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1. Introduction 

Alkaloids are compounds very interesting from different points of view because they present a wide range 

of pharmacological properties, for which, these species are highly used in therapy medicinal to control the pain 

while also present several side effects mainly as abuse drugs [1,2]. Recent structural studies on tropane alkaloids 

such as scopolamine, morphine, heroin, cocaine and tropane have evidenced interesting correlations among the 

properties of free base, cationic and hydrochloride species derived from these alkaloids [3-7].  

Other species with different rings in its structures, such as indol alkaloid, specifically N-(1H-indol-3-

ylmethyl)-N,N-dimethylamine, named gramine or the 4-bromo-2,5-dimethoxyphenethylamine derivative, known 

as 2C-B, also present similar biological activities despite of their clear structural differences [8,9]. In this work, 

we have studied the different configurations and structures of alkaloid (+) and (-)-lupinine together with their 

vibrational properties. These studies are important taking into account that numerous species of lupine (Lupinus 

spp.) are toxic and have biological effect on the nervous system. So far, these properties are not reported yet. The 

(+) and (-)-lupinine structures present a tertiary N atom in the quinozilidine rings with a hydroxyl group in Trans 

position in relation to ring. Previously, the absolute configurations of lupinine and its chemistry and physiology 

properties were studied [10-14] and then, the structure of this alkaloid was experimentally determined by X-ray 

diffraction by Koziol et al [15]. Both rings belonging to quinozilidine present chairs conformations, as in the 

tropane rings and their properties are known form long time [16-35]. Those authors have suggested that the OH 

group presents intra-molecular hydrogen bonds which could explain the broad band observed in the IR spectrum 

at 3170 cm-1 and, this way, they have not confirmed but have suggested that further spectroscopic investigations 

are necessary to explain the nature of the hydrogen bond in solution.  

On the other hand, the IR spectrum of lupinine was recorded in the 1951 year but the spectrum in that 

opportunity was not presented and only the band at 3400 cm-1 was assigned to OH stretching mode [16]. Posteriors 

studies on the IR spectrum of lupinine were later reported, in one of them the authors have found a correlation 
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between the stereochemistry of quinolizidine alkaloids and the IR spectra in the 2862-2600 cm-1 region [18] and, 

in the most recent work, only four bands of IR spectrum at 3419, 3389, 2820 and 1406 were identified and assigned 

[27]. Additional spectroscopic studies of lupinine based on 1H- and 13C-NMR [19-21,23], UV-visible [17,35] and 

Electronic Circular Dichroism (ECD) spectra [35] were also reported. Obviously, the theoretical structural studies 

on all possible configurations of lupinine are very important to elucidate the existence of an intra-molecular H 

bond with the structural requirement of the N---O distance should be about 2.6 Å, as was experimentally suggested 

by Koziol et al [15]. Hence, the aims of this work are: (i) to study all theoretical structures of chair conformations 

of (+) and (-)-lupinine in gas phase and in aqueous and in methanol solutions by using the hybrid B3LYP/6-31G* 

method [36,37], (ii) to study atomic charges, solvation and stabilization energies, molecular electrostatic potentials 

and topological properties at the same level of theory, (iii) to predict the reactivities and behaviours of those 

structures in both media by using the frontier orbitals and equations before reported [41-45] and finally, (iv) to 

perform the complete vibrational assignments of (+) and (-)-lupinine structures by using the scaled quantum 

mechanical force field (SQMFF) approach and the Molvib program. Here, the normal internal coordinates, 

infrared and Raman spectra and force fields of (+) and (-)-lupinine structures were predicted and compared with 

those published in the literature [27]. Additionally, the 1H- and 13C-NMR, Ultraviolet-visible and ECD spectra of 

both structures of lupinine were also predicted at the same level of theory and, later, compared with the 

corresponding experimental ones.  

2. Material and Methods 
The (+) and (-)-lupinine structures, named C0, C1a, C1b and C1c in accordance to the structures proposed 

by Halpern and Legenza [22] were modelled with the GaussView program [46] and, later these structures were 

optimized in gas phase and in aqueous and methanol solution with the Revision A.02 of Gaussian program [47] 

and the hybrid B3LYP/6-31G* method [36,37]. The (+)-lupinine structure corresponds to C0 while the other ones 

correspond to (-)-lupinine structures. All structures present chair conformations but C1c differ from the other ones 

in the position of OH group. In Figure 1 are given all conformations together with the atoms labelling and the 

identification of the two rings while Figure 2 shows clearly the different positions that adopt the OH groups in 

C1b and C1c. Thus, in C0, C1a and C1b, the OH group is oriented out-of-rings while in C1c the group is oriented 

towards the rings forming with the N2 atom an H bond of type O1-H31---N2.  

