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1. Introduction 

Efficient removal of azo dyes from industrial effluents has been a long-standing technological 

challenge for the scientific community. Numerous researchers and their coworkers have employed 

several methods including physical, chemical, and biological approaches such as coagulation [1], 

membrane filtration [2], ion-exchange [3], adsorption [4-7], photo-degradation [8], enzymatic 

degradation [9] etc. for the effective treatment of these recalcitrant dyes. To date, fixed-bed column 

adsorption has been largely usedfor separating hazardous pollutants from wastewater via filtration [10]. 

Fixed-bed adsorption is advantageous over batch studies because of continuous treatment of substantial 

volume of wastewater [11]. On the contrary, batch equilibrium experiments are applicable only in 

laboratory scale for treating small quantity of wastewater [12]. The data obtained from fixed-bed 
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adsorption experiments can be used as a benchmark to scale up for industrial application [13]. Different 

types of substrates have been used in fixed-bed column for isolation of toxic pollutants from wastewater 

such as natural zeolites [10], chitosan-glutaraldehyde [12], activated carbon [14], Eucalyptus sheathiana 

bark [15], chitin [16], chitosan [17], eggshells [18], sawdust [19], pine cone [20], carbon-alumina 

composite [21] etc. However, major attention has been given on activated carbon due to high surface 

area, porous structure, andbetter adsorption performance [14]. However, the high cost for preparation 

and the difficulty in regeneration limits the industrial applications of activated carbon [9]. Therefore, 

focus has been shifted towards cost-effective alternate materials [15]. In this regard, naturally occurring 

clay minerals appear as attractive candidate for detoxification of industrial hazards. The low cost, high 

surface area, availability, potential for ion-exchange, lack of toxicity, a variety of surface and structural 

properties, molecular (organic) adsorption-desorption properties and chemical and mechanical stability 

make ground for the widespread application of clay minerals in fixed-bed column [2,22-24]. Srivastava 

et al. [25] reported the removal of nitrate from drinking water by bentonite using fixed-bed column. 

Baskan et al. [26] reported the efficient adsorption of arsenic in fixed-bed column using natural and 

modified clinoptilolite. The separation of copper in fixed-bed column from aqueous solution by 

chitosan-immobilized bentonite was studied by Futalan et al. [27]. However, the application of kaolinite 

based materials in fixed-bed column for separation of textile dyeshas not been reported. 

The free-flowing nature of powdered kaolinite restricts itself to be used in fixed-bed column for 

filtration purpose. Therefore, porous and channeled architecture should be made from kaolinite by 

appropriate modification with other materials. Here, choline chloride could be used as a suitable 

modifier, since it has already drawn attention from researchers for adsorption purpose. Wartelle et 

al.[28] reported the adsorption of chromate ion by choline chloride modified agricultural by-

products.Karachalios et al.[29] studied the removal of nitrate from water via quaternized pine bark by 

utilizing an ionic liquid analogous to choline chloride.. The quaternary structure of choline helps adsorb 

various ionic pollutants from wastewater. Therefore, modification with choline chloride could greatly 

alter the surface chemistry of kaolinite for adsorption purpose. 

The objective of this study was to successfully fabricate a self-standing porous composite bed for 

the filtration of textile dyes from aqueous solution. Here, we report that the negatively charged 

functionalities of the fabricated filter bed perfectly restricted the penetration of a model azo dye (anionic) 

at alkaline pH. The effects of pH, dye concentration, timewere thoroughly investigated for proper 

evaluation of the filtration performance. We highly expect that the fabricated filter bed will draw 

commercial interest for applications in removal of hazardous dyes from the effluents of textile, paint, 

pharmaceutical, food, printing, leather, cosmeticindustries. 

