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1. Introduction 

Soil pollution by trace elements becomes a major world concern due to their harmful effects on human health, 

animals and plants and due to their high cleanup coast (billions of dollars) [1–3]. Trace elements are mostly 

realized into soil because of intensive human activities such as mining, industry, irrational use of pesticide and 

fertilizers  [4–7]. Because of their persistence in the environment and non-degradability by chemicals or microbial 

activities [5,8], trace elements might enter to food chain [9] by direct contact or consumption of contaminated 

plants and animals [2,10,11] causing several diseases such as morphological abnormalities, physiological disorder 

and molecular perturbation [12–14]. Among trace elements, Cu and Ni are considered as essential micronutrient 

for plant growth and development but toxic at higher levels [15–18] while As is the most abundant and toxic 

metalloid in the environment [19,20]. Numerous works have reported the toxic effects of Cu, Ni and As on seed 

germination, early seedling growth and biomass of several plant species such as fenugreek, alfalfa, sorghum, 

mustard and wheat [7,20–23] in different growth conditions. In addition, plants in presence of excess of metals 

and metalloids might suffer from several symptoms such as germination inhibition, growth reduction, 

photosynthesis and water uptake disturbance, cellular damage, reactive oxygen species generation and 

biochemical and physiological disorder [7,24–28].   

Due to the harmful effect of trace elements on environment, there has been a growing interest on ecological risk 

test for environmental bio-monitoring of trace elements [21]. Actually and due to the scientific research evolution, 

the interest was given to physiological, biochemical and molecular biomarkers such as enzyme activities, 

chlorophyll fluorescence, lipid peroxidation, genotoxicity and changes in the genomic DNA [21,24,29]. However, 
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testing the effect of trace elements in the level of seed germination and seedling growth is primordial and highly 

required [30] since seed germination is the initial step in the plant life cycle [28,31]. This test have been reported 

to be a rapid and simple test assess and evaluate metals toxicity [32–34] and considered as a suitable indicator of 

metals stress [7,35] because of the sensitivity of seeds at this stage of cycle life to the metals [25] and to the 

environmental changes conditions [36].       

The objective of the present experiment was to test the impact of Cu, Ni and As exposure on germination and 

early seedling growth of barley (Hordeumvulgare) and wheat (Triticum aestivum). Seed germination, growth, dry 

biomass as well as seeds vigor index, tolerance index and root toxicity index were assayed under increasing 

concentrations of above elements. In developing countries like Morocco, mining activities and agriculture are 

important in the national economy, while they produce high amount of wastes highly contaminated with trace 

elements [37,38] causing a major environmental problems. Moreover, the selection of barley and wheat species 

for this test because these crops are highly cultivated in Morocco even at arid and semi-arid areas [39–41] and 

used mostly for feed of both animals and humans. 

2. Material and Methods 

2.1. Plant seeds and Metal(loids) treatments  

Dry, healthy and uniform size seeds of barley (Hordeum vulgare) and wheat (Triticum aestivum) were surface 

sterilized by soaking them in 1% Sodium Hypochlorite solution for 10 min. The seeds were immerged during 

1min in 70% Ethanol then rinsed with distilled water. This procedure was used to eliminate the possible fungi 

growth and bacterial contamination. 

Increasing concentrations (0, 10, 50, 100 and 200 mg / L) of Cu, Ni and As were prepared by dissolving the metal 

elements Cu (CuSO4.5H2O), Ni (NiSO4.6H2O) and As (Na2HAsO4.7H2O) in distilled water.   

 

2.2. Germination experiment  

The selected seeds were gently added to Petri dish covered with one layer of filter paper and previously imbibed 

with 5 ml of each treatment. Distilled water was used as a control. 3 replicates (Petri dishes) per treatment were 

prepared with 10 seeds of barley or wheat equally spaced (1cm) in each Petri dish. The dishes were then transferred 

to the oven for five days at temperature of 23 ±1°C. 

 

2.3. Measurement of biological responses 

Germination percentage (GP) was calculated by dividing the germinated seeds in each Petri dish over total seeds. 

Seeds were considered germinated when the radical reached at least 2 mm. Both root length (RL) and shoot 

elongation (SL) of both plant seedlings were measured using a ruler. Tolerance Index (TI), Root Toxicity Index 

(RTI) and Seeds Vigor Index were estimated using the formulas by Iqbal and Rahmati (1992), Wierzbicka et al. 

(2015) and Abdul-Baki and Anderson (1973), respectively:  
 

TI = (RL treatment / RL control) x 100 

RTI = ((RL control – RL treatment) / RL control) x 100 

SVI = (GP x TPL) / 100 
 

With: GP = Germination percentage, RL control = Root length in control, RL treatment= Root length in treatment and 

TPL= Total plant length (TPL = roots + shoots length) 

Production of dry biomass was calculated by drying seedlings in the oven for 48 h at 80 °C. 

