Lithium Based Electrolytes in Electrochemical Energy Storage Devices- A Review

R. Shilpa¹, A.N. Fahmitha Fathima², M. Abirami³, B. Vinitha⁴, R. Saratha⁵

Research Scholar¹, Post Graduate students 2, 3, 4, Professor5, Department of Chemistry
Avinashilingam Institute for Home Science And Higher Education for Women, Coimbatore, Tamil Nadu, India.

Abstract
An interesting manifestation with improvising technological development for advanced applications focuses the energy storage systems. The development leads to the initiation of the polymer electrolyte in batteries with high thermal stability. The most commonly used batteries are lithium due to its high compatibility. This includes the introduction of biopolymers as a substitute for synthetic polymers of better properties. The ionic conductivity with increasing voltage is found by doping the salts with the polymers by increasing its conduction for application purpose.

Introduction
Energy conservation has served as a theme of discussion in most of the World Forums since the past few decades. The process of sufficing the increasing energy demand that is prevalent round the globe has many challenges to overcome. The key challenges worth mention are conversion and storage of electrical energy. This scenario has been put to rescue with the invention and commercialization of electrochemical energy storage technologies based on batteries. This technology has gained universal acceptance as a prominent solution to the challenge of rapidly increasing demand for energy. Further, the Li-ion technology in battery systems is yet sophistication in the field, as they exhibit increased viability and integrate the renewable resources that provide intermittent energy to the grid. Lithium based rechargeable batteries are deemed a boon with appealing features that promote efficiency in the usage of devices. This article attempts to explore research in the field of energy storage systems. Interdisciplinary areas of research leading to the development of ionic technologies are known as Solid State Ionics (SSI) which deals with the properties of ionic solids. The demands for thin-film applications clearly differ from that of the conventional batteries. Biopolymers (like cellulose derivatives, chitosan, and starch or natural rubber) have been mainly focused because of their good physical and chemical properties, biodegradability, cost, good performance and low production [1]. The development of polymer electrolytes has different stages with different behavior namely solid polymer, gel polymer, and composite polymer electrolytes. In the former electrolyte the host polymer itself is used as a solvent (solid) along with lithium salt without containing any organic liquids. However, these polymer electrolyte systems present very low ionic conductivity at ambient temperature [2]. With relation to green chemistry very interesting substitutes for synthetic polymers are natural polymers. The polymer hosts in inorganic salts have ease dissolution when the dielectric constant (e) of the polymer is high and the lattice energy of the salt is low [3]. The electrolytes were also tested as ionic conductors in electro chromic devices.
Despite recent exhaustive efforts in rechargeable lithium batteries the development of electrolytes that facilitate commercially possible lithium metal anodes remains challenging. Electrolytes of related composition, however different structure, have been investigated by Jurng, et al., to be aware of input mechanisms for improving the cycling performance. A flexible electrolyte with leakage free is required more importantly for energy devices to increase safety. By asset, a new class of electrolytes, by hybridizing aqueous with non-aqueous solvents, based on Li_4Ti_5O_12 and LiNi_0.5Mn_1.5O_4 provided a better electrochemical stability from non-aqueous systems by delivering a high energy density to 4.1 V, of 165 Wh/kg [4]. On the other hand, the ionic based electrolyte 1-methylpyridinium 2,6-dicarboxylate anion in IL matrix (Pyr14TFSI) were stable up to 150 and 200 °C and showed ion conductivities of 2.8 and 3.2 mS.cm⁻¹ at room temperature [5]. The poly- (vinylidene fluoride) (PVdF) has been identified as a potential host for lithium polymer batteries of the interesting properties. On adding the poly (vinylidene fluoride-hexa fluoropropylene) (PVdF-HFP) as a gel polymer electrolyte which has drawn the attention of many researchers. The composite polymer electrolytes (CPE) alone have offered lithium polymer batteries with improved electrolyte/electrode compatibilities and safety hazards. It has also found that the layered nano composite polymer electrolytes based on PEO offered better electrochemical characteristics because of the apparent synergism between the host and the polymer. Solid polymer electrolytes with considerable ionic conductivity have been paid attention in recent investigations due to its potential applications. However, the crystallinity of polymer below melting point reduces the overall polymer flexibility and offers a low ionic conductivity at ambient temperature. But the ionic conductivity can be increased by the addition of plasticizer or nano particles. The polymer electrolyte with legible ionic conductivity can be obtained by using ionic liquid based electrolyte. Ionic liquids, typically consisting of bulky, asymmetric organic cations and in-organic anions, offer many favorable conditions such as good thermal and electrochemical stability, high ionic conductivity, negligible vapor pressure and non-flammability.

