast furnace and steel scrap into steel through melting scrap 

steel or direct reduced iron (DRI) in an electric arc furnace. Secondary steelmaking is a purification of 

the crude steel before casting and the various operations are normally done in ladles in the secondary 

method, alloying agents are added, gases are dissolved lower in the steel, lowering iron losses during 

slag removal in hot metal desulphurization without using fluoride [1].  Steel in the national economy is 

enormous. One cannot name an oil and gas industry where steel finds no application. The economic 

power of a country is determined by its output of steel, since progress in the principal economic sector, 

is its mining, transport, manufacturing, engineering or agriculture unthinkable without steel [2]. The 

demand for steel rises continually and is expected to reach the level of 1000million tonnes per year by 

the end of this century.  Although there are many studies on steel production models, Some smart and 

soft computing models have been applied to a large variety of industrial processes [3], such as 

production, fault finding, process preparation and monitoring, machine maintenance, and quality 

prediction and control [4-10]. In particular, the use of these methods for machinery fault detection and 

product quality prediction has received increasing attention over the last years 

Adly et al offered a simplified regression algorithm for precise identification of defect patterns in 

semiconductor wafer maps [11]. Ghorai et al established a visual examination system to confine defects 

on hot-rolled steel surfaces employing some kernel classifiers [12], such as the support vector machine 

and the vector-valued regularized kernel function approximation. Wu et al introduced a method based 

on the random forest for tool wear prediction and relate its performance with that of sustenance 
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regression and feed-forward back-propagation neural networks [13]. Wang et al presented a complete 

survey of deep learning algorithms for smart manufacturing [14-15].             

The bulk of steel to be formed and molded, as well as its elasticity, ductility, its established resistance in 

several uses, and its corrosion resistance, has given it a foremost place among the materials used in 

several sectors. In the modern world, steel is virtually indispensable in construction, infrastructure, 

automotive, and many other industries while also being an important determinant of economic 

development. Many studies have examined the role of the steel industry within the economy and have 

shown a positive relationship between the steel industry and economic growth [16–20]. 

The realization of the mathematical model highlights the essential characteristics of the modeled 

process/object, which determines the mathematical formalization. Formalization implies that it is 

possible for the characteristics of the real problem to be matched to appropriate mathematical ideas: 

functions, integrals, derivatives, equations, systems, inequalities, etc. [21–23]. 

In relationships of the scientific approach to the quality management of the research process in steel 

production, the mathematical models applied so far relate to the following:  (a) Mathematical statistics: 

applications of the Poisson repartition in excellence management [24]; Pearson’s coefficients [25]; the 

application of the study of correlation coefficients [26]; regression theory as a prediction instrument in 

quality management [26]; data processing [27]. 

(b) Probability theory: the quality loss function [28]; Six Sigma philosophy [24]; probabilistic models, 

i.e., [26]. Information theory: entropic models i.e., [26–32]; pseudo-entropic models, i.e., [9]. (d). Multi-

criterial or multi-objective mathematical programming: optimizing product quality, [33]. 

At present, there are no published papers on a model that deals with the formulation and production 

prediction of steel. Hence there is a need for this study. A model like this is significant in steel industries 

in the country because (planner) which is in charge of production planning to make adequate plans for 

the available raw material to be utilized efficiently and economically [34]. 

2. Material and Methods 

2.1. Plant material 

The data for this study was obtained from the company production records. This is shown in Table 1 below. 

