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 Introduction 

Energy conservation has served as a theme of discussion in most of the World Forums since the past few 

decades. The process of sufficing the increasing energy demand that is prevalent round the globe has many 

challenges to overcome. The key challenges worth mention are conversion and storage of electrical energy. This 

scenario has been put to rescue with the invention and commercialization of electrochemical energy storage 

technologies based on batteries. This technology has gained universal acceptance as a prominent solution to the 

challenge of rapidly increasing demand for energy. Further, the   Li-ion technology in battery systems is yet 

sophistication in the field, as they exhibit increased viability and integrate the renewable resources that provide 

intermittent energy to the grid. Lithium based rechargeable batteries are deemed a boon with appealing features 

that promote efficiency in the usage of devices. This article attempts to explore research in the field of energy 

storage systems. Interdisciplinary areas of research leading to the development of ionic technologies are known 

as Solid State Ionics (SSI) which deals with the properties of ionic solids. The demands for thin-film applications 

clearly differ from that of the conventional batteries. Biopolymers (like cellulose derivatives, chitosan, and starch 

or natural rubber) have been mainly focused because of their good physical and chemical properties, 

biodegradability, cost, good performance and low production [1].  The development of polymer electrolytes has 

different stages with different behavior namely solid polymer, gel polymer, and composite polymer electrolytes. 

In the former electrolyte the host polymer itself is used as a solvent (solid) along with lithium salt without 

containing any organic liquids. However, these polymer electrolyte systems present very low ionic conductivity 

at ambient temperature [2]. With relation to green chemistry very interesting substitutes for synthetic polymers 

are natural polymers. The polymer hosts in inorganic salts have ease dissolution when the dielectric constant (e) 

of the polymer is high and the lattice energy of the salt is low [3]. The electrolytes were also tested as ionic 

conductors in electro chromic devices. 

Abstract  

An interesting manifestation with improvising technological development for 

advanced applications focuses the energy storage systems. The development 

leads to the initiation of the polymer electrolyte in batteries with high thermal 

stability. The most commonly used batteries are lithium due to its high 

compatibility. This includes the introduction of biopolymers as a substitute for 

synthetic polymers of better properties. The ionic conductivity with increasing 

voltage is found by doping the salts with the polymers by increasing its 

conduction for application purpose.  
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Despite recent exhaustive efforts in rechargeable lithium batteries the development of electrolytes that facilitate 

commercially possible lithium metal anodes remains challenging. Electrolytes of related composition, however 

different structure, have been investigated by Jurng, et al., to be aware of input mechanisms for improving the 

cycling performance. A flexible electrolyte with leakage free is required more importantly for energy devices to 

increase safety. By asset, a new class of electrolytes, by hybridizing aqueous with non-aqueous solvents, based 

on Li4Ti5O12 and LiNi0.5Mn1.5O4 provided a better electrochemical stability from non-aqueous systems by 

delivering a high energy density to 4.1 V, of 165 Wh/kg [4]. On the other hand, the ionic based electrolyte 1-

methylpyridinum 2, 6-dicarboxylate anion in IL matrix (Pyr14TFSI) were stable up to 150 and 200 °C and showed 

ion conductivities of 2.8 and 3.2 mS.cm-1 at room temperature [5]. The poly- (vinylidene fluoride) (PVdF) has 

been identified as a potential host for lithium polymer batteries of the interesting properties. On adding the poly 

(vinylidene fluoride-hexa fluoropropylene) (PVdF-HFP) as a gel polymer electrolyte which has drawn the 

attention of many researchers. The composite polymer electrolytes (CPE) alone have offered lithium polymer 

batteries with improved electrolyte/electrode compatibilities and safety hazards. It has also found that the layered 

nano composite polymer electrolytes based on PEO offered better electrochemical characteristics because of the 

apparent synergism between the host and the polymer. Solid polymer electrolytes with considerable ionic 

conductivity have been paid attention in recent investigations due to its potential applications. However, the 

crystallinity of polymer below melting point reduces the overall polymer flexibility and offers a low ionic 

conductivity at ambient temperature. But the ionic conductivity can be increased by the addition of plasticizer or 

nano particles. The polymer electrolyte with legible ionic conductivity can be obtained by using ionic liquid based 

electrolyte. Ionic liquids, typically consisting of bulky, asymmetric organic cations and in-organic anions, offer 

many favorable conditions such as good thermal and electrochemical stability, high ionic conductivity, negligible 

vapor pressure and non-flammability. 