![Figure1. Schematic Diagram of the charge-discharge mechanism of a Li-ion Battery](image)

Also polymer electrolytes play a major role in all the other electrochemical devices. A sulfonated poly(arylene ether benzimidazole) copolymer membrane doped with sulfuric acid resulted with highest power density of 23.7mWcm⁻² for fuel cell [6]. In super capacitors, electrolyte comprising of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide immobilized in (PVDF- HFP) showed high ionic conductivity of 3.81×10⁻³ S cm⁻¹, high specific energy and power (26.1 and 18 kw kg⁻¹, respectively) [7]. GPE containing PVA/PEO blend in sodium salt mixture (CH3COONa/) (Na2SO4), resulted with energy density of 3.25 Wh kg⁻¹ and power density of 586.166 W kg⁻¹ at current density of 1 Ag⁻¹ [8]. With the addition of cross linker and plasticizer to PEO with LiClO4, the power density and current density of 1 Ag⁻¹ has been found to be increased to 6.91 kW kg⁻¹ and 27.62 W h kg⁻¹ at a high current density of 5 A g⁻¹ for the membrane [9]. A relevant number of interfaces and interfacial regions are created especially when nanosized materials are introduced in electrochemical cells, thus opening up to some
opportunities for enhanced electrochemical performances provided that the current manufacturing methods are updated. Possible solutions include surface coating the AMPs with the solid electrolyte; homogeneous embedding in SLICs or SPEs, with electronic wiring provided by carbon additives or electro active polymers. As compared to systems with binary LEs, CEs with single ion conductor solid electrolytes, such as SIEs and single Li⁺ ion conductors in principle, able to deliver larger specific capacity at higher current densities despite a lower conductivity or a higher thickness [10].

Table 1: Reviews based on biopolymers doped with lithium salts as a promising electrolyte in electrochromic devices and proton batteries

<table>
<thead>
<tr>
<th>Ref. No</th>
<th>Title of the paper</th>
<th>Electrolyte</th>
<th>Method</th>
<th>Ratio</th>
<th>Ionic Conductivity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>‘Lithium ion conduction in corn starch based solid polymer Electrolytes’</td>
<td>Corn starch, LiClO₄</td>
<td>Solution casting technique</td>
<td>40 wt.% LiClO₄ 60 wt.% corn starch</td>
<td>1.28 × 10⁻⁴ S/cm</td>
<td>K.H. Teoh, et al., Measurement, (2014)</td>
</tr>
</tbody>
</table>

Electrolyte progress

State of art of liquid electrolytes

To allow ion transport in the electrolyte of lithium batteries, a suitable lithium salt is dissolved in the organic solvent mixture. The addition of such a salt results in increased complexity of the system and modifications of the physico- and electrochemical properties of pure solvents and their mixtures. State-of-the-art electrolyte solvents usually consist of a mixture of two kinds of aliphatic carbonates: cyclic carbonates (e.g., ethylene and propylene carbonates (EC, PC)), which possess high dielectric constants [8]. It may be stated that organic carbonate mixtures are certainly very suitable ion-conducting media with respect to their characteristics [17]. It was also reported that electrolytes comprising LiPF₆ as a conducting salt and Dimethyl Carbonate (DMC) as a cosolvent (in combination with EC) showed higher decomposition temperatures than those of electrolyte mixtures containing other linear carbonates, such as Diethyl Carbonate (DEC). Lithium hexafluorophosphate (LiPF₆) is practically the only conducting salt used in commercial state-of-the-art LIBs. To enhance the safety of state-of-the-art LIBs, considerable research efforts were and are still being undertaken to replace organic carbonates (at least partially) by alternative solvents to provide comparable ionic conductivities, One of the most studied compounds is fluorinated ethylene carbonate (FEC), which was first proposed by McMillan et al.