2. Experimental methods 

2.1. Materials 

Locally available kaolinite clay and choline chloride, supplied by Sigma-Aldrich, were utilized in 

this study for the fabrication of porous filter bed. Sodium hydroxide pellets and ethanol were purchased 

from Active Fine Chemicals Limited (Dhaka, Bangladesh). The dye removal performance of the 

fabricated bed was investigated with an aqueous solution of Remazol Red. This model dye was collected 

in an air-tight container from a nearby textile industry. 
 

2.2. Fabrication of self-standing bed structure 

0.95 g of kaolinite was suspended in 25 mL deionized water and stirred at room temperature (25 

ºC) for 4 hours. 2.5mL of choline chloride with 0.38 g/ml density was gradually dropped into the 
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kaolinite suspension in order to maintain1:1 ratio (w/w) of kaolinite to choline chloride solution. The 

resulting suspension was stirred in a magnetic stirrer for 4 hours. After 4 hours of stirring, the suspension 

was finely dispersed in a sonicator for 50 minutes. A syringe was cleaned properly with detergent, 

ethanol and deionized water and then dried. A small portion of cotton was put at the bottom of the 

syringe tube. The syringe was then filled with 20 mL co-solvent of 15% NaOH (w/w) and 95% ethanol 

(v/v) in 4:1 volume ratio. Kaolinite-choline chloride liquid suspension was added dropwise through a 

dropper. The composite bed was thus formed in the syringe. The cotton in the bottom of the syringe was 

then removed and the co solvent solution was also discharged from the bed. The composite bed in 

syringe was dried at 100 ºC for 8 hours until the bed was completely dry. It is to be noted that care was 

taken when preparing the bed so that there was no gap between the sidewall of the syringe and the bed. 

2.3.    Material Characterization 

FTIR 8400S spectrophotometer (Shimadzu Corporation, Japan) was used in this study to record the 

Fourier transform infrared (FTIR) spectra of the samples (wavenumber range: 4000-400 cm-1; 

resolution:4 cm-1; number of scans: 30). Approximately 1 mg of samples was ground with 100 mg KBr 

by agate mortar and then pellets were made from the mixture by applying pressure. Athermogravimetric 

analyzer (TGA-50, Shimadzu, Japan) was used to record the thermal degradation profiles (thermograms) 

of the samples (Temperature range: 25 to 800 °C, nitrogen atmosphere, flow rate: 10 mL/minute, heating 

rate: 10 °C/minute, alumina cell, sample weight: 4 to 10 mg, total hold time at 800 °C: 5 minutes). The 

elemental composition of the samples was determined by taking the energy dispersive x-ray 

spectroscopy (EDS) spectra of the material (EDS with the FESEM model JEOL JSM 7600F). Finally, 

the filtration performance of the samples was investigated by a UV-VIS spectrophotometer UV-2100PC 

(Human Lab Instrument Co., Korea). A scanning electron microscope (JEOL JSM-6490LA, Tokyo, 

Japan) was used to investigate the morphological features of the samples (accelerating voltage: 20 kV ; 

electron mode: back-scattered).An X-ray diffractometer (Ultima IV, Rigaku Corporation, Japan) 

producing a Cu Kα radiation of wavelength of 1.54 Å from a broad focus Cu tube (operated at 40 kV 

and 40 mA) was utilized to record the diffraction pattern. Scan rate was 3 °/minute within the theta range 

of 10° to 70°.                                                                          

3. Results and Discussion 

Chemically and thermally stable porous materials with interconnected channeled structures draw 

tremendous attention for potential applications in separation science due to their improved filtration 

efficiency. The dropwise and controlled addition of kaolinite/choline chloride mixture into a highly 

alkaline media in air resulted in the formation of composite beads (Scheme 1). The strong alkaline 

environment accelerated the breakdown of choline chloride and exposed the positive nitrogen terminal 

of the choline chloride. Performing the reaction in an aerated environment would also lead to the 

decomposition of the hydroxyl group of choline chloride (Reaction 1), as reported by Ramprasad et al. 