Figure1. Schematic Diagram of the charge- discharge mechanism of a Li-ion Battery 

Also polymer electrolytes play a major role in all the other electrochemical devices. A sulfonated poly(arylene 

ether benzimidazole) copolymer membrane doped with sulfuric acid resulted with highest power density of 

23.7mWcm−2 for fuel cell [6]. In super capacitors, electrolyte comprising of 1-butyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide immobilized in (PVDF- HFP) showed high ionic conductivity of 3.81×10-3 S 

cm-1, high specific energy and power (_26.1 and 18 kw kg-1, respectively) [7]. GPE containing PVA/PEO blend 

in sodium salt mixture (CH3COONa)/ (Na2SO4), resulted with energy density of 3.25 Wh kg−1 and power density 

of 586.166 W kg−1 at current density of 1 Ag−1 [8]. With the addition of cross linker and plasticizer to PEO with 

LiClO4, the power density and energy density has been found to be increased to 6.91 kW kg−1 and 27.62 W h kg−1 

at a high current density of 5 A g−1 for the membrane [9]. A relevant number of interfaces and interfacial regions 

are created especially when nanosized materials are introduced in electrochemical cells, thus opening up to some 
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opportunities for enhanced electrochemical performances provided that the current manufacturing methods are 

updated. Possible solutions include surface coating the AMPs with the solid electrolyte; homogeneous embedding 

in SLICs or SPEs, with electronic wiring provided by carbon additives or electro active polymers. As compared 

to systems with binary LEs, CEs with single ion conductor solid electrolytes, such as SIEs and single Li+ ion 

conductors in principle, able to deliver larger specific capacity at higher current densities despite a lower 

conductivity or a higher thickness  [10]. 
 

Table 1: Reviews based on biopolymers doped with lithium salts as a promising electrolyte in electrochromic 

devices and proton batteries 

 

Electrolyte progress 

State of art of liquid electrolytes 

To allow ion transport in the electrolyte of lithium batteries, a suitable lithium salt is dissolved in the organic 

solvent mixture. The addition of such a salt results in increased complexity of the system and modifications of the 

physico- and electrochemical properties of pure solvents and their mixtures. State-of-the-art electrolyte solvents 

usually consist of a mixture of two kinds of aliphatic carbonates: cyclic carbonates (e.g., ethylene and propylene 

carbonates (EC, PC)), which possess high dielectric constants [8]. It may be stated that organic carbonate mixtures 

are certainly very suitable ion-conducting media with respect to their characteristics [17]. It was also reported that 

electrolytes comprising LiPF6 as a conducting salt and Dimethyl Carbonate (DMC) as a cosolvent (in combination 

with EC) showed higher decomposition temperatures than those of electrolyte mixtures containing other linear 

carbonates, such as Diethyl Carbonate (DEC). Lithium hexafluorophosphate (LiPF6) is practically the only 

conducting salt used in commercial state-of-the-art LIBs. To enhance the safety of state-of-the-art LIBs, 

considerable research efforts were and are still being undertaken to replace organic carbonates (at least partially) 

by alternative solvents to provide comparable ionic conductivities, One of the most studied compounds is 

fluorinated ethylene carbonate (FEC),  which was first proposed by McMillan et al. 
 

Solid electrolytes 

The electrolytes investigated comprise LiPF6, lithium bis(oxalato)borate (LiBOB), LiBF4, and lithium 

difluoro(oxalato)borate (LiDFOB) in a mixture of (EC) ethylene carbonate and (EMC) ethyl methyl carbonate 

showed a notable difference in the cycling performance despite the effectual equivalent chemical composition of 

Ref. 

No 

 

Title of the paper 

 

Electrolyte 

 

Method 

 

Ratio 

 

Ionic 

Conductivity 

 

Reference 

11 ‘Gellan Gum-LiI Gel 

Polymer Electrolytes’ 

Gellan gum, 

Lithium iodide, 

Glycerol 

Solution casting 

technique 

LiI (10–50 wt 

%),   glycerol 

(10–50 wt %) 

1.7 × 10−3 

S/cm 

N. F. A. Halim, et al., 

Mol. Cryst. Liq. 