Solid electrolytes

The electrolytes investigated comprise LiPF₆, lithium bis(oxalato)borate (LiBOB), LiBF₄, and lithium difluoro(oxalato)borate (LiDFOB) in a mixture of (EC) ethylene carbonate and (EMC) ethyl methyl carbonate showed a notable difference in the cycling performance despite the effectual equivalent chemical composition of

LiDFOB (1.2 M) in the mixture of EC: EMC (3:7) when compared to 0.6M LiBOB + 0.6 M LiBF₄ in EC: EMC (3:7). The electrolyte LiDFOB compared to the other salts significantly provided a remarkable improvement in electrochemical performance [18]. A garnet-type Li₅.₄La₁.₂Zr₁.₄Ta₀.₆O₁₂ (LLZTO) solid electrolyte tube showed that the assembled Li[LLZTO]Sn–Pb and Li[LLZTO]Bi–Pb cells can stably cycle at an intermediate temperature of 240 °C for about one month at current densities of 50 mA cm⁻² and 100 mA cm⁻² respectively. The cells showed a theoretical volumetric energy density as high as 570 Wh l⁻¹ and 940 Wh l⁻¹, respectively. [19].The mechanical properties of the PVDF-HFP film electrolyte in terms of flexibility and elasticity were better than with PVDVF [20]. The developed highly promising solid polymer electrolytes (SPEs) based on a novel cross-linker containing star-shaped phosphazene with poly (ethylene oxide) (PEO) branches with very high ionic conductivity (7.6×10⁻⁶ S cm⁻¹), improved mechanical stability, and good electrochemical stability for all solid-state lithium batteries. In particular, allyl groups were introduced at the ends of the cross-linker in order to overcome the easy self-polymerization of existing cross-linking acrylate end groups showed initial discharge capacity of 147mAh/g at 0.1°C and 132mAh/g at 0.5°C, and 97% of the capacity was retained at the 100th cycle. [21] Plasticized starch with N, N-dimethylacetamide (DMAc) and certain concentration ranges of lithium chloride (LiCl) by melting extrusion showed conductance of 10⁻⁵ S cm⁻¹. [22]. Compared to polymeric lithium salts, lithium polyperfluorobutylene-1, 4-bis-sulfonylimide (LiPBSI) and lithium polyperfluorohexylene-1, 6-bis-sulfonylimide (LiPHSI), with different CF₂ backbone lengths in toluene showed that LiPBSI/PEO electrolyte had higher ionic conductivity. Furthermore, the lithium ion transference number of both LiPBSI/PEO and LiPHSI/PEO films were close to 0.4 and the ionic conductivity of LiPBSI/PEO film was close to 1×10⁻⁴ S/cm at 60 °C [23]. Solid polymer electrolytes composed of the polycarbonate-based polyurethanes and LiTFSI exhibited a high ionic conductivity of 1.2×10⁻⁴ S cm⁻¹ at 80 °C and showed excellent mechanical strength. It also delivers an initial discharge capacity of 134 mAh g⁻¹ with 91% capacity retention after 600 cycles at 80 °C at 1 C, which showed an outstanding cycling performance. [24]. The electrolyte comprising cellulose phthalate (CP) and LiClO₄ Li⁺ cation formed not only ionic-bond with carboxyl group but also the coordination with carbonyl and ether groups in CP at the low LiClO₄ concentration, while it formed only the ionic-bond at the high concentration. This behavior of the CP/LiClO₄ increased the conductivity [25]. An inexpensive H⁺ transporting SP membrane (HPEOP) is formulated using perchloric acid (HClO₄) as the proton source with a poly(ethylene oxide) (PEO) and polydimethylsiloxane blend. HPEOP600 membrane's ionic conductivity at 30°C is found to systematically vary from 0.01 Scm⁻¹ to 0.1 Scm⁻¹. [26].

