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1. Introduction 

Adsorption technique is a popular method in reducing the amounts of environmental pollutants and 

researchers are focusing on developing low cost adsorbents from cheap sources to replace the costly 

adsorbents [1-4]. The process of adsorption is dependent on several factors such as the nature of the 

adsorbent, the adsorption conditions and the adsorbate. The adsorbent’s characteristics may include the 

surface area, hydrophobicity and the presence of functional groups on the surface of the adsorbing 

material [5-7]. The surface chemistry of an adsorbent is as a result of presence of heteroatoms such as 

oxygen, nitrogen, hydrogen and phosphates which form ketones, carboxyl, phenols, ethers, lactones, 

amines, nitro groups and phosphates [8,9]. The presence of functional groups plays an important role in 

the adsorption process and molecules that interact with an adsorbent that has functional groups will 

experience greater adsorption [6,10]  

Biochar is produced through Pyrolysis which is an inexpensive technology that can result in 

thermochemical decomposition of organic materials [11-13]. The pyrolysis process involves a 

thermochemical conversion technology that operates in the absence or limited oxygen and results in end 

products such as bio-oils, biochar and gases [14]. Biochar has been considered as a potential surrogate 

for activated carbon in environmental remediation and water treatment due to its low cost, relative 

abundance and comparative sorption abilities [15]. Biochar has been shown to exhibit a greater ability 
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and potential in remediation of contaminated waters than other adsorbents as it contains micro- and/or 

meso-porous structures, different surface functional groups which include carboxylic groups, hydroxyl 

groups, carbonyl groups, alcoholic and lactone groups, and inorganic mineral species [16,17,18]. In 

order to examine the presence of these functional groups on biomass and biochar, Fourier Transform 

Infrared (FTIR) spectroscopy technique is used. The FTIR spectra produced is used to depict the possible 

changes in abundance of the surface functional moieties of biomass when compared with the product 

biochar [19-21]. Pyrolysis has been identified to have a significant effect on the present functional groups 

in biochars [20]. 

Various parts of the banana plant have been studied as adsorbents against cationic, anionic and neutral 

pollutants [2,22,23]. This is due to their advantages which include being readily available, low cost and 

protecting the environment by preventing methane and carbon dioxide formation where the wastes are 

dumped in wetlands or burned [2].  Low et al. [24] studied the removal of metal from electroplating 

waste and synthetic solution using banana pith biochar. Anwar et al. [25] used banana peels biochar to 

remove lead and cadmium from water. Memon et al. [26] further studied banana peels for the selective 

removal of Chromium (VI) from industrial waste water. Banana pseudo stem was studied for the removal 

of colour and Chemical Oxygen Demand (COD) from landfill leachate [27]. Banana trunk activated 

carbon was studied for remediation of methylene blue contaminated water [23]. Banana peduncle 

biochar at different pyrolytic temperatures was also studied for the removal of Chromium (VI) [28]. The 

potential of banana leaf petioles as a potential adsorbent has not been studied. The objective of this study 

was to evaluate the presence of functional groups responsible for adsorption of organic and inorganic 

pollutants on the banana petioles and on the biochar prepared from the banana petiole material. 

2. Material and Methods 

2.1 Banana Leaf Petiole Collection and Preparation 

The Banana leaf petioles for use in this study were collected from a banana plantation in Embu, Kenya. 

The sample was collected from a single banana species (Mussa acuminata). The petioles were harvested 

and separated from the sheath and leaf parts of the banana plant. These were then washed with tap water 

to remove dirt on their surfaces and later rinsed with deionized water to remove the metal ions on the 

surfaces. They were then sun dried to remove the surface water. The leaf petioles were then sliced into 

small pieces (<2 cm) to increase their surface area for drying and also to fit in the crucibles used in the 

pyrolysis process. 

 

2.2 Preparation of Banana Stalks Samples for Fourier Transform Infrared (FTIR) Spectroscopic 

Analysis 

The sliced banana leaf petioles (<2 cm) were oven dried at a temperature of 105° C to constant mass in 

order to remove the moisture content. A sample of the dry material was ground using a high-speed 

universal disintegrator (model FW80-I, China) into powder form and a sample of 10 grams stored in air 

tight Ziplock bag for use in Fourier Transform Infrared (FTIR) spectroscopy analysis. 

2.3 Biochar Production 

The dried banana leaf petiole material was packed in three crucibles each holding a mass of 35 g of the 

material and then pyrolyzed using a muffle furnace (Model LH 15/14, Nabertherm, Germany). The 

muffle furnace was programmed to rise to a temperature of either 300°C, 400°C or 500°C. The 

temperature rise was maintained at 10°C/min. The holding time for the different pyrolytic temperature 

was one hour after which the furnace was allowed to cool down to room temperature. The biochar 

produced in each pyrolysis process was weighed and the mass recorded. The biochar was then packed 

into air-tight plastic Ziplock bags. This process was replicated seven times. 
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2.4 Fourier Transform Infrared Spectroscopy (FTIR) Analysis 

Analysis for the functional groups present on the samples of dried banana leaf petiole powder and 

biochars produced at temperatures 300°C, 400°C and 500°C was conducted using an FTIR machine 

(Model: Jasco, Japan) in attenuated total reflectance (ATR) mode [29, 30]. The scans were conducted 

from a wavelength of 4000 cm-1 to 500 cm-1 at a scan rate of 50 conducted at a resolution of 4 cm-1. The 

infra-red (IR) spectra for each sample was obtained electronically. The samples were analyzed in 

triplicates. 