Cryst., (2012) 

12 ‘Plasticized pectin-based 

gel electrolytes’ 

Pectin,    

Glycerol,   

 LiClO4 

Plasticization 

technique 

68 wt.% 

glycerol 

4.7 × 10−4 

S/cm 

Juliana R, et al.,  

Electrochimica Acta,  

(2009)  

13 ‘Characteristics of gellan 

gum–LiCF3SO3 

polymer electrolytes’ 

Gellan, 

LiCF3SO3 

Solution casting 

technique 

 

40 wt.%  

LiCF3SO3 

5.4 × 10−4 

S/cm 

I.S.M. Noor, et al.,  

Solid State Ionics , 

(2012)  

14 ‘Morphology and Ion-

Conductivity of 

Gelatin−LiClO4 Films: 

Fractional 

Diffusion Analysis’ 

Gelatin, 

LiClO4, 

Glycerol 

Solution cast 

technique 

 

2.70% LiClO4 

 

- Tania Basu, et al.,   

J. Phys. Chem. B 

(2012) 

15 ‘Amylopectin-rich starch 

plasticized with glycerol 

for polymer electrolyte 

application’ 

Amylopectin-rich 

Starch, 

LiClO4, 

Glycerol 

Solution casting 

technique 

 

30–35 wt.% 

glycerol 

1.1 × 10−4 

Scm−1 

Rozely F.M.S. 

Marcondes, et al.,  

Solid State Ionics, 

(2010)  

16 ‘Lithium ion conduction 

in corn starch based solid 

polymer 

Electrolytes’ 

Corn starch, 

LiClO4 

Solution casting 

technique 

 

40 wt.% 

LiClO4 

60 wt.% corn 

starch 

1.28 × 10-4 

S/cm 

K.H. Teoh, et al.,  

Measurement, (2014)  
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LiDFOB (1.2 M) in the mixture of EC: EMC (3:7) when compared to 0.6M LiBOB + 0.6 M LiBF4 in EC: EMC 

(3:7). The electrolyte LiDFOB compared to the other salts significantly provided a remarkable improvement in 

electrochemical performance [18]. A garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) solid electrolyte tube showed that 

the assembled Li||LLZTO||Sn–Pb and Li||LLZTO||Bi–Pb cells can stably cycle at an intermediate temperature of 

240 °C for about one month at current densities of 50 mA cm−2 and 100 mAcm−2 respectively. The cells showed 

a theoretical volumetric energy density as high as 570 Wh l−1 and 940 Wh l−1, respectively. [19].The mechanical 

properties of the PVDF-HFP film electrolyte in terms of flexibility and elasticity were better than with PVDF 

[20]. The developed highly promising solid polymer electrolytes (SPEs) based on a novel cross-linker containing 

star-shaped phosphazene with poly (ethylene oxide) (PEO) branches with very high ionic conductivity (7.6×10-

4S cm-1), improved mechanical stability, and good electrochemical stability for all solid- state lithium batteries. In 

particular, allyl groups were introduced at the ends of the cross-linker in order to overcome the easy self-

polymerization of existing cross-linking acrylate end groups showed initial discharge capacity of 147mAh/g at 

0.1°C and 132mAh/g at 0.5°C, and 97% of the capacity was retained at the 100th cycle. [21] Plasticized starch 

with N, N-dimethylacetamide (DMAc) and certain concentration ranges of lithium chloride (LiCl) by melting 

extrusion showed conductance of 10-0.5 Scm-1. [22]. Compared to polymeric lithium salts, lithium 

polyperfluorobutylene-1, 4-bis-sulfonylimide (LiPBSI) and lithium polyperfluorohexylene-1, 6-bissulfonylimide 