Polymer electrolytes

Surface modification of LiCoO₂ with the ultrathin film of solid state electrolyte of Li₁₄Al₀.₄Ti₁.₆(PO₄)₃ (LATP) were prepared. The coated LiCoO₂ reveals enhanced structural and electrochemical stability at high voltage (4.5 V) in half-cell with liquid electrolyte. The cell exhibits 93% discharge capacity retention of the initial discharge capacity after 50 cycles at the charging cut-off voltage of 4.2 V, suggesting that the LATP coating layer is effective to suppress the oxidation of PEO at high voltage. PEO-based polymer electrolyte was also assembled, and 0.5 wt% LATP modified LiCoO₂ showed high capacity retention (93.2% after 50 cycles) to improve interface stability between the electrode and the electrolyte [27]. Polyvinylidene difluoride (PVDF) or poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) was added to an ionic liquid electrolyte, in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, to produce either soft gels or free-standing films depending on the polymer content. As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) membranes possess good pore structure and pore size for a high electrolyte uptake [28]. (PVDF/PSF) blend microporous matrix of polymer electrolyte was found that the addition of PSF not only increases ionic conductivity and electrochemical stable window of polymer electrolyte, but also markedly enhances charge discharge performances of coin cell. The maximum ionic conductivity was 2.03×10⁻⁴ S cm⁻¹ at 20°C. Blend polymer electrolyte showed higher charge discharge capacity and better discharge performance at 200 mA cm⁻² current density [29]. Hydroxyethylcellulose (HEC) with different quantities of glycerol and addition of lithium trifluoromethane sulfonate (LiCF₃SO₃) prepared samples of transparent films

exhibited very good adhesion properties. The sample containing HEC plasticized with 48% of glycerol showed the conductivity values of 1.07×10^{-2} S/cm at 30°C and 1.06×10^{-3} S/cm at 83°C [30].

Biopolymer electrolytes

The lithium triflate was added to chitosan to form a film of chitosan acetate salt complex. There occurred changes that the carbonyl band was observed to shift to as low as 1645 cm$^{-1}$ and the amine band to as low as 1508 cm$^{-1}$. When chitosan and ethylene carbonate (EC) were dissolved in acetic acid to form a film of plasticized chitosan acetate, EC-LiCF$_3$SO$_3$ interactions were indicated by the shifting of the C=O bending band from 1718 cm$^{-1}$ in the spectrum of EC to 725 cm$^{-1}$ in the EC-salt spectrum. [31]. The LiFePO$_4$ electrode with the chitosan binder was observed to have a high ionic conductivity compared to the LiFePO$_4$ electrode with the PVDF binder. The electrode with the chitosan binder also attained a higher discharge capacity of 159.4 mAh g$^{-1}$ with an excellent capacity retention ratio of 98.38% compared to the electrode with the PVDF binder, which had a discharge capacity of 127.9 mAh g$^{-1}$ and a capacity retention ratio of 85.13% [32].

In order to insight the importance of the polymer electrolytes, literature review is done for moving the research forward. It is presented in a table format sorted and recognized neatly which makes easy inclusion of the most important and relevant data in the following