 

2.4. Statistical analysis 

In order to meet the normality assumptions of ANOVA, percentage data were arcsine-transformed. One-Way 

Analysis of Variance (ANOVA) followed by dunnett’s post-hoc test was applied to evaluate significant variations 

on the biological responses under metal treatments relatively to those observed under the respective controls 

(p<0.05). The SPSS software (version 20.0) was used to perform the statistical analysis.  
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3. Results and discussion 

3.1. Germination percentage  

The obtained results of the present study showed that the stress caused by Cu, Ni and As had no significant effect 

on barley and wheat seed germination (p>0.05) in comparison to control (Fig.1). In fact, whatever the metal used 

and the concentration applied both plant seeds reached almost 100% of final germination.  

Germination assay is a rapid and easy test used to assess and evaluate metals phytotoxicity [32,44]. Phytotoxic 

effect of metals and metalloids on seeds germination is well documented. However, responses of plant seeds 

depends on the plant species, the metal itself and its concentration [20,27]. Several studies were carried out on 

barley [45–51] and wheat [21,26,52–56] seeds using both essential and non-essential elements under different 

experimental conditions. Sanal et al. (2014) found that both forms of arsenic (arsenate and arsenite) inhibited 

significantly germination seeds of barley. Different elements were found to have negative effects on barley such 

as Cu, Cd and Pb  [46,58]. Cd was found to reduce germination percentage of wheat [59] while Cr had no negative 

effects on this parameter [60].   In soil, 10 plant species seeds (mung bean (Phaseolus radiatus), cucumber 

(Cucumis sativus), wheat (Triticum aestivum), sorghum (Sorghum bicolor), barley (Hordeum vulgare), Chinese 

cabbage (Brassica campestris var. chinensis), broccoli (Brassica oleracea), mustard (Brassica nigra), kale 

(Brassica campestris) and pea (Pisum sativum)) were exposed different forms of arsenic [20]. The authors found 

that germination of barley was not affected by arsenate (AsV) while wheat germination was negatively affected. 

Moreover, germination of wheat seeds was found reduced under Cr, Cd, Mn and Zn stress [56].   

In our study, barley and wheat seeds showed a high tolerance to increasing levels of Cu, Ni and As and germinate 

even under the highest concentrations applied of the studied elements. This difference of findings might be due 

to concentration variation, cultivar differences and laboratory conditions. 
 

 
 

Fig.1. Effect of different concentrations of Cu, Ni and As on the average percentage (%) of germination of barely (A) and 

Wheat (B) grown in metal(loid)-spiked filter paper. Error bars represent standard deviation. Significant differences between 

test and reference (< reference) are indicated by “star *”.  Statistical differences were tested at p<0.05. 

 

3.2. Root and shoot length  

Increasing concentrations of the studied elements had different effects on barley and wheat root and shoot 

elongation according to the elements used and the dose applied (Fig. 2). Copper and arsenic reduced significantly 

both root and shoot length of barley seedlings compared to the control, with the most pronounced effect was 

observed when As levels was increased followed by Cu. Wheat root and shoot length showed the same pattern as 

that of barley. The most pronounced effect was found in presence of As especially in the highest concentration. 

For Ni, increasing concentrations have almost no effect on barley roots and wheat shoots (except in 200 mg L-1 
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where the inhibition is significant). However, concentrations from 50 to 200 mg L-1 reduced significantly both 

barley shoots and wheat roots. Mahmood et al. (2007) found that increasing Cu levels reduced significantly root 

length and a clear positive effect on shoot height of barley seedlings. In our experiment, As treatment deceased 

gradually the length of barley shoot which is in accordance with Sanal et al. (2014) that found that arsenate and 

arsenite reduced negatively both root and shoot of barley seedlings. The same findings were found when wheat 

(Triticum aestivum) were exposed to increasing As levels [54,62]. Root and shoots inhibition was found increased 

with increasing concentrations of As and Cd [55] as well as other elements such as Cd, B and Zn  [63–65]. Arsenic 

is known to be toxic to several plant species from different families such as Fabaceae: Trigonella foenum-

graecum, Lathyrus sativus, Medicago sativa, Pisum sativum [23,27,66] and Asteraceae: Helianthus annuus [67]. 

This effect of Arsenic might be due to their ability to be transported to plants via roots similarly to phosphate (Pi) 

using the same transporters [19,68] especially in Holcuslanatus and barley (Hordeum vulgare) plants [69]. Barley 

seedlings showed a high tolerance to Ni than Cu and As. It is worthy to note that low concentration of Cu (Cu 10 

mg/L= 12.11cm) and concentrations of Ni had a positive effect on barley and produced longer root (Ni 10 mg/L= 12.95 

cm, Ni 50 mg/L= 12.54 cm and Ni 100 mg/L= 12.13 cm) comparing to the control (10.93cm). For wheat, only the 

concentration of 10 mg L-1of Cu and Ni and both 10 mg L-1 and 50 mg L-1 of Ni that increased the root length as 

compared to the control.  