(LiPHSI), with different CF2 backbone lengths in toluene showed that LiPBSI/PEO electrolyte had higher ionic 

conductivity. Furthermore, the lithium ion transference number of both LiPBSI/PEO and LiPHSI/PEO films were 

close to 0.4 and the ionic conductivity of LiPBSI/PEO  film was close to 1×10−4 S/cm at 60 °C [23]. Solid polymer 

electrolytes composed of the polycarbonate-based polyurethanes and LiTFSI exhibited a high ionic conductivity 

of 1.12×10−4 S cm−1 at 80 °C and showed excellent mechanical strength. It also delivers an initial discharge 

capacity of 134 mAh g−1 with 91% capacity retention after 600 cycles at 80 °C at 1 C, which showed an 

outstanding cycling performance. [24].The electrolyte comprising cellulose phthalate (CP) and LiClO4
. Li+ cation 

formed not only ionic-bond with carboxyl group but also the coordination with carbonyl and ether groups in CP 

at the low LiClO4 concentration, while it formed only the ionic-bond at the high concentration. This behavior of 

the CP/LiClO4 increased the conductivity [25]. An inexpensive H+ transporting SP membrane (HPEOP) is 

formulated using perchloric acid (HClO4) as the proton source with a poly(ethylene oxide) (PEO) and 

polydimethylsiloxane blend. HPEOP600 membrane's ionic conductivity at 30°C is found to systematically vary 

from 0.01 Scm-1 to 0.1 Scm-1. [26]. 
 

Polymer electrolytes  

Surface modification of LiCoO2 with the ultrathin film of solid state electrolyte of Li1.4Al0.4Ti1.6 (PO4)3 (LATP) 

were prepared. The coated LiCoO2 reveals enhanced structural and electrochemical stability at high voltage (4.5 

V) in half-cell with liquid electrolyte. The cell exhibits 93% discharge capacity retention of the initial discharge 

capacity after 50 cycles at the charging cut-off voltage of 4.2 V, suggesting that the LATP coating layer is effective 

to suppress the oxidation of PEO at high voltage. PEO-based polymer electrolyte was also assembled, and 0.5 

wt% LATP modified LiCoO2 showed high capacity retention (93.2% after 50 cycles) to improve interface stability 

between the electrode and the electrolyte [27]. Polyvinylidene difluoride (PVDF) or poly(vinylidene fluoride-co-

hexafluoropropene) (PVDF-HFP) was added to an ionic liquid electrolyte, in 1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide, to produce either soft gels or free-standing films depending on the polymer 

content. As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly 

(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) membranes possess good pore structure and pore size for 

a high electrolyte uptake [28]. (PVDF/PSF) blend microporous matrix of polymer electrolyte was found that the 

addition of PSF not only increases ionic conductivity and electrochemical stable window of polymer electrolyte, 

but also markedly enhances charge discharge performances of coin cell. The maximum ionic conductivity was 

2.03×10-3 S cm-1 at 20°C. Blend polymer electrolyte showed higher charge discharge capacity and better discharge 

performance at 200 mA cm-2 current density [29]. Hydroxyethylcellulose (HEC) with different quantities of 

glycerol and addition of lithium trifluoromethane sulfonate (LiCF3SO3) prepared samples of transparent films 
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exhibited very good adhesion properties. The sample containing HEC plasticized with 48% of glycerol showed 

the conductivity values of 1.07×10−5S/cm at 30◦C and 1.06×10−4S/cm at 83◦C [30].  
 

Biopolymer electrolytes 

The lithium triflate was added to chitosan to form a film of chitosan acetate salt complex. There occurred changes 

that the carbonyl band was observed to shift to as low as 1645 cm-1 and the amine band to as low as When chitosan 

and ethylene carbonate (EC) were dissolved in acetic acid to form a film of plasticized chitosan acetate, EC-

LiCF3SO3 interactions were indicated by the shifting of the C=O bending band from 718 cm-1 in the spectrum of 

EC to 725 cm-1 in the EC-salt spectrum. [31]. The LiFePO4 electrode with the chitosan binder was observed to 

have a high ionic conductivity compared to the LiFePO4 electrode with the PVDF binder. The electrode with the 

chitosan binder also attained a higher discharge capacity of 159.4 mAh g −1 with an excellent capacity retention 

ratio of 98.38% compared to the electrode with the PVDF binder, which had a discharge capacity of 127.9 mAh 

g−1 and a capacity retention ratio of 85.13% [32].  