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Title of the paper</th>
<th>Electrolyte</th>
<th>Method</th>
<th>Ratio</th>
<th>Ionic Conductivity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>[33]</td>
<td>‘Carboxymethyl Carrageenan Based Biopolymer Electrolytes’</td>
<td>Carboxymethyl kappa carrageenan and carboxymethyl iota carrageenan, LiNO$_3$</td>
<td>Solution casting technique</td>
<td>20 wt.% LiNO$_3$</td>
<td>5.85×10^{-2} S cm$^{-1}$</td>
<td>N.N. Mobarak, et al., Electrochimica Acta (2015)</td>
</tr>
<tr>
<td>[34]</td>
<td>‘Electrical characterization of corn starch-LiOAc electrolytes and application in electrochemical double layer capacitor’</td>
<td>Corn starch, Lithium acetate, Glycerol</td>
<td>Solution casting technique</td>
<td>5 wt.% starch, 25 wt.% LiOAc 30 wt.% glycerol</td>
<td>$(1.04 \pm 0.10) \times 10^{-3}$ S cm$^{-1}$</td>
<td>M.F. Shukur, et al., Electrochimica Acta, (2014)</td>
</tr>
<tr>
<td>[38]</td>
<td>‘Plastic crystal– solid biopolymer electrolytes for rechargeable lithium batteries’</td>
<td>Chitosan, lithium bis(trifluoromethylsulfonyl) \ imide (LiTFSI)</td>
<td>Solution casting technique</td>
<td>50 wt.% Succinonitrile</td>
<td>0.4×10^{-3} S cm$^{-1}$</td>
<td>NurUmiraTaib, et al., J. Membrane Science (2014)</td>
</tr>
</tbody>
</table>

Gel polymer electrolytes

Initially gel polymer electrolytes of alkylene oxide, ethylene oxide, propylene oxide, 20%, were prepared by mixing GBL–LiBF$_4$/LiCoO$_2$ and an initiator in which the ionic conductivity reached over 2.5mScm$^{-1}$. The highest discharge capacity (1.3 mAh) was attained [39]. A poly (vinylidene difluoride-co-hexafluoropropylene) (PVdF-HFP)-based gel polymer electrolyte (GPE) containing propylene carbonate (PC)-based liquid electrolyte has been developed to enhance the safety performance of LiNi$_{0.5}$Mn$_{0.2}$Co$_{0.3}$O$_2$/graphite lithium ion batteries [40]. Another poly (vinylidene difluoride) (PVdF)-based dry-gel due to the presence of crystallized EC-solvent within its matrix that avoids structural collapse and cycling tests were carried out using lithium half-cells using (LiFePO$_4$, LFP) and graphite, respectively [41]. The polyphosphazene versus lithium metal in combination with a liquid
A proton conducting polymer electrolyte based on poly (ε-caprolactone) (PCL) complexed with different concentrations of ammonium thiocyanate (NH4SCN) salt with the ionic conductivity of 1.01×10^{-4} S cm^{-1} at 30°C. The correlation between free ions, ion aggregates and conductivity are obvious [23]. Carboxymethyl chitosan (C-CTS) was a water soluble binder for LiFePO4 cathode in Li-ion batteries. The electrochemical performances of LiFePO4 cathode with C-CTS binder was investigated and compared with the conventional water-soluble sodium
carboxymethyl cellulose (CMC) and the commercial non-aqueous polyvinylidene difluoride (PVDF). LiFePO₄ cathode with C-CTS exhibited a comparable cycling performance, but better rate capability than that of CMC and PVDF, retaining 65% capacity of C/5 at 5°C rates as compared with 55.9% and 39.4% for CMC and PVDF, respectively. In addition, LiFePO₄ cathode with C-CTS exhibited excellent cycling performance at 60°C, retaining 91.8%/62.1% capacity after 80 cycles at 1 C/10 C, respectively [53].

Table 3: Reviews regarding different types of electrolyte, anode, cathode, separator used are categorized in this table