Table1: Production Data from 1982-1995 (Metric tons) [34] 

Year Liquid 

Steel 

Scrap DRI FerroAlloy Cok

e 

Lime Lime 

Stone 

Electric 

Stone 

Oxygen Nitrogen Natural 

Gas 

Air 

 Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

1982 90237 29011.1 64068 1082 270 5775 165 65383 68489 0 0 0 

1983 181957 39302.7 152844 2929 109 9097 509 115368 2547398 4821631 5032931 7338326 

1984 180318 4907.08 139506 2344 162 7934 414 125502 170401 4140124 1951052 4358310 

1985 243893 48534.7 24025 2926 68 12438 748 167554 2302349 4451047 568585 2916960 

1986 143067 38745.1 10641 1676 213 7918 194 89771 558093 3755369 35469 5118771 

1987 136552 38594.4 108719 2127 97 8831 203 81126 808926 2363841 5078667 6284083 

1988 139326 37114 123738 1931 141 9303 349 96021 824056 2266030 5373933 8398586 

1989 127468 21504.4 123738 1743 22 8962 323 89271 766603 1221342 3972250 8974561 

1990 138950 50590.5 42741 1985 109 10445 302 101029 59772 3005313 5682738 5757670 

1991 113802 36699.2 101321 1743 93 7215 325 82811 658941 2458113 4.9E+07 4715935 

1992 61873 22129 53521 2950 34 3748 42 45704 266051 1336443 2530580 63991 

1993 42699 20141 34574 25689 25 2673 0.4 34816 238114 405225 1746724 1769419 

1994 50028 13665.4 46203 5744 31 3165 0 43228 103598 1699 2046149 2073164 

1995 36041 1340.9 50339 5586 24 2275 0 30419 87331 1202 0 0 
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The interactions between variables are very vital aspects of steel production. The iron ores are first 

roasted to convert it to iron (iii) oxides mixed with coke and limestone are fed into the furnace the cup 

and cone charger [34]. Figure 1 shows the main reactions in the furnace and zones in which they take 

place. 

 

 

 

 

 

 

 

 

 

Figure 1:  Blast Furnace 

In analyzing the data collected in the graph of the product Y was plotted against each variable (x). It was 

assumed that there is a linear relationship between each variable and the product. With this insight, the 

least square method of regression was adopted [35]. The regression equation is given in equation (1) 

below [36]. 

𝑌 = 𝐵0 + 𝐵1𝑋1 + 𝐵2𝑋2 + 𝐵3𝑋3 + 𝐵4𝑋4 + 𝐵5𝑋5 + 𝐵6𝑋6 + 𝐵7𝑋7 + 𝐵8𝑋8 + 𝐵9𝑋9 + 𝐵10𝑋10 + 𝐵11𝑋11                                                                                                                                            

(1)  

The normal equations for equation (1) are as follows: 

Σ𝑌 = 𝑁𝐵0 + 𝐵1Σ𝑋1 + 𝐵2Σ𝑋2 + 𝐵3Σ𝑋3 + 𝐵4Σ𝑋4 + 𝐵5Σ𝑋5 + 𝐵6Σ𝑋6 + 𝐵7Σ𝑋7 + 𝐵8Σ𝑋8 + 𝐵9Σ𝑋9 + 𝐵10Σ𝑋10 +
𝐵11Σ𝑋11                                                                                                                            (2) 

Σ𝑌𝑋1 = 𝐵0Σ𝑋1 + 𝐵1Σ𝑋1
2 + 𝐵2Σ𝑋1𝑋2 + 𝐵3Σ𝑋1𝑋3 + 𝐵4Σ𝑋1𝑋4 + 𝐵5Σ𝑋1𝑋5 + 𝐵6Σ𝑋1𝑋6 + 𝐵7Σ𝑋1𝑋7 +

𝐵8Σ𝑋1𝑋8 + 𝐵9Σ𝑋1𝑋9 + 𝐵10Σ𝑋1𝑋10 + 𝐵11Σ𝑋1𝑋11                                                          (3) 

Σ𝑌𝑋2 = 𝐵0Σ𝑋2 + 𝐵1Σ𝑋2𝑋1 + 𝐵2Σ𝑋2
2 + 𝐵3Σ𝑋2𝑋3 + 𝐵4Σ𝑋2𝑋4 + 𝐵5Σ𝑋2𝑋5 + 𝐵6Σ𝑋2𝑋6 + 𝐵7Σ𝑋2𝑋7 +

𝐵8Σ𝑋2𝑋8 + 𝐵9Σ𝑋2𝑋9 + 𝐵10Σ𝑋2𝑋10 + 𝐵11Σ𝑋2𝑋11                                                          (4) 