In order to insight the importance of the polymer electrolytes, literature review is done for moving the research 

forward. It is presented in a table format sorted and recognized neatly which makes easy inclusion of the most 

important and relevant data in the following 
 

Table2: Reviews based on biopolymers doped with lithium salts as a promising electrolyte in lithium ion batteries  

Ref. 

No 

 

Title of the paper 

 

Electrolyte 

 

Method 

 

Ratio 

 

Ionic 

Conductivity 

 

Reference 

[33]

. 

‘Carboxymethyl Carrageenan 

Based Biopolymer 

Electrolytes’ 

Carboxymethyl  kappa 

carrageenan and 

carboxymethyl iota 

carrageenan, LiNO3 

Solution 

casting  

technique 

20 wt.% 

LiNO3 

5.85 ×10-3 S cm-1  

 

N.N. Mobarak, et al., 

Electrochimica Acta  

(2015)  

[34]

. 

‘Electrical characterization of 

corn starch-LiOAc electrolytes 

and application in 

electrochemical double layer 

capacitor’ 

Corn starch, 

Lithium acetate,  

Glycerol  

Solution 

casting 

technique 

 

 

5 wt.% 

starch,  25 

wt.% LiOAc, 

30 wt.% 

glycerol 

(1.04 ± 0.10) × 

10−3S cm−1. 

 

 

M.F. Shukur, et al.,   

Electrochimica Acta,  

(2014)  

[35]

. 

‘From seaweeds to 

biopolymeric electrolytes for 

third generation solar cells: An 

intriguing  

Approach’ 

k-carrageenan, 

Eucheuma cottonii 

seaweeds 

Multivariate -

based 

preparation 

45 wt% 

NaI, 30 

wt.% EC 

5.53 × 10-2 S cm_1 Federico Bella, et al.,  

Electrochimica Acta, 

(2015)  

[36]

. 

‘Studies on lithium acetate 

doped chitosan conducting 

polymer system’ 

Chitosan,        

Lithium acetate 

Solution 

casting 

technique 

- 10-6 S/cm M.Z.A. Yahya, et al., 

European Polymer 

J., (2002)  

[37]

. 

‘Electrochemical studies on 

epoxidised natural rubber-

basedgel polymer electrolytes 

for lithium–air cells’ 

ENR-50, 

THF, 

LiCF3SO3 

Solution 

casting 

technique 

 

35 wt.% 

LiCF3SO3 

4.92 × 10−4 Scm−1 S.N. Mohamed, et 

al., Journal of Power 

Sources, (2008)  

[38]

. 

‘Plastic crystal– solid 

biopolymer electrolytes for 

rechargeable lithium batteries’ 

Chitosan,  lithium 

bis(trifluoromethylsulf

onyl) \ imide (LiTFSI) 

Solution 

casting 

technique 

50 wt.% 

Succinonitr

ile 

0.4 × 10-3 S cm-1 NurUmiraTaib, et al., 

J. Membrane Science 

(2014) 
 

Gel polymer electrolytes 

Initially gel polymer electrolytes of alkylene oxide, ethylene oxide, propylene oxide, 20%, were prepared by 

mixing GBL–LiBF4/LiCoO2 and an initiator in which the ionic conductivity reached over 2.5mScm-1. The highest 

discharge capacity (1.3 mAh) was attained [39]. A poly (vinylidene difluoride-co-hexafluoropropylene) (PVdF-

HFP)-based gel polymer electrolyte (GPE) containing propylene carbonate (PC)-based liquid electrolyte has been 

developed to enhance the safety performance of LiNi0.5Mn0.3Co0.2O2/graphite lithium ion batteries [40]. Another 

poly (vinylidene difluoride) (PVdF)-based dry-gel due to the presence of crystallized EC-solvent within its matrix 

that avoids structural collapse and cycling tests were carried out using lithium half-cells using (LiFePO4, LFP) 

and graphite, respectively [41]. The polyphosphazene versus lithium metal in combination with a liquid 
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electrolyte, consisting of 0.7mol L-1 LiBOB in EC/DMC, a high ionic conductivity of 9×10-4 Scm-1 at 30°C has 

been achieved. The electrochemical stability window ranges between 0 V and 4.4 V. The gel polymer was drop 

coated onto the electrode materials and cross-linked to achieve high mechanical stability [42]. Poly (ethylene 

oxide), poly (vinyl pyrrolidone) (PEO/PVP), lithium perchlorate salt (LiClO4) and different plasticizer based 

showed that the crystallinity decreases with the addition of different plasticizers. PEO (72%)/PVP (8%)/LiClO4 