 
Fig.2. Effect of different concentrations of Cu, Ni and As on the root length, shoots length and total plant height of barely 

(A, C and E) and wheat (B, D and F) grown in metal (loid)-spiked filter paper. Error bars represent standard deviation. 

Significant differences between test and reference (< reference) are indicated by “star *”. Statistical differences were tested 

at p<0.05. 

 

3.3. Tolerance index and root toxicity index  

Roots developments of seedlings are very sensitive stage of plant growth and extremely sensitive to environmental 

changes [70] which make of them a rapid and useful way to study the mechanism of metal toxicity on plants 

[32,33,70]. In the present study, increasing Cu, Ni and As levels had different effects on root elongation of barley 

https://en.wikipedia.org/wiki/Fabaceae
https://en.wikipedia.org/wiki/Asteraceae
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and wheat seedlings which reflected by a difference of effects on tolerance index and root toxicity index (Fig. 3 

and Fig. 4). Tolerance Index decreased significantly with increasing Cu and As concentrations, suggesting that 

these elements inhibited root elongation of barley and wheat. The same results were observed for wheat in 

presence of Ni while only the highest concentration of Ni (200 mg L-1) that reduced significantly the TI of barley. 

Results indicated that high values of TI were recorded in presence of 10 mg L-1of Ni treatment (barley: 111.46%; 

wheat 102.1%) followed by Cu at the same concentration (barley: 110.85%; wheat: 101.26%). At the highest 

concentration (200 mg/L), tolerance degree of different elements was varied showing that the lowest TI value was 

recorded for As (22.18 % and 29.17 % for barley and wheat respectively) followed by Cu (41.26 % for barley and 

33.79% for wheat). Ni was tolerated at all concentrations applied (at 200 mg L-1, 81.10% and 54.47 % for barley 

and wheat respectively). In general, results suggest that barley seedlings were more tolerant to increasing 

concentrations of Ni than Cu and As. Mahmood et al. (2007) reported that increasing level of metals such as Cu 

induced a negative effect on tolerance index of barley. Likewise, other elements such as Cr, Cd, Pb, Mn, B and 

Zn were found to decrease the TI of wheat [26,56,61,63,64].  
 

 
Fig.3. Effect of different concentrations of Cu, Ni and As on the Tolerance Index (%) computed for of barely (A) and wheat 

(B) grown in metal (loid)-spiked filter paper. Error bars represent standard deviation. Significant differences between test 

and reference (< reference) are indicated by “star *”.  Statistical differences were tested at p<0.05. 

 

Toxicity of As was higher than Cu and Ni toxicity with the increase of elements level. Higher values of RTI were 

recorded when As treatments were applied reaching almost 80% in the highest concentration (200 mg L-1). Higher 

values of RTI indicated a higher toxicity of the substrate tested [42]. The results obtained indicated that As caused 

the most pronounced effect on root elongation than Cu for both species. However, increase of Ni treatments 

showed negative values of RTI at 10, 50 and 100 mg L-1, while 19 % was recorded at 200 mg L-1 (Fig. 4). For 

wheat, only 10 mg L-1 of both Cu and Ni that induced a negative value of RTI while increased concentrations of 

the three elements tested showed an increase in RTI values. These results indicated low toxicity of Ni on barley 

seedlings even at high concentrations, followed by Cu than As in increasing tendency. Barley seedlings showed 

a high sensitivity to As stress than Cu or Ni.   

 

3.4. Seeds vigor index  

Figure 5 showed the results obtained for seeds vigor index of barley and wheat seeds in presence of increasing 

concentration of Cu, Ni and As. SVI was significantly reduced when As and Cu concentrations were increased 

starting from 10 mg L-1 for barley and 50 mg L-1 for wheat. Similarly, Ni reduced SVI value of wheat from 50 mg 
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L-1 however, only the highest concentration of Ni (200 mg L-1) that reduced significantly the SVI of barley.   As 

compared to the control, As treatments induced the most pronounced effect on SVI leading to an extreme decrease 

at 200 mg L-1. Arsenic was found to affect seedling development of barley [20,57], wheat [54,62] as well as other 

plant species such as mung bean [71] and sunflower [67]. Other metals such as Cr, Pb, B, Cu and Zn induced a 

decrease of seeds vigor index of other plant species (wheat, fenugreek, been and tomato) [56,64,72–75]. As 

reported by Menon et al. (2016), the decrease of the SVI of barley might be due to decline in germination 

percentage and plant high under metals stress.    
 