Σ𝑋3𝑌 = 𝐵0Σ𝑋3 + 𝐵1Σ𝑋3𝑋1 + 𝐵2Σ𝑋3𝑋2 + 𝐵3Σ𝑋3
2 + 𝐵4Σ𝑋3𝑋4 + 𝐵5Σ𝑋3𝑋5 + 𝐵6Σ𝑋3𝑋6 + 𝐵7Σ𝑋3𝑋7 +

𝐵8Σ𝑋3𝑋8 + 𝐵9Σ𝑋3𝑋9 + 𝐵10Σ𝑋3𝑋10 + 𝐵11Σ𝑋3𝑋11                                                          (5) 

Σ𝑋4𝑌 = 𝐵0Σ𝑋4 + 𝐵1Σ𝑋4𝑋1 + 𝐵2Σ𝑋4𝑋2 + 𝐵3Σ𝑋4𝑋3 + 𝐵4Σ𝑋4
2 + 𝐵5Σ𝑋4𝑋5 + 𝐵6Σ𝑋4𝑋6 + 𝐵7Σ𝑋4𝑋7 +

𝐵8Σ𝑋4𝑋8 + 𝐵9Σ𝑋4𝑋9 + 𝐵10Σ𝑋4𝑋10 + 𝐵11Σ𝑋4𝑋11                                                          (6) 

Σ𝑋5𝑌 = 𝐵0Σ𝑋5 + 𝐵1Σ𝑋5𝑋1 + 𝐵2Σ𝑋5𝑋2 + 𝐵3Σ𝑋5𝑋3 + 𝐵4Σ𝑋5𝑋4 + 𝐵5Σ𝑋5
2 + 𝐵6Σ𝑋5𝑋6 + 𝐵7Σ𝑋5𝑋7 +

𝐵8Σ𝑋5𝑋8 + 𝐵9Σ𝑋5𝑋9 + 𝐵10Σ𝑋5𝑋10 + 𝐵11Σ𝑋5𝑋11                                                          (7) 

Σ𝑋6𝑌 = 𝐵0Σ𝑋6 + 𝐵1Σ𝑋6𝑋1 + 𝐵2Σ𝑋6𝑋2 + 𝐵3Σ𝑋6𝑋3 + 𝐵4Σ𝑋6𝑋4 + 𝐵5Σ𝑋6𝑋5 + 𝐵6Σ𝑋6
2 + 𝐵7Σ𝑋6𝑋7 +

𝐵8Σ𝑋6𝑋8 + 𝐵9Σ𝑋6𝑋9 + 𝐵10Σ𝑋6𝑋10 + 𝐵11Σ𝑋6𝑋11                                                          (8) 

3𝐹𝑒2𝑂3 + 𝐶𝑂 → 2𝐹𝑒3𝑂4 + 𝐶𝑂2 

𝐹𝑒3𝑂4 + 𝐶𝑂 → 3𝐹𝑒𝑂 + 𝐶𝑂2 

Burden Charging 

C0250  
𝐶𝑂 + 𝑁2  

stack 
         Charge Distribution 

         Low Temperature 

Distribution 

FeO +  C   → Fe +  CO  

MnO +  C   → Mn +  CO 

𝑃2𝑂2 +  5C   → 𝑃2  + 5 CO 

𝑆 𝑂 +  2C   → 𝑠 +  2CO

C01200  

Bosh 

Hot blast air 

C +  𝑂2    → 𝐶𝑂2  +  C → 2CO 

1700 0C 

Tuyeres 

1500 0C 

         Coke solution/direct 

         Reduction primary 
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Σ𝑋7𝑌 = 𝐵0Σ𝑋7 + 𝐵1Σ𝑋7𝑋1 + 𝐵2Σ𝑋7𝑋2 + 𝐵3Σ𝑋7𝑋3 + 𝐵4Σ𝑋7𝑋4 + 𝐵5Σ𝑋7𝑋5 + 𝐵6Σ𝑋7𝑋6 + 𝐵7Σ𝑋7
2 +