(8%)/EC (12%) has the maximum ionic conductivity value which was supported by the lowest optical band gap 

and lowest intensity in photoluminescence spectroscopy near 400–450 nm [43]. Cross-linked trimethylolpropane, 

trimethylacrylate-based gel polymer electrolytes showed the ionic conductivity >10−3 S cm−1 at 25°C, and 

continuously increased with the increase of liquid electrolyte content with excellent electrochemical stability up 

to 5.0 V. The LiCoO2|TMPTMA-based GPE| graphite cells exhibit an initial discharge capacity of 129 mAh g−1 

at the 0.2°C and good cycling stability with around 83% capacity retention after 100 cycles [44]. By the 

plasticization of gelatin with LiBF4, and mixture of glycerol and LiBF4 was developed. It has been found that the 

effect of glycerol as a plasticizer was more important on the ionic conductivity results than the effect obtained by 

varying the lithium salt content. The ionic conductivity results showed that the samples were stable up to 160°C 

[45]. 

A biodegradable GPE using guar gum (GG) as the polymer matrix, LiClO4 as the doping salt and glycerol as the 

plasticizer showed an unusual tubular array type surface morphology. Highest ionic conductivity and lowest 

activation energy values were 2.2 × 10−3 S cm−1 and 0.18 eV, respectively [46]. 

Composite electrolytes 

The scalable ceramic-polymer composite electrolytes composed of Li6.4La3Zr1.4Ta0.6O12, poly (ethylene oxide), 

lithium bis(trifluoromethane)sulfonimide, and solid plasticizer succinonitrile presented a maximum conductivity 

of 1.22×10−4 S cm-1 at 30 °C exhibiting a broadened electrochemical stability window of 5.5 V [47]. A new kind 

of nanofibrous composite polymer electrolyte with lithium bis(oxalate)borate succinonitrile polyethylene oxide 

(LiBOB-SN-PEO) exhibited improved ionic transference number to 0.41. Excellent cycling and rate performance 

of the Li/LiFePO4 cells are resulted delivering a discharge specific capacity of 151.1 mAh·g−1 after 200 cycles 

under 60 °C and 124.1 mAh·g−1 after 70 cycles at 0.5 C. The cells achieved a superior high temperature- tolerance 

characteristic up to 170°C which is much higher than that (ca. 100°C) of traditional PEO-based electrolytes [48]. 

 

Hybrid electrolytes 

A different technique of blending functionalized ceramic particles into the polymer matrix was adopted to 

synthesize a homogeneous TiO2-grafted NHPE with a cross-linked branching structure comprised of ion-

conducting poly (ethylene glycol) methyl ether methacrylate (PEGMEM) and non-polar stearyl methacrylate 

(SMA) demonstrated good C-rate performance, as well as excellent cycling stability with an initial discharge 

capacity of 153.5 mAh g-1 and a capacity retention of 96% after 300 cycles [49]. Hybrid and Nanohybrid polymer 

electrolytes (NHPE) with ceramic particles have attracted significant attention owing to their improvement in 

electrochemical performance. The synthesis and the properties of a series of polymer electrolytes, composed of a 

hybrid inorganic-organic matrix doped with LiTFSI based on ring-like oligo-siloxane clusters, showed good 

thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8×10-5 Scm-1 at 30°C. 

The cell performances of one representative sample were shown. [50]. Poly (vinylidene fluoride-

hexafluoroprolene) (P(VDF-HFP))-based composite polymer electrolyte (CPE) membranes doped with the 

organic-inorganic hybrid particles poly(methyl methacrylate) -ZrO2 (PMMA-ZrO2) deliver excellent rate and 

cycling performance [51].  
 