 

 
Figure 1: Molecular theoretical structures of all (+) and (-)-Lupinine forms, atoms labelling and identifications of their rings 

 
The solvent effects were studied with the integral equation formalism variant polarised continuum method 

(IEFPCM) while the solvation energies were predicted for with the universal solvation model [48-50]. The 

solvation energies were corrected by zero point vibrational energy (ZPVE) and by non-electrostatic terms while 

the volumes of all conformations were computed with the Moldraw program [51]. 
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Figure 2 : Molecular theoretical C1b and C1c structures of (-)-Lupinine showing the same chairs conformations and the 

different positions of OH groups.  
 

The NBO and AIM2000 programs [52-54] and Merz-Kollman (MK) charges [55] were employed to 

calculate atomic charges, bond orders, molecular electrostatic potentials, stabilization energies, and topological 

properties at the same level of theory. The frontier orbitals and the gap calculations were used to predict the 

reactivities of all structures, as suggested by Parr and Pearson [56] while their behaviours in both media were 

predicted at the same level of theory by using known descriptors [41-45,57]. The harmonic force fields and force 

constants were calculated by using the transferable scale factors, the normal internal coordinates with the scaled 

quantum mechanical force field (SQMFF) methodology and the Molvib program [38-40]. Here, energy 

distribution (PED) contributions ≥ 10% were used to perform the complete vibrational assignments. The Raman 

spectra predicted in activities were changed to intensities to obtain a better correlation by using recognized 

equations [58,59]. The 1H- and 13C-NMR spectra for all structures of lupinine were predicted by using the Gauge-

Independent Atomic Orbital (GIAO) method [60] considering to Trimethylsilane (TMS) as reference. 

Additionally, the ultraviolet-visible and ECD spectra of all structures of lupinine were predicted with Time-

dependent DFT calculations (TD-DFT) by using the same level of theory and the Gaussian 09 program [47]. Here, 

the predicted properties and the predicted spectraonly were compared for the most stable structures according to 

the suggested by Halpern and Legenza [22].  

3. Results and discussion 

Structures in both media 

Calculated total uncorrected and corrected by zero point vibrational energy (ZPVE) energies, dipole 

moments and volumes and their variations for the four structures of lupinine in gas phase and in aqueous solution 

by using the B3LYP/6-31G* method are summarized in Table 1.  

 
Table 1. Calculated total energies (E), dipole moments (µ) and volumes (V) of different configurations (+) and (-)- lupinine  

in gas phase and in aqueous solution. 
 

B3LYP/6-31G* Methoda 

Medium E (Hartrees) E ZPVE µ (D) V (Å3) ΔE(kJ/mol) 

(+) Lupinine C0 

GAS -522.4711 -522.1843 1.23 203.7 17.05 

PCM/Water -522.4820 -522.1954 1.58 201.9 8.66 

 (-) Lupinine C1a (2%)# 

GAS -522.4710 -522.1844 1.14 203.5 16.79 

PCM/Water -522.4814 -522.1952 1.58 202.8 9.18 

 (-) Lupinine C1b (9%)# 

GAS -522.4711 -522.1843 1.23 203.0 17.05 

PCM/Water -522.4820 -522.1954 1.58 203.7 8.66 

(-) Lupinine C1c (89%)# 

GAS -522.4788 -522.1908 2.76 201.3 0.00 

PCM/Water -522.4860 -522.1987 4.21 200.9 0.00 
a This work, #Populations suggested by Halpern and Legenza [22] 
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The results of Table 1 shows that both total energy values uncorrected and corrected by ZPVE for the C1c form 

in the two media have lower values than the other ones, this way, C1c is clearly the most stable than C0, C1a and 

C1b, as suggested by Halpern and Legenza [22] and as revealed by the calculations performed here. According 

the studies of Halpern and Legenza [22] the population’s % for C1a, C1b and C1c are 2, 9 and 89 %, respectively 

as indicated in Table 1. Here, our calculations predict that the populations of C1c in both media are approximately 

99.70 % indicating the presence only of this conformer in both media. Probably, the higher dipole moment values 

observed for C1c in both media justify these observations, as was also observed in other species [8,9,61]. 

All conformations show increase in the dipole moments values in solution but C1b presents volume expansion in 

this medium while slight contraction volumes are observed in the other ones. Here, the dissimilar positions of OH 

groups in the structures could explain the difference in the volumes and their variations in solution because the 

water molecules hydrate in different form both structures. In C0, C1a and C1b, the hydrated OH groups have 

greater freedom of movement while in the C1c conformation the group is more restricted due to the presence of 

the hydrogen bond OH---N. 