𝐵8Σ𝑋7𝑋8 + 𝐵9Σ𝑋7𝑋9 + 𝐵10Σ𝑋7𝑋10 + 𝐵11Σ𝑋7𝑋11                                                                   (9) 

Σ𝑋8𝑌 = 𝐵0Σ𝑋8 + 𝐵1Σ𝑋8𝑋1 + 𝐵2Σ𝑋8𝑋2 + 𝐵3Σ𝑋8𝑋3 + 𝐵4Σ𝑋8𝑋4 + 𝐵5Σ𝑋8𝑋5 + 𝐵6Σ𝑋8𝑋6 + 𝐵7Σ𝑋8𝑋7 +

𝐵8Σ𝑋8
2 + 𝐵9Σ𝑋8𝑋9 + 𝐵10Σ𝑋8𝑋10 + 𝐵11Σ𝑋8𝑋11                                                                     (10) 

Σ𝑋9𝑌 = 𝐵0Σ𝑋9 + 𝐵1Σ𝑋9𝑋1 + 𝐵2Σ𝑋9𝑋2 + 𝐵3Σ𝑋9𝑋3 + 𝐵4Σ𝑋9𝑋4 + 𝐵5Σ𝑋9𝑋5 + 𝐵6Σ𝑋9𝑋6 + 𝐵7Σ𝑋9𝑋7 +

𝐵8Σ𝑋9𝑋8 + 𝐵9Σ𝑋9
2 + 𝐵10Σ𝑋9𝑋10 + 𝐵11Σ𝑋9𝑋11                                                                     (11) 

Σ𝑋10𝑌 = 𝐵0Σ𝑋10 + 𝐵1Σ𝑋10𝑋1 + 𝐵2Σ𝑋10𝑋2 + 𝐵3Σ𝑋10𝑋3 + 𝐵4Σ𝑋10𝑋4 + 𝐵5Σ𝑋10𝑋5 + 𝐵6Σ𝑋10𝑋6 +

𝐵7Σ𝑋10𝑋7 + 𝐵8Σ𝑋10𝑋8 + 𝐵9Σ𝑋10𝑋9 + 𝐵10Σ𝑋10
2 + 𝐵11Σ𝑋10𝑋11                                          (12) 

Σ𝑋11𝑌 = 𝐵0Σ𝑋11 + 𝐵1Σ𝑋11𝑋1 + 𝐵2Σ𝑋11𝑋2 + 𝐵3Σ𝑋11𝑋3 + 𝐵4Σ𝑋11𝑋4 + 𝐵5Σ𝑋11𝑋5 + 𝐵6Σ𝑋11𝑋6 +

𝐵7Σ𝑋11𝑋7 + 𝐵8Σ𝑋11𝑋8 + 𝐵9Σ𝑋11𝑋9 + 𝐵10Σ𝑋11𝑋10 + 𝐵11Σ𝑋11
2                                          (13) 

Computed data are fixed into the normal equations generated from equation 1 above. The resulting equations were 

reduced to a matrix form as shown below in Table 2. 

Table 2: Matrix form of data generated from equation 1 

The regression parameters (B0 – B11) were obtained by using Excel [37]. 
 

2.2 Model Testing 

Equation 14 below is the Durbin Watson (D.W) model used to test the model developed. Using a model 

developed to generate values given by y this is the estimated value. Also, the difference between y and 

actual observation Y was obtained and called error function, e1. Moreover, the difference between the 

nearest neighborhood residuals was obtained. 