[30]. 

 

The ensuing electrostatic chemical interaction between positively charged N terminal of choline 

chloride and negatively charged kaolinite surface resulted in the fabrication of beads in the syringe. The 

newly formed composite beads settled to the bottom, where they came in contact with other beads 

resulting in self-assembled densely porous bed structures. In this fabrication process, the inner diameter 

of the syringe and cotton support at the bottom precisely controlled the shape of the fabricated filter bed. 
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Hereafter, the composite bed will be denoted as K-C composite bed. Kaolinite in itself is a free flowing 

powder and cannot be molded into a self-standing bed, while choline chloride can be synthesized in a 

strong film. The synthesized porous K-C composite bed showed the self-standing nature of the material, 

which appears to be a technological advantage from the application point of view. 

 
Scheme 1. Fabrication process of kaolinite-choline chloride composite bed. 

3.1. Characterization of porous composite bed 

Figure 1a shows the FTIR spectra of kaolinite, choline chloride, and the K-C composite bed. 

The broad band in the green shaded region in the spectrum for choline chloride can be assigned for 

νas OH [31]. Interestingly, this peak was absent in the K-C composite bed. This provided evidence that 

the OH group of choline chloride ([Me3NCH2CH2OH]+Cl-) had decomposed, most probably through 

the reaction route provided in Reaction 1. The band in the yellow shaded region at around 1478 cm-1 in 

the FTIR spectrum for choline chloride (Figure 1a) could be assigned for ρ CH3 [31]. This particular 

vibration was still present in the K-C composite bed. Hence, this proved the presence of choline chloride 

in the K-C composite bed and the lack of peak in the green shaded region was not just because of the 

absence of choline chloride in the final material. It also indicated that the CH3 bond of the choline 

chloride remained unchanged during the fabrication of the composite bed. We further analyzed the 

pristine K-C composite bed through thermogravimetric analysis (Figure 1b). We included the 

thermogravimetric curve of kaolinite as a reference in order to pinpoint the contribution of the 

constituents towards the mass loss of the K-C composite bed during thermal analysis. From Figure 1b, 

the weight loss up to 100°C can be attributed to the loss of adsorbed water which accounted for about 

7.8% of the total mass. There was a sharp weight loss (47.7%) from about less than 200°C till 386°C. 

This weight loss was mainly due to the decomposition of the choline chloride from the K-C composite 

bed. The remaining mass was due to the inorganic kaolinite phase (44.5%). It must be mentioned here 

that we synthesized the K-C composite bed with 1:1 ratio of kaolinite and choline chloride. As the 

amount of choline chloride and kaolinite almost had the same weight ratio, thermogravimetric analysis 

provided evidence that the composite bed was synthesized with the intended ratio of kaolinite and 

choline chloride. A full elemental composition of the K-C composite bed, as determined through EDS,is 

provided in Table 1. 
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Table 1. Elemental composition of kaolinite-choline chloride composite bed. 

Element Mass (%) Atom (%) 

C 78.09 72.20 

N 1.63 1.76 

O 18.99 23.39 

Na 0.3 0.53 

Al 0.53 1.10 

Si 0.45 0.97 

Cl 0.02 0.06 

Total 100.00 100.00 
 

 

Figure 1: a) FTIR spectra of kaolinite, choline chloride and the K-C composite bed. The green shaded box and 

the yellow shaded box in the spectra highlight the regions where the difference in peaks of the three materials are 

observed. b) Thermogravimetric curve for kaolinite and the K-C composite bed. 