Proton conducting electrolyte 

A proton conducting polymer electrolyte based on poly (ε-caprolactone) (PCL) complexed with different 

concentrations of ammonium thiocyanate (NH4SCN) salt with the ionic conductivity of 1.01×10−4 S cm−1. The 

correlation between free ions, ion aggregates and conductivity are obvious [23]. Carboxymethyl chitosan (C-CTS) 

was a water soluble binder for LiFePO4 cathode in Li-ion batteries. The electrochemical performances of LiFePO4 

cathode with C-CTS binder was investigated and compared with the conventional water-soluble sodium 
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carboxymethyl cellulose (CMC) and the commercial non-aqueous polyvinylidene difluoride (PVDF). LiFePO4 

cathode with C-CTS exhibited a comparable cycling performance, but better rate capability than that of CMC and 

PVDF, retaining 65% capacity of C/5 at 5°C rates as compared with 55.9% and 39.4% for CMC and PVDF, 

respectively. In addition, LiFePO4 cathode with C-CTS exhibited excellent cycling performance at 60°C, retaining 

91.8%/ 62.1% capacity after 80 cycles at 1 C/ 10 C, respectively [53]. 

 

Table 3: Reviews regarding different types of electrolyte, anode, cathode, separator used are categorized in this table 

 

 

  

Ref . 

No 

 

Title of the paper 

Components  

Reference Electrolyte Anode Cathode Separator 

54] Carboxylated polyimide 

separator with excellent 

lithium ion transport 

properties for a high-

power density lithium – 

ion battery 

Liquid electrolyte of 1M 

LiPF6 in ethylene 

carbonate/dimethyl 

carbonate/ethyl methyl 

carbonate 

Graphite  LiCoO2 Carboxylated 

polyimide 

 

Chun-Er Lin,  et al 

J. Mater. Chem A, 

2018, 6, 991 

55] 

 

 

Eco-friendly cellulose 

nanofiber paper – derived 

separator membranes 

featuring tunable 

nanoporous network 

channels for lithium-ion 

batteries 

Liquid electrolyte of 1M 

LiPF6 in ethylene 

carbonate-diethyl 

carbonate 

Graphite LiCoO2 CNP Separator Sang-Jin Chun, et al 

J. Mater. Chem., 
2012, 22, 16618 

56] 

 

 

Composite membrane 

with ultra-thin ion 

exchangeable functional 

layer: a new separator 

choice for manganese – 

based cathode material in 

lithium ion batteries 

Liquid electrolyte of 1M 

LiPF6 in ethylene 

carbonate-dimethyl 

carbonate 

Graphite Manganese 

– based 

cathode 

materials 

such as 

spinel 

LiMn2O2 

Ion 

exchangeable 

composite 

separator(Nf-

PP-Li) 

Junli Shi, et al 

J. Mater. Chem A, 
2015, 3, 7006 

57] 

 

 

 

 

 

An environmentally 

friendly and economic 

membrane based on 

cellulose as a gel polymer 

electrolyte for lithium ion 

Batteries 

Liquid electrolyte of 1M 

LiPF6 in ethylene 

carbonate/dimethyl 

carbonate/ethyl methyl 

carbonate 

Graphite LiFePO4 Methyl 

cellulose (MC), 

a gel polymer 

electrolyte 

 

Shiying Xiao,  et al 

 RSC Adv., 2014, 4, 

76 

58] 

 

 

 

A trilayer poly (vinylidene 

fluoride)/ polyborate/ 

poly(vinylidene fluoride) 

gel polymer electrolyte 

,with good performance 

for lithium ion batteries 

Liquid electrolyte of 1M 

LiPF6 in ethylene 

carbonate/dimethyl 

carbonate/ethyl methyl 

carbonate 

Graphite LiFePO4 Poly(vinylidene 

fluoride) 

(PVDF) and 

lithium 

polyacrylic acid 
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Backbone of electrodes 