3. Results and discussion 

The Infrared spectra depicted in Figures 1, 2, 3 and 4 shows the surface functional groups present in raw 

banana leaf petiole, biochar pyrolyzed at 300°C, biochar pyrolyzed at 400°C and biochar pyrolyzed at 

500°C, respectively. 

The raw banana leaf petioles FTIR (Figure 1) showed peaks at wavelengths 3294 cm-1 and other peaks 

at 2923 cm-1,1644 cm-1,1538 cm-1, 1427 cm-1 and 1016 cm-1. These peaks correspond to O-H, C-H 

stretching, C=O, N-O, O-H bending and C-O surface functional groups respectively. These results 

corroborate with a study by Dos Santos et al. [31] on functional groups present in raw banana fibre who 

noted the presence of O-H, C-H stretching, O-H bending, C=O and C-O surface functional groups. The 

presence of O-H, C-H, C-O, C=O functional groups has also been reported in banana peel FTIR [32]. 

 

 

Figure 1: Fourier Transform Infrared (FTIR) spectrum of raw banana leaf petiole powder before pyrolysis 

 

The peaks identified on biochar 300°C (Figure 2) were at wavelengths 3625 cm-1, 2912cm-1, 1609 cm-

1,1314 cm-1 and 1053 cm-1. These peaks correspond to free O-H, aldehyde C-H, conjugated C=C, amine 

C-N and stretching C-O groups, respectively. In biochar 300°C, the band shift from 2923 cm-1 before 

pyrolysis to 2912 cm-1 after pyrolysis, and 1016 cm-1 to 1053cm-1, respectively, for the C-H and C-O 

groups was observed.  A similar trend was observed in a different study of banana fibre pyrolyzed at 

300°C which showed the presence of O-H, C-H stretching, C=C and C-O groups in biochar [31, 33, 34].  

A shift in functional group band after pyrolysis was also confirmed by Li et al. [34], where they reported 

a shift in C-O peaks after increasing pyrolysis temperature. 

The main peaks identified on the surface of biochar 400°C (Figure 3) were at wavelength 3620cm-1, 

2878cm-1, 1607 cm-1 and 1315 cm-1. The peaks correspond to free O-H, C-H, conjugated C=C and amine 

C-N groups respectively. A band shift was also noted for the C-H group from 2923 cm-1 before pyrolysis 

to 2878 cm-1 after pyrolysis. The presence of O-H, C-H, C=C functional groups in biochar 400°C was 

also reported by Dos Santos et al. [31]. 
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Figure 2: Fourier Transform Infrared (FTIR) spectrum of banana leaf petioles pyrolyzed at Temperature 300°C (Biochar 

300°C) 

 

 
Figure 3: Fourier Transform Infrared (FTIR) spectrum of banana stalks pyrolyzed at temperature 400°C (Biochar 400°C) 

 

Figure 4 shows the identified surface functional groups were the O-H functional group at 3217cm-1, a 

nitro NO2 at 1565 cm-1, a C-O stretching group at 1221 cm-1 and a peak at 1408 cm-1 which could be 

attributed to S=O stretching sulfate/sulfonyl chloride or O-H bending alcohol or carboxylic acid group. 

A band shift for the C-O group from 1016 cm-1 before pyrolysis to 1221 cm-1 after pyrolysis, carboxylic 

O-H group from 3294 cm-1 before pyrolysis to 3217 cm-1 after pyrolysis, the O-H bending from 1427 

cm-1 before pyrolysis to 1408 cm-1 after pyrolysis, was observed on biochar 500°C. The presence of O-

H, C-H, C=C functional groups in biochar 500°C was reported by Dos Santos et al. [31]. 

 

 
Figure 4: Fourier Transform Infrared (FTIR) spectrum of banana leaf petioles pyrolyzed at temperature 500°C (Biochar 

500°C) 

 

The above observations showed that after pyrolysis of the banana leaf petiole stalks, the identified 

hydroxyl O-H stretching vibrations and the C-O stretching vibrations were attenuated. This indicates 

that most of the O2- containing functional groups such as polysaccharides diminished after pyrolysis 
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[11, 35]. The functional group C-O which was pronounced in the raw banana leaf petioles FTIR spectrum 

was noted to have significantly reduced in intensity at biochar 300°C and was missing in both biochar 

400°C and 500°C. This change could be attributed to the loss of C-O or C-OH functional groups as a 

result of dehydration and rearrangement of molecules at high pyrolytic temperatures [33, 36]. Pyrolysis 

therefore can lead to alternation of carbon to oxygen, hydrogen to carbon and carbon to nitrogen ratios 

and may modify functional groups leading to instances such as increase in aromatic C=C or a decrease 

in O-H and C-H [29] a case observed on biochar 300°C and biochar 400°C in this study.  

 

Conclusion 

The banana leaf petiole powder and resultant biochar prepared at different pyrolytic temperatures 

showed the presence of hydroxyl and carboxyl surface functional groups. The presence of these surface 

moieties is related to the ability of the material to adsorb metals and pollutants, and thus, banana leaf 

petiole powder and its biochar can be considered as a promising adsorbent. 
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