Figure 2a shows the SEM micrographs of the pristine K-C composite bed. The porous nature of 

the composite bed is evident from the images with average particle size being bigger than 10µm. On the 

other hand, kaolinite itself has much smaller particle size with low porosity. The porous nature of the 

composite bed makes it an ideal candidate to be utilized as a medium for dye separation from aqueous 

solutions. XRD patterns of the K-C composite bed and kaolinite is reported in Figure 2b. The diffraction 

peaks at about 12° and 25° can be indexed to (001) and (002) crystal planes, respectively. The diffraction 

patterns of the composite bed closely resemble that of the kaolinite. However, a close inspection of the 

peaks of the two materials would reveal that there was a slight shift of the diffraction peaks towards the 

lower angle side for the composite material, meaning that the d spacing of the composite material is 

larger than the constituent kaolinite. This provided us evidence that rather than being a mere physical 

mixture of kaolinite and choline chloride, the constituents had a chemical interaction with each other in 

the final composite material. This slight shifting towards lower angle supports that choline chloride 
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could be partially intercalated inside the galleries of kaolinite thereby forming a highly stable composite 

bed structure. It has been widely reported in literature that intercalated composites display improved 

performance compared to the conventional composites [32]. 

 

Figure 2. a) SEM micrographs of the K-C composite bed at different magnification. The porous natureof the bed 

is evident from the images. b) XRD pattern of kaolinite and the K-C composite bed. The dashed lines in the patterns 

indicate the relative positions of the peaks for the (001) and (002) crystal planes in kaolinite and the K-C composite 

bed. 

3.2. Filter bed study 

Due to the porous nature of the K-C composite bed with a negatively charged choline 

functionality (Me3 N
+CH 2CO2

-), we hypothesized that the composite bed might facilitate to repulsive 

force for removal of anionic azo dyes from their aqueous solutions. This would provide an 

environmentally friendly solution of treating industrial effluent containing the hazardous azo dyes 

before it is discharged into the environment. In order to prove our hypothesis, we treated an aqueous 

solution of Remazol Red (RR), an anionic azo dye with the K-C composite bed. We treated a 50 mL20 

ppm aqueous solution of RR with the composite bed at a pH of 11.7. The justification of the chosen 

operating conditions is provided later. A setup similar to the one in Figure 3a was built in order to assess 

the efficiency of the K-C composite bed in removing RR from its aqueous solution. Figure 3b shows 

the UV/Vis spectra of the dye solution before treatment with the bed and also for every 5 mL solutions 

after treatment with the bed. As can be seen from the spectra, the aqueous solution of RR shows a peak 

at around 533 nm (Figure 3b). However, the solutions after treatment with the composite bed did not 

show any peak at all. This proves the efficient separation of RR from its aqueous solution. The 

absorbance of the treated solutions was equivalent to the background absorbance which signifies that 

almost all the RR dye was removed from the solution. The precise absorbance values at 533 nm 

wavelength for the treated solutions are around 0.05 a.u. which is resembled with the base value (0.047 

a.u) of fresh water. The absorbance of all the treated solutions was close to the absorbance of water, 

further justifying our statement.  The highly efficient dye separation capability of the composite bed was 

exemplified by the accumulation of the removed RR on the surface of the composite bed. The efficient 
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removal of anionic azo dye from the solution means that the dye is almost completely deposited just by 

the surface of the composite bed and the bulk of the bed was no further needed to remove the dye from 

the solution. Thus, the efficiency of dye removal is independent of the bed thickness. This must be noted 

here that we further attempted to remove the dye from its solution using kaolinite only. However, 

kaolinite was not as efficient as the K-C composite bed to remove dye from the solution and the loosely 

packed powder nature of kaolinite means that the dye solution would just flow right through it. 

Meanwhile, the choline chloride film was too firm and non-porous for any solution to pass through it. 

 
Figure 3. a) Photo of the setup for the aqueous Remazol Red treatment with the K-C composite bed. The thickness 

of the bed was 0.55 cm. b) UV/vis spectra of the treated solution at different time intervals. The time intervals 

represent the attainment of every 5 mL solution from the treatment with the K-C composite bed. 