𝐷. 𝑊 =
∑(𝑒𝑡−𝑒𝑡−1)2

∑ 𝑒1
2                                                                                                                        (14) 

The Durbin Watson test for significance was accepted at P<0.5 significance or (probability). 

   12 414347.9 108097.6.9 60455 1418 99779 3574 11680.03 9460122 30197379 82573560 57969776 B0 1618621 

414348 1.48E+10 3.08E+10 1.46E+09 4.54E+09 3.36E+09 1.27E+09 3.81E+10 3.55E+11 1.05E+12 2.91E+12 1.93E+12 B1 5.58E+10 

1080977 3.08E+10 1.12E+11 3.48E+09 1.12E+08 8.25E+09 3.23E+08 9.64E+10 8.68E+11 2.62E+12 8.24E+12 5.63E+12 B2 1.41E+11 

60455 1.46E+09 3.48E+09 777707919 3518778 297443788 8122408.6 3.65E+09 2.95E+09 7.93E+10 2.09E+11 1.72E+11 B3 5.00E+09 

2.00E+05 6.78E+09 1.58E+09 3.52E+06 2.26E+05 1.10E+07 4.03E+05 1.29E+08 9.00E+08 3.48E+09 7.58E+09 5.97E+09 B4 1.90E+08 

99779 3.36E+09 8.25E+09 2.97E+08 1.10E+07 8.39E+08 3.33E+06 9.75E+09 8.72E+10 2.70E+11 6.29E+11 4.99E+11 B5 1.00E+10 

3574 1.27E+08 3.21E+08 8.12E+06 4.03E+05 3.33E+06 1.52E+06 4.02E+08 4.15E+09 1.17E+10 2.56E+10 1.91E+10 B6 5.91E+08 

1168003 3.81E+10 9.64E+10 3.65E+10 1.29E+08 9.75E+09 4.02E+08 1.16E+11 1.06E+12 3.26E+12 7.07E+12 5.59E+12 B7 1.70E+11 

9460122 3.55E+11 8.68E+11 2.59E+09 9.00E+08 8.72E+10 4.15E+09 1.06E+12 1.46E+13 3.23E+13 5.98E+13 5.21E+13 B8 1.58E+12 

3E+07 1.05E+12 2.62E+12 7.93E+10 3.48E+09 2.70E+11 1.17E+10 3.26E+12 3.23E+13 1.03E+14 2.05E+14 1.60E+14 B9 4.80E+12 

8.3E+07 2.91E+12 8.24E+12 2.09E+11 7.58E+09 6.29E+11 2.56E+10 7.07E+12 5.98E+13 2.05E+14 2.50E+15 4.30E+14 B10 1.00E+13 

5796976 1.93E+12 5.63E+12 1.72E+11 5.97E+09 4.99E+11 1.91E+10 5.59E+12 5.21E+13 1.60E+14 4.30E+14 3.61E+14 B11 8.27E+12 
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2.3 Hypothesis 

To test the model using the Durbin Watson model, there are certain ranges of D.W values for which we 

need to consider. 

H0 There exists no correlation among residual 

H1 There exists correlation among residual 

2.4 Decision 

If computed D.W. > dL reject, H0 

If computed D.W. < du accept H1 

If dL > D.W.< du then test is indecisive 

3. Results and discussion 

The values of regression parameters B0 B1 – B11 are shown in Table 3 at the last right column. 