<table>
<thead>
<tr>
<th>Ref No</th>
<th>Title of the paper</th>
<th>Components</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>54)</td>
<td>Carboxylated polyimide separator with excellent lithium ion transport properties for a high-powered density lithium – ion battery</td>
<td>Liquid electrolyte of IM LiPF₆ in ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate</td>
<td>Chun-Er Lin, et al J. Mater. Chem A., 2018, 6, 991</td>
</tr>
<tr>
<td>56)</td>
<td>Composite membrane with ultra-thin ion exchangeable functional layer: a new separator choice for manganese – based cathode material in lithium ion batteries</td>
<td>Liquid electrolyte of IM LiPF₆ in ethylene carbonate-dimethyl carbonate Manganese - based cathode materials such as spinel LiMn₂O₄</td>
<td>Junli Shi, et al J. Mater. Chem A, 2015, 3, 7006</td>
</tr>
<tr>
<td>57)</td>
<td>An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion Batteries</td>
<td>Liquid electrolyte of IM LiPF₆ in ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate</td>
<td>Shiyong Xiao, et al RSC Adv., 2014, 4, 76</td>
</tr>
<tr>
<td>58)</td>
<td>A trilayer poly (vinylidene fluoride)/ polyborate/ poly(vinylidene fluoride) gel polymer electrolyte, with good performance for lithium ion batteries</td>
<td>Liquid electrolyte of IM LiPF₆ in ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate</td>
<td>Yousong Zhu, et al J. Mater. Chem A, 2013, 1, 7790</td>
</tr>
<tr>
<td>59)</td>
<td>A macro-porous graphene oxide-based membrane as a separator with enhanced thermal stability for high-safety lithium ion batteries</td>
<td>Liquid electrolyte of IM LiPF₆ in ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate</td>
<td>Haiyang Liao, et al RSC Adv., 2017, 7, 22112</td>
</tr>
<tr>
<td>60)</td>
<td>Nanocomposite polymer membrane derived from nano TiO₂ – PMMA and glass fiber nonwoven: high thermal endurance and cycle stability in lithium ion battery applications</td>
<td>Liquid electrolyte of IM LiPF₆ in ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate</td>
<td>Sen Zhang, et al J. Mater. Chem A, 2015, 3, 17697</td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Electrolyte</td>
<td>Cathode</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>61</td>
<td>Particle size – dependent, tunable porous structure of a SiO2/ poly(vinylidene fluoride – hexafluoropropylene) – coated poly (ethylene terephthalate) non woven composite separator for a lithium ion battery</td>
<td>Liquid electrolyte of IM LiPF6 in ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate</td>
<td>Graphite</td>
</tr>
<tr>
<td>63</td>
<td>A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes</td>
<td>Liquid electrolyte of IM LiPF6 in ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate</td>
<td>Li - metal anode</td>
</tr>
<tr>
<td>64</td>
<td>Polyethylene-supported ultra-thin polyvinylidene fluoride/ hydroxyethyl cellulose blended polymer electrolyte for 5v high voltage lithium ion batteries</td>
<td>Liquid electrolyte of IM LiPF6 in ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate</td>
<td>Li – metal anode</td>
</tr>
<tr>
<td>65</td>
<td>Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries</td>
<td>Liquid electrolyte of IM LiPF6 in ethylene carbonate/proplylene carbonate/ethyl acetate</td>
<td>Li anode</td>
</tr>
<tr>
<td>66</td>
<td>Pyrogallic acid coated polypropylene membranes as separators for lithium ion batteries</td>
<td>Liquid electrolyte of IM LiPF6 in ethylene carbonate/dimethyl carbonate</td>
<td>Li anode</td>
</tr>
<tr>
<td>67</td>
<td>Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery</td>
<td>LiPF6 electrolyte</td>
<td>Graphite</td>
</tr>
</tbody>
</table>