Blended Electrodes 

Charge and discharge of lithium ion battery electrodes has been accompanied by severe volume changes. In a 

confined space, the volume cannot expand, leading to significant pressures induced by local micro structural 

changes within the battery. While volume changes appear to be less critical in batteries with liquid electrolytes, 

they will be more critical in the case of lithium ion batteries with solid electrolytes and they will be even more 

critical and detrimental in the case of all-solid-state batteries with a lithium metal electrode. Comparing and 

analyzing the volume changes occurring in state of the art electrode materials, based on crystallographic studies 

quantitatively followed that it was based on the evaluation of the partial molar volume of lithium as a function of 

the degree of lithiation for different electrode materials [68]. The electrochemical property of LiFeS in a Li ion 
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conductive glass showed two potential plateaus within the range 0≤x≤4, and is reversible. The reduction of FeS2 

by 4e- or LiFeS2 by 2e- did not proceed to form Fe metal acting as an electrode active material in a solid state 

lithium battery [69]. Carboxymethyl cellulose (CMC), a green and low-cost binder, has used to make lithium-ion 

battery composite electrodes containing the high voltage cathode material Li2MnO3–LiMO2. It indicated that 

CMC operates well at very high voltages (4.8 V) with an improved cycling stability as well as a very promising 

rate capability compared to the PVDF binder [70].The binder based on natural cellulose as a binder in ionic solvent 

making volatile solvent-free slurries which are then coated on typical battery current collectors showed a stable 

specific capacity of 123 mAh per gram of LiFePO4 at room temperature [71]. The binders with two types of 

galactomannan gum derived from plant seeds, guar gum (GG) tara gum (TG), for Li4Ti5O12 (LTO) negative 

electrodes were compared to typical carboxymethyl cellulose (CMC) binder. It exhibited better transport of 

lithium ions in LTO electrodes than CMC binder, a cellulose (linear polysaccharide) derivative, even though their 

binding capability was not as strong as CMC. It was found that the GG-containing LTO electrode resulted a high 

reversible capacity of 160.0 mAh g−1 at the 100th cycle with 1 C current rate, whereas the CMC-containing LTO 

electrode had a reversible capacity of 150.1 mAh g−1 [72]. 
 

Special cathodes 

A strategy for obtaining optimized compositions within this class of materials, exhibiting high capacity and energy 

density as well as good reversibility, by using a combination of low-valence transition metal redox and a high-

valence redox active charge compensator, as well as fluorine substitution for oxygen. Furthermore, a new 

constraint on high-performance compositions by demonstrating the necessity of excess Li capacity as a means of 

counteracting high-voltage tetrahedral Li formation, Li-binding by fluorine and the associated irreversibility was 

identified. A 10–12% of Li capacity was lost due to tetrahedral Li formation, and 0.4–0.8 Li per F dopant was 

made inaccessible at moderate voltages due to Li–F binding. A series of high-performance disordered oxyfluoride 

cathode materials based on Mn2+/4+ and V4+/5+ redox was succeeded [73]. Layered Ni-rich oxides (LiNixCoyMnzO2) 

exhibited high discharge capacity, high Li+ ion deintercalation/intercalation potential, and low cobalt content. Ni-

rich cathodes often suffer from poor cycling stability because of the serious cation mixing, and the poor 

interfacial/structural stability during the electrochemical process. It delivered a reversible discharge capacity as 

high as 197.4 mA h g-1 at C/10, and exhibits a capacity retention of 95.9%, 90.2% and 83.5% at C/3, 1◦C and 3◦C 

after 200 cycles at cut-off voltages of 2.7–4.4 V, respectively [74]. A nanoscopically ordered architecture of 

calcite-type MnCO3 nanocrystals mimicking hierarchical structures of biological CaCO3 in an organic gel matrix 

with a highly porous structure of spinel-type LiMn2O4 was produced as a cathode material consisting of connected 

LiMn2O4 nanoparticles provided high durability in a lithium insertion/extraction process at a high current density 

due to a high porosity for the electrochemical reaction and three-dimensional channels for ion diffusion. It has 

been reported that alginate which was extracted from brown seaweed as a polymeric binder for spinel LiMn2O4 

resolved the chronic issue upholding the feasibility and hence could be for emerging large-scale applications 

including electric vehicles [75].  

 

Conclusion 

The in-depth review on the research carried out in the field of Li- ion battery has facilitated a comprehensive 

understanding into the concepts, especially, with reference to energy storage and meeting energy demands, with 

an eye on environmental consciousness.  It has given the authors insight and motivation to indicate on 

identification of the research gap. This manuscript may serve as a ready reference for the future researchers to 

acquaint themselves on notable works in the area of renewable energy. 
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