Table 3: Regression Parameters 

           Constants Solution 

12 41434

7.91 

10809

7.6.9 

60455 1418 9977

9 

3574 1168

0.03 

9460

122 

3019

7379 

8257

3560 

16186

21 

B0 

= 

262295.198 

4143

47.9 

1.476

E+10 

3.08E

+10 

1.46E

+09 

4.54

E+09 

3.36

E+09 

1.27

E+09 

3.81

E+10 

3.55

E+11 

1.05

E+12 

2.91

E+12 

5.58E

+10 

B1 

= 

-6.996 

1080

977 

3.08E

+10 

1.12E

+11 

3.48E

+09 

1.12

E+08 

8.25

E+09 

3.23

E+08 

9.64

E+10 

8.68

E+11 

2.62

E+12 

8.24

E+12 

1.41E

+11 

B2 

= 

-3.529 

6045

5 

1.46E

+09 

3.48E

+09 

77770

7919 

3518

778 

2974

4378

8 

8122

408.6 

3.65

E+09 

2.95

E+09 

7.93

E+10 

2.09

E+11 

5.00E

+09 

B3 

= 

19.365 

2.00

E+05 

6.78E

+09 

1.58E

+09 

3.52E

+06 

2.26

E+05 

1.10

E+07 

4.03

E+05 

1.29

E+08 

9.00

E+08 

3.48

E+09 

7.58

E+09 

1.90E

+08 

B4 

= 

4398.826 

9977

9 

3.36E

+09 

8.25E

+09 

2.97E

+08 

1.10

E+07 

8.39

E+08 

3.33

E+06 

9.75

E+09 

8.72

E+10 

2.70

E+11 

6.29

E+11 

1.00e

+10 

B5 

= 

-3.813 

3574 1.27E

+08 

3.21E

+08 

8.12E

+06 

4.03

E+05 

3.33

E+06 

1.52

E+06 

4.02

E+08 

4.15

E+09 

1.17

E+10 

2.56

E+10 

5.91E

+08 

B6 

= 

138.017 

1168

003 

3.81E

+10 

9.64E

+10 

3.65E

+10 

1.29

E+08 

9.75

E+09 

4.02

E+08 

1.16

E+11 

1.06

E+12 

3.26

E+12 

7.07

E+12 

1.70E

+11 

B7 

= 

-8.064 

9460

122 

3.55E

+11 

8.68E

+11 

2.59E

+09 

9.00

E+08 

8.72

E+10 

4.15

E+09 

1.06

E+12 

1.46

E+13 

3.23

E+13 

5.98

E+13 

1.58E

+12 

B8 

= 

0.417 

3019

7379 

1.05E

+12 

2.62E

+12 

7.93E

+10 

3.48

E+09 

2.70

E+11 

1.17

E+10 

3.26

E+12 

3.23

E+13 

1.03

E+14 

2.05

E+14 

4.80E

+12 

B9 

= 

0.006 

8257

3560 

2.91E

+12 

8.24E

+12 

2.09E

+11 

7.58

E+09 

6.29

E+11 

2.56

E+10 

7.07

E+12 

5.98

E+13 

2.05

E+14 

2.50

E+15 

1.00E

+13 

B10 

= 

0.004 

5796

976 

1.93E

+12 

5.63E

+12 

1.72E

+11 

5.97

E+09 

4.99

E+11 

1.91

E+10 

5.59

E+12 

5.21

E+13 

1.60

E+14 

4.30

E+14 

8.27E

+12 

B11 

= 

0.047 

 

These are then plugged into equation 1 to obtain multivariate regression model given as: 
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𝒀 = 𝟐𝟔𝟐𝟐𝟗𝟓. 𝟏𝟗𝟖 − 𝟔. 𝟗𝟗𝟔𝑿𝟏 − 𝟑. 𝟓𝟐𝟗𝑿𝟐 + 𝟏𝟗. 𝟑𝟔𝟓𝑿𝟑 + 𝟒𝟑𝟗𝟖. 𝟖𝟐𝟔𝑿𝟒 − 𝟑. 𝟖𝟏𝟑𝑿𝟓 + 𝟏𝟑𝟖. 𝟎𝟏𝟕𝑿𝟔 +
𝟖. 𝟎𝟔𝟒𝑿𝟕 + 𝟎. 𝟒𝟏𝟕𝑿𝟖 + 𝟎. 𝟎𝟎𝟔𝑿𝟗 + 𝟎. 𝟎𝟎𝟒𝑿𝟏𝟎 + 𝟎. 𝟎𝟒𝟕𝑿𝟏𝟏 +   𝜺𝒊𝒏                           (15) 