Backbone of electrodes

Blended Electrodes

Charge and discharge of lithium ion battery electrodes has been accompanied by severe volume changes. In a confined space, the volume cannot expand, leading to significant pressures induced by local micro structural changes within the battery. While volume changes appear to be less critical in batteries with liquid electrolytes, they will be more critical in the case of lithium ion batteries with solid electrolytes and they will be even more critical and detrimental in the case of all-solid-state batteries with a lithium metal electrode. Comparing and analyzing the volume changes occurring in state of the art electrode materials, based on crystallographic studies quantitatively followed that it was based on the evaluation of the partial molar volume of lithium as a function of the degree of lithiation for different electrode materials [68]. The electrochemical property of LiFeS in a Li ion...
conductive glass showed two potential plateaus within the range 0≤x≤4, and is reversible. The reduction of FeS$_2$ by 4e$^-$ or LiFeS$_2$ by 2e$^-$ did not proceed to form Fe metal acting as an electrode active material in a solid state lithium battery [69]. Carboxymethyl cellulose (CMC), a green and low-cost binder, has used to make lithium-ion battery composite electrodes containing the high voltage cathode material Li$_2$MnO$_3$–LiMO$_2$. It indicated that CMC operates well at very high voltages (4.8 V) with an improved cycling stability as well as a very promising rate capability compared to the PVDF binder [70]. The binder based on natural cellulose as a binder in ionic solvent making volatile solvent-free slurries which are then coated on typical battery current collectors showed a stable specific capacity of 123 mAh per gram of LiFePO$_4$ at room temperature [71]. The binders with two types of galactomannan gum derived from plant seeds, guar gum (GG) tara gum (TG), for Li$_2$Ti$_6$O$_{12}$ (LTO) negative electrodes were compared to typical carboxymethyl cellulose (CMC) binder. It exhibited better transport of lithium ions in LTO electrodes than CMC binder, a cellulose (linear polysaccharide) derivative, even though their binding capability was not as strong as CMC. It was found that the GG-containing LTO electrode resulted a high reversible capacity of 160.0 mAh g$^{-1}$ at the 100th cycle with 1 C current rate, whereas the CMC-containing LTO electrode had a reversible capacity of 150.1 mAh g$^{-1}$ [72].

Special cathodes
A strategy for obtaining optimized compositions within this class of materials, exhibiting high capacity and energy density as well as good reversibility, by using a combination of low-valence transition metal redox and a high-valence redox active charge compensator, as well as fluorine substitution for oxygen. Furthermore, a new constraint on high-performance compositions by demonstrating the necessity of excess Li capacity as a means of counteracting high-voltage tetrahedral Li formation, Li-binding by fluorine and the associated irreversibility was identified. A 10–12% of Li capacity was lost due to tetrahedral Li formation, and 0.4–0.8 Li per F dopant was made inaccessible at moderate voltages due to Li–F binding. A series of high-performance disordered oxyfluoride cathode materials based on Mn$^{2+/4+}$ and V$^{4+/5+}$ redox was succeeded [73]. Layered Ni-rich oxides (LiNi$_x$Co$_y$Mn$_{3-x-y}$O$_2$) exhibited high discharge capacity, high Li$^+$ ion deintercalation/intercalation potential, and low cobalt content. Ni-rich cathodes often suffer from poor cycling stability because of the serious cation mixing, and the poor interfacial/structural stability during the electrochemical process. It delivered a reversible discharge capacity as high as 197.4 mA h g$^{-1}$ at C/10, and exhibits a capacity retention of 95.9%, 90.2% and 83.5% at C/3, 1°C and 3°C after 200 cycles at cut-off voltages of 2.7–4.4 V, respectively [74]. A nanoscopically ordered architecture of calcite-type MnCO$_3$ nanocrystals mimicking hierarchical structures of biological CaCO$_3$ in an organic gel matrix with a highly porous structure of spinel-type LiMn$_2$O$_4$ was produced as a cathode material consisting of connected LiMn$_2$O$_4$ nanoparticles provided high durability in a lithium insertion/extraction process at a high current density due to a high porosity for the electrochemical reaction and three-dimensional channels for ion diffusion. It has been reported that alginate which was extracted from brown seaweed as a polymeric binder for spinel LiMn$_2$O$_4$ resolved the chronic issue upholding the feasibility and hence could be for emerging large-scale applications including electric vehicles [75].

Conclusion
The in-depth review on the research carried out in the field of Li- ion battery has facilitated a comprehensive understanding into the concepts, especially, with reference to energy storage and meeting energy demands, with an eye on environmental consciousness. It has given the authors insight and motivation to indicate on identification of the research gap. This manuscript may serve as a ready reference for the future researchers to acquaint themselves on notable works in the area of renewable energy.