 
Fig.4. Effect of different concentrations of Cu, Ni and As on Root Toxicity Index computed for of barely (A) and wheat (B) 

grown in metal (loid)-spiked filter paper. Error bars represent standard deviation. Significant differences between test and 

reference (< reference) are indicated by “star *”.  Statistical differences were tested at p<0.05. 

 
Fig.5. Effect of different concentrations of Cu, Ni and As on Seeds Vigor Index computed for of barely (A) and wheat (B) 

grown in metal (loid)-spiked filter paper. Error bars represent standard deviation. Significant differences between test and 

reference (< reference) are indicated by “star *”.  Statistical differences were tested at p<0.05. 

 

3.5. Dry biomass  

In the present work, dry biomass of barley and wheat seedlings under different levels of Cu, Ni and As were 

higher than that found in the control in presence of all the concentrations tested (figure 6).  Moreover, an increase 
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of dry biomass was recorded when the concentrations of all metals were increased. Comparing to the control 

(barley: 22.3 %), the highest dry biomass values were recorded at 200 mg L-1 of Cu (46.3 %) and As (34.6 %) 

respectively. In contrast, As induced the highest value of dry biomass in wheat (39.66 %) followed by Ni (33.5 

%) comparing to the control (20.55 %). Trace elements were found to modify several plant structure such as cell 

well by affecting its porosity and plasticity and affecting the translocation of trace elements within 

xylem[17,76,77]. In addition, exposure of plants to Cu and As was found to enhance the biosynthesis of several 

organic compounds such cellulose, hemicellulose, pectin and lignin [76].The cell wall rigidity and production of 

these compounds might be the reason of increasing plant biomass. Plants used this process as an adaptation 

strategy and mechanism of tolerance against numerous kind of stress such as metals stress [17,76,78,79].  
 

 

 
Fig.6. Effect of different concentrations of Cu, Ni and As on Dry Biomass computed for of barely (A) and wheat (B) grown 

in metal(loid)-spiked filter paper. Error bars represent standard deviation. Significant differences between test and reference 

(< reference) are indicated by “star *”.  Statistical differences were tested at p<0.05. 

4. Implications 

In the present study, the response of barley and wheat to trace elements stress (Cu, Ni and As) during 

germination and early seedling growth was investigated. The results obtained revealed that the effect of 

these elements is extremely linked to the element itself and its concentration. Barley seeds were highly 

sensitive to increasing concentrations of As during seedling growth period. This has been reflected by a 

clear decrease of root and shoot length. Arsenic is easily taken up by root plants and translocated to 

aerial parts  [80] using the same transporters as phosphate [68,81]. Once in plants, arsenic may generate 

reactive oxygen species which cause several biochemical and physiological damages in plants [19,80] 

as well as reduction of the plant morphological traits which is indicated by the present study.  

Our results suggest that barley seeds showed a clear tolerance to increasing concentrations of Ni. The 

applied doses ranged from 10 to 200 mg L-1 of Ni had almost no effect or reduced effect in the highest 

concentration on germination, root and shoot length, tolerance index, root toxicity index and dry biomass 

of barley seedling comparing to wheat. Ni have been reported as an essential elements [16,18] playing 

a major in plant life since it is a component of plant enzymes such as urease [16,82] and its deficiency 

may interrupt the plant life cycle [83]. The deficiency of Ni might affect the period of seeds maturation, 

earlier opening of seeds heads and several morphological symptoms (plants were less green, smaller) 

[83,84]. In this study, Cu was found to reduce the discussed parameters (except dry biomass) for both 



 El Rasafi et al., J. Mater. Environ. Sci., 2020, 11(5), pp. 795-807 802 

 

plant species. Even that Cu is an essential element to plant life [15–17], but in excess it can be highly 

toxic and may induce several abnormalities in plants [15,75,85]. In general, the present results revealed 

that barley and wheat plant species showed a high sensibility to increasing levels of As. Furthermore, 

the general decreasing order effect of the tested elements on barley and wheat seedlings was As > Cu > 

Ni. 

In this study, several questions were solved; nevertheless, others still remain un-discussed. We focused 

on early stage of seedling growth and studied the effect of single elements on germination and early 

seedling growth of the tested species. Further studies needed to be done in order to investigate the 

behavior of barley and wheat seeds in presence of a mixture of the tested elements since in soil a mixture 

of trace elements is always found. Moreover, this study should be extended for a long growing period in 

order to obtain enough plant biomass to analyze biochemical, physiological biomarkers such as MDA 

content, proline accumulations, enzymes activities, trace element translocation and accumulation in 

plant tissues. In addition, a molecular study is suitable to better understand the molecular response of 

both species to trace elements toxicity. The suggested analysis might help to increase our knowledge 

regarding trace element toxicity and better understand the mechanism of toxicity of Cu, Ni and As and 

plant strategies of tolerance/sensibility to excess of these elements. 
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