Where  𝜺𝒊𝒏 = 𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒆𝒓𝒓𝒐𝒓 

Equation 15 was then used to generate values for Durbin Watson test and these presented in Table 4 

Table 4   Computation of Durbin Watson Test 

YEAR Steel 

Produced 

Estimated 

Steel 

Produced 

 

e1 

et-1 et-et-1 (et-et-1)2 et
2 

1982 90237 90229.32 7.68  7.68 58.9824 58.9824 

1983 181957 181949.3 7.7 7.68 0.02 0.0004 59.29 

1984 130318 130310.3 7.7 7.7 0 0 59.29 

1985 243893 243885.3 7.7 7.7 0 0 59.29 

1986 143067 143059.3 7.7 7.7 0 0 59.29 

1987 136552 136544.3 7.7 7.7 0 0 59.29 

1988 139326 139318.3 7.7 7.7 0 0 59.29 

1989 127648 127640.3 7.7 7.7 0 0 0 

1990 138950 138942.3 7.7 7.7 0 0 0 

1991 113802 113794.3 7.7 7.7 0 0 0 

1992 61873 61865.32 7.68 7.7 -0.02 0.0004 58.9824 

1993 42699 42691.32 7.68 7.68 0 0 58.9824 

1994 50028 50020.32 7.68 7.68 0 0 58.9824 

1995 36041 36033.32 7.68 7.68 0 0 58.9824 

     58.9832 828.522 
 

𝐷. 𝑊 =
∑(𝑒𝑡−𝑒𝑡−1)2

∑ 𝑒1
2  = 𝐷. 𝑊 =

58.9832

828.522
= 0.071191 

Note: 

Ho There exist no correlation among residual 

H1 There exists correlation among residual 

From the table 

dL = 0.1.05 

du = 3.053 

Hence D.W lies in an indecisive region, where it is not possible either to reject or fail to reject the null 

hypothesis. Table 3 and Figure 2 illustrate the steel produced and estimated steel produced using the 

model developed. From the figure, the model was able to predict steel production with less than 8% 

error. 

3.1 Application f The Model 

 To predict amount of steel produced using the model developed (equation 15), each quantity of variable 

(x1---------x11) are substituted    
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in equation 15. For example, x1=300tonnes, x2=350tonnes, x3=70tonnes, x4=100tonnes, x5=150tonnes, 

x6=200 tonnes, x7=400 tonnes,   

x8=400tonnes, x9=100tonnes, x10=125tonnes, x11=440tonnes.Using equation 15, gives=Steel = 730637.3 

Metric tonnes. 

Comparison of Steel Produced and Estimated Steel Produced 

 

Figure 2: Comparison of Steel Produced and Estimated Steel Produced 

3.2 Effect of Raw Materials on Product (Liquid Steel) 

The effect of some raw materials was looked at and their results are presented graphically in Figure 3. 
 

 

Figure 3: Effect of Scrap on Liquid Steel 

An important process in the steel industry is melting. The melting rate is directly connected to energy 

consumption and furnace productivity. Electric-arc furnace steelmaking, about 60% of the total energy 

requirement is consumed in heating and melting scrap, and more than 50% of the time required for one 

heat is used for melting [38]. Several studies have been carried out to investigate the scrap melting in a 
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liquid steel bath [39-45]. The effect of scrap on liquid is shown in Figure 3 The addition of 35.5% scrap 

brings about 100% increase in liquid steel.  