Acknowledgement - The authors wish to acknowledge the authorities of Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore – 43 for providing the necessary facilities to carry out the present research.
References

29. Qiao Cheng, Zhenyu Cui, Jiangbo Li, Shuhao Qin, Feng Yan, Jianxin Li “Preparation and performance of polymer electrolyte based on poly(vinylidene fluoride)/polysulfone blend membrane via thermally induced phase separation process for lithium ion battery” Journal of Power Sources, 266 (2014) 401-413. http://dx.doi.org/10.1016/j.jpowsour.2014.05.056

54. Chen-er Lin, Hong Zhang, You-Zhi Song, Yin Zhang, Jia-Jia Yuan and Bao-Ku Zhu “Carboxylated polypimide separator with excellent lithium ion transport properties for a high-power density lithium – ion battery” J. Mater. Chem A, 2018, 6, 99. https://doi.org/10.1039/c7ta08702k

57. Shiying Xiao, Faxing Wang, Yaqiong Yang, Zheng Chang and Yuping Wu “An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries” RSC Adv., 2014, 4, 76. https://doi.org/10.1039/c3ra46115g

58. Yusong zhu, Shiying Xiao, Yaqiong Yang and Yuping Wu “A trilayer poly (vinylidene fluoride)/ polyboratace/poly(vinylidene fluoride) gel polymer electrolyte ,with good performance for lithium ion batteries” J. Mater. Chem A, 2013, 1, 7790. https://doi.org/10.1039/c3ta00167a

59. Haiyang Liao, Haiyan Zhang, Gai Qin, Zhenghui Li, Liuqing Li and Haojun Hong “A macro-porous graphene oxide-based membrane as a separator with enhanced thermal stability for high – safety lithium ion batteries” RSC Adv., 2017, 7, 22112. doi.org/10.1039/c7ra02950K

60. Sen Zhang, Jiang Cao, Yuming Shang, Li Wang, Xiangming He, Jianjun Li, Peng Zhao and Yaowu Wang “Nanocomposite polymer membrane derived from nano TiO2 – PMMA and glass fiber nonwoven: high thermal endurance and cycle stability in lithium ion battery applications” J. Mater. Chem A, 2015, 3, 17697. https://doi.org/10.1039/c5ta02781K

62. Jianhui Dai,a Chuan Shi,b Chao Li,b Xiu Shen,b Longqing Peng,b Dezhi Wu,c Daoheng Sun,c Peng Zhang and Jinbao Zhao “A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes” Energy Environ. Sci., 2016, 9, 3252. https://doi.org/10.1039/c6ee01219a

63. Xiangdong Ma, Xiaoxi Zuo, Jinhua Wu, Xiao Deng, Xin Xiao, Jiasheng Liu and Junmin Nan “Polyethylene-supported ultra-thin polyvinylidene fluoride/ hydroxyethyl cellulose blended polymer electrolyte for 5V high voltage lithium ion batteries” J. Mater. Chem A, 2018, 6, 1496

64. Junli Shi, Huasheng Hu, Yonggao Xia, Yuanzhuang Liu and Zhaoping Liu “Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries” J. Mater. Chem A, 2014, 2, 9134.
65. Haibin Wang, Lei Pan, Chaolumen Wu, Dacheng Gao, Shengyang Chen and Lei Li “Pyrogallic acid coated polypropylene membranes as separators for lithium ion batteries” J. Mater. Chem A, 2015, 3, 20535. https://doi.org/10.1039/C5TA06381G

68. Kazunori Takada, Kazuya Iwamoto, Shigeo Kondo “Lithium iron sulfide as an electrode material in a solid state lithium Battery” Solid State Ionics 1999, 117, 273–276

73. Xing Li, Kangjia Zhang, Siyuan Wang, Mingshan Wang, Fei Jiang, Yang Liu, Yun Huang and Jianming Zheng “Optimal synthetic conditions for a novel and high performance Ni-rich cathode material of LiNi_{0.68}Co_{0.16}Mn_{0.2}O_{2}”, Sustainable Energy & Fuels, 2018. https://doi.org/10.1039/c8se00192h

(2020) ; http://www.jmaterenvironsci.com