Corrected and uncorrected solvation energies by the total non-electrostatic terms and by zero point 

vibrational energy (ZPVE) for all forms of lupinine by using the B3LYP/6-31G* method can be seen in Table 2. 

The higher solvation energy value observed for C1a can be easily explained by the position of OH group and a 

greater freedom of movement of this group in this conformation which allows to it a higher hydration while in the 

C1c conformation the group is most restricted and, obviously less hydrated, as a consequence of H bond that form 

the OH group with the N atom. Hence, lower solvation energy value presents C1c. 

 
Table 2. Corrected and uncorrected solvation energies by the total non-electrostatic terms and by zero point vibrational 

energy (ZPVE) of lupinine in gas phase and in aqueous solution together with their volume variations by using the B3LYP/6-

31G* method. 

 

B3LYP/6-31G* methoda 

Solvation energy (kJ/mol) 
V (Å3) 

Medium Gun
# Gne Gc 

C0 
PCM/Water -29.09 6.73 -35.82 -1.8 

C1a 
PCM/Water -28.32 7.52 -35.84 -0.7 

C1b 
PCM/Water -29.09 5,64 -34.73 0.7 

C1c 
PCM/Water -20.73 11,57 -32.30 -0.4 

aThis work 

Gun
#= uncorrected solvation energy, Gne= total non-electrostatic terms, Gc= corrected solvation energies. 

 
Taking into account that all conformations of lupinine are weak bases their corresponding solvation energy 

values in aqueous solution were compared in Table 3 with the values reported for the free bases of scopolamine, 

morphine, heroin, cocaine and tropane alkaloids [3-5,9,64], cyclizine, promethazine (PTZ) [61,62] and 2C-B [8].  

The comparisons show that the different forms of lupinine have practically the same corrected solvation 

energies than gramine (-34.89 kJ/mol) and the S(-) form of PTZ (-36.07 kJ/mol) while the free base of heroin 

presents the most negative value (-88.67 kJ/mol) and, for this reason, it species has probably the higher solubility 

in water. The low Gc values of all free bases, as compared with the cationic species of gramine (-261.58 kJ/mol) 

or cocaine (-255.24 kJ/mol), justify the use of the cationic or hydrochloride species in pharmaceutical preparations 

[5,9]. 

  
Geometries of all species in both media 

The structure of the alkaloid lupinine was experimentally determined by X-ray diffraction by Koziol et al 

[15], hence, these values were compared in Table 4 with those theoretical corresponding for the two species most 

stable of (-)-lupinine, C1b and C1c in gas phase and in aqueous solucion by using the hybrid B3LYP/6-31G* 

method. The variations between experimental and theoretical values were evaluated by means of the root-mean-

square deviation (RMSD) values.  
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Table 3. Corrected solvation energies by the total non-electrostatic terms and by zero point vibrational energy (ZPVE) of 

lupinine in aqueous solution compared with other species by using the same method.  

 

B3LYP/6-31G* method 

Gc, Solvation energy (kJ/mol) 

Species Free base 

(+)-Lupinine C0a -35.82 

(-)-Lupinine C1aa -35.84 

(-)-Lupinine C1ba -34.73 

(-)-Lupinine C1ca -32.30 

Gramineb -34.89 

2C-Bc -49.31 

S(-)-Promethazined -36.07 

R(+)-Promethazined -17.87 

Cyclizinee -29.53 

Morphinef -60.91 

Cocaineg -71.26 

Scopolamineh -75.47 

Heroini -88.67 

Tropaned -12.55 
 

aThis work, bFrom Ref [9], cFrom Ref [8], dFrom Ref [61], eFrom Ref [62], fFrom Ref [3], gFrom Ref [5], hFrom Ref [64], 
iFrom Ref [4,61] 

 
Table 4. Comparison of calculated geometrical parameters for the two most stable species of (-)-lupinine in gas phase and 

in aqueous solution with the corresponding experimental ones. 

 

B3LYP/6-31G* Methoda 

Experimental b 
Parameters 

C1b C1c 

Gas Water Gas Water 

Bond lengths (Å) 

O1-C12 1.428 1.438 1.420 1.435 1.424 

C12-C4 1.536 1.534 1.544 1.539 1.534 

C4-C6 1.539 1.541 1.540 1.540 1.533 

C6-C9 1.531 1.531 1.533 1.532 1.514 

C9-C7 1.527 1.525 1.528 1.526 1.503 

C7-N2 1.468 1.472 1.475 1.479 1.472 

N2-C3 1.478 1.484 1.487 1.494 1.474 

C3-C4 1.551 1.552 1.552 1.551 1.536 

N2-C8 1.467 1.473 1.472 1.478 1.481 

C8-C11 1.528 1.527 1.526 1.525 1.518 

C11-C10 1.531 1.531 1.531 1.530 1.502 

C10-C5 1.531 1.531 1.531 1.531 1.509 

C5-C3 1.539 1.538 1.538 1.537 1.529 

O1-H31 0.968 0.971 0.981 0.986 0.980 

RMSDb 0.015 0.015 0.015 0.015  

Bond angles (º) 

H31-O1-C12 107.5 106.8 106.4 105.4 109 

O1-C12-C4 108.2 107.8 114.8 114.3 109.3 

C12-C4-C6 111.8 111.9 113.1 113.3 111.7 

C12-C4-C3 112.9 114.9 113.0 112.9 112.4 
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C4-C6-C9 110.8 111.1 111.5 111.9 110.7 

C6-C9-C7 110.3 110.2 110.2 110.3 109.8 

C6-C4-C3 109.9 110.0 109.8 110.1 110.4 

C9-C7-N2 112.7 112.6 112.8 112.7 112.7 

C7-N2-C3 112.3 111.0 111.3 110.5 110.5 

C7-N2-C8 108.7 107.9 108.6 108.0 108.3 

N2-C3-C4 111.1 112.6 109.8 110.0 111.7 

N2-C3-C5 110.7 110.5 110.7 110.6 109.7 

N2-C8-C11 112.9 113.2 112.9 113.1 112.3 

C8-N2-C3 112.3 110.6 112.3 111.2 110.4 

C8-C11-C10 110.0 110.3 110.1 110.2 110.6 

C11-C10-C5 109.0 109.2 109.1 109.3 110.2 

C10-C5-C3 112.2 111.8 112.4 112.2 112.5 

C5-C3-C4 112.5 112.8 112.3 112.4 112.9 

RMSDb 0.9 1.0 1.6 1.6  

Dihedral angles (º) 

O1- C12-C4-

C3 
-175.4 171.4 -54.9 -52.3 174.8 

O1- C12-C4-

C6 
-50.9 -62.3 70.7 73.8 50 

N2-C3-C4-C6 -55.9 -53.9 -57.5 -56.9 54.6 

C7-N2-C3-C4 57.1 56.1 59.5 59.9 -56.5 

C6-C9-C7-N2 54.9 57.0 54.1 54.6 -58.0 

RMSDb 184.7 100.2 135.4 134.7  
aThis work, bRef [15] 

 

Good correlations are observed in the RMSD values of bond lengths (0.015 Å) and angles (1.6-0.9 º) while 

the dihedral angles show the higher variations (184.7-100.2 º) where C1b in aqueous solution present the lower 

value (100.2 º). Note that C1c in both media present the dihedral O1-C12-C4-C6 angles with positive signs while 

in C1b the values are negative due to the different positions of OH groups in both conformations. The signs of 

other four dihedral angles are predicted different from the experimental ones, hence, the great difference observed 

in the RMSD values. Evidently, due to the good correlations observed in bond lengths and angles for C1c, it 

structures can clearly be used to perform the vibrational studies. 

 

Atomic charges, molecular electrostatic potentials and bond orders studies 

It is very important for the two most stable forms of lupinine in both media to analyse if the atomic charges, 

molecular electrostatic potentials and bond orders are affected by the change of orientation of OH group. Thus, 

three types of atomic charges were studied by using the B3LYP/6-31G* method which are Merz-Kollman (MK), 

Mulliken and natural population (NPA) charges. Molecular electrostatic potentials and bond orders studies were 

also calculated for C1b and C1c.  

Thus, the different charges are presented in Table S1 only for the O, N and C atoms because these atoms 

present the higher variations. The variations in the charges for C1b and C1c can be easily seen in Figures S1 and 

S2, respectively where both figures show that the Mulliken and NPA charges present practically the same 

behaviours in both media. However, the behaviours of MK charges in the two forms and in both media are 

different from other ones. Analysing first the three charges on C1, obviously the lower values are observed on the 

O1 and N2 atoms in the two media but the MK charges show on practically all atoms less negative values (with 

exception of C12 atoms in both media) than the other ones while the NPA charges present the most negative 

values, with exception of C3 atoms in the two media.  

The evaluation of all charges on the atoms corresponding to the C1c form show different behaviours in 

both media, especially in the MK charges on the C3 atoms. Hence, the changes of orientation of OH group 

generate notable increase on the magnitude and sign of C3 atoms in both media. In C1c, the signs of MK charges 

on C3 atoms are positive in both media while in C1b present negative signs.  
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If now the molecular electrostatic potentials (MEP