To find out the optimum condition for efficient dye separation from its aqueous solution, the 

effect of dye concentration and pH on the time required for the dye solution to filter through the bed 

was studied. The thickness of the bed was chosen to be 0.5 cm. Figure 4a shows the influence of RR 

concentration on time required for collecting every 5 mL of treated solution. The pH of all the solutions 

were kept constant at 11.7. As understood from Figure 4a, the time required for the dye removal 

increased as a function of increasing concentration. We suspect that at higher concentration, the 

accumulated dye on the surface of the composite bed would be blanketing the pores, making the passage 

of the solution progressively harder, hence requiring longer time. Figure 4b shows the influence of pH 

on the time required for collecting every 5 mL of the treated solution with the composite bed. The 

concentration of the RR solution was 20 ppm. The least time required among the two pH reported was 

at 11.7. At pH 9.1, the time required for collecting the solution increased significantly after a total 

collection of 15 mL solution and increased slowly thereafter. However, at pH 11.7, the time required 

for collecting every 5 mL solution was significantly lower than pH 9.1 and the time remained more or 

less the same throughout the dye removal operation. We did not perform the study beyond pH 11.7 

because the highly alkaline solutions at a pH higher than 11.7 would pose an environmental threat in 

itself which would go against the overall goal of our research. Moreover, the bed was ineffective at pH 

7 or lower as the physical integrity of the bed was severely compromised. We suspect that the physical 

cohesion of the bed at lower pH is the underlying reason behind the observed trend in time required for 

collecting the solutions. The bed was synthesized in an alkaline condition. Hence, at lower pH, the bed 

might have a tendency to disintegrate, most probably through a hydrolysis reaction. This translates into 
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having less porous structure at pH 9.1 and physical breakdown of beads at pH 7 to a film. Hence, pH 

values higher than 9.7 is best suited for efficient application of this composite. However, one does not 

need to go beyond pH 11.7 because at this pH, the dye removal was 100% and the speed of solution 

passing through the bed was also reasonably fast. 

 

Figure 4. a) Effect of dye concentration on the time required for filtrate collection after treatment with the K-C 

composite bed, b) effect of pH on the time required for filtrate collection after treatment of the RR solution with 

the K-C composite bed. The thickness of the bed was chosen to be 0.55 cm. 

 An illustration for regeneration of filter bed, removal of dye and recycling of water is 

schematically presented in Figure 5. After filtration of dye solution, the bed was regenerated by 

atmospheric drying and removing the dried and solid dye layer from the bed surface. The colorless clean 

alkaline water was treated with dilute hydrochloric (HCl) acid to adjust pH at about 7.  Recycling this 

water after distillation to the dyeing vat could reduce the consumption of fresh natural water. Besides, 

the dried dye would be possible to recycle for further dyeing of fabrics. 

 
 

Figure 5.  Schematic illustrations of regeneration of composites bed and recycling of water. 
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4. Conclusion 

A self-standing and porous composite bed of kaolinite and choline chloride was synthesized with 

1:1 w/w ratio of the constituents. Choline chloride and kaolinite had a chemical interaction with each 

other as determined through XRD and FTIR.  The bed was highly efficient in removing RR dye from 

its aqueous solution. A 20 ppm aqueous solution at pH 11.7 was treated with the composite bed and the 

efficiency of dye removal was measured. It was found that the bed removed the dye from its solution 

with 100% efficiency. Due to the readiness of the dye removal at 20 ppm concentration by the composite 

bed, all the dye was removed by the surface of the bed and the bulk of the bed was not required to 

participate in the process. Hence, we found that the dye removal for this particular concentration was 

independent of bed thickness. Thus, we believe a competent bed for dye removal such as this would go 

a long way in answering the long lasting issues of water pollution due to textile industrial waste 

effluents. For future studies, the usability of porous composite bed of kaolinite and choline chloride for 

dyes removal from real industrial effluent will be tested and as comparison, a fixed bed column will be 

employed to investigate the effect of reactor design. 
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