 

Figure 4: Effect of DRI on Liquid Steel 

The effect of direct reduced iron (DRI) addition on dephosphorization of molten steel by electric arc 

furnace (EAF) slag at 1550 0C Thermodynamic behaviors of phosphorus, oxygen, and carbon was 

strongly reliant on  DRI content.  When using DRI in the EAF process, it is very important to control 

the basicity of slag. Figure 4 shows that 139% addition of DRI brings about 100% improvement in the 

properties of liquid steel.DRI contains a relatively high level of phosphorus, which adversely affects 

the properties of steels [46]. The use of DRI is to produce high-quality steels in an EAF also increases 

the possibility of phosphorus pollution of steel. Thus, phosphorus should be completely controlled in 

the EAF process. Though, because there are various types of oxides (e.g., FetO, SiO2, Al2O3, CaO) as 

well as carbon present in DRI, a complete understanding of the consequence of DRI on slag formation 

behavior, and thus dephosphorization efficiency in the EAF process, is essential. 

 

Figure 5: Effect of Ferro Alloy on Liquid Steel 

Figure 5 shows the effect of Ferro Alloy on liquid steel. Ferroalloy influences the reproducibility of steel 

properties from heat to heat. Ferroalloys is one of the costliest inputs to steelmaking [47]. Coke is 

injected to increase the melt-down effectiveness by providing extra energy from the combustion process 
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aided by oxygen injection and to form foaming slag with CO produced from the carbon combustion to 

cover the electric arc and hence reduce energy losses by radiation. The effect is shown in figure 6 [48]. 
 

 

Figure 6: Effect of Coke on Liquid Steel 

 

Figure 7: Effect of Lime on Liquid Steel 

Figure 7 shows the effect of Lime on Liquid Steel Lime has a serious role at different steps of the 

steelmaking process, and specially to make a good slag simplifying the removal of sulphur and 

phosphorus, Lime quality and quantity has a direct effect on slag quality, which affects metallurgical 

results, headstrong life, liquid metal yield, and productivity, and therefore the total cost of the steel 

production. Lime quality and quantity have a direct effect on slag quality, which affects metallurgical 

results, refractory life, and productivity, and therefore the total cost of steel production [49-50]. Oxygen 

is injected by manipulators to aid the formation of foaming slag in combination with carbon injections 

or to achieve a blowing process similar to that of the oxygen steelmaking process. Manual lances are 

used to clear the deslagging gate, residual scrap or blocked tap holes as well as to intensify the meltdown 

of the charge [51]. Figure 8 shows that as the quantity of oxygen into the system, there will be a high 

yield of liquid Steel. Figure 9 shows that as the quantity of Nitrogen into the system, there will be a high yield 

of liquid Steel. Figure 10 shows that as the quantity of Natural gas into the system, there will be a high 

yield of liquid Steel. Natural gas is a major source of electricity generation through the use of 

cogeneration, gas turbines and steam turbines. Natural gas is also well suitable for combined use in 

association with renewable energy sources such as wind or solar. An important point to draw from this 
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study is that multivariate models have definite advantages since they combine the characteristic of 

multiple regression and univariate Box Jenkins. It can capture and measure the effect of raw materials 

on steel production and these are shown from Figure 3 through to Figure 10. 
 

 

Figure 8: Effect of oxygen on Liquid Steel 

 

Figure 9: Effect of Nitrogen on Liquid Steel 

 

Figure 10: Effect of Natural gas on Liquid Steel 
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Durbin Watson's test for significance carried out suggests that the model developed is robust and reliable. 

This is because the residual values obtained are so insignificant that the probability of having values 

greater than the observed would be less than 10%. Using equation 15 (Model equation) as object function 

and considering some constraints steel optimization can be carried out and effect of change of any of the 

variables to the overall yield of steel when other variables are constant [52]. 

 

Conclusion 

Based on the analysis carried out above and the subsequent discussion, it is clear that a sure-fire Model 

that can maximize and predict the effect of change in any of the variables (raw materials) in steel 

production has been developed. Such a model can provide the steel industries in the country important 

information about the sensitivity of the optimal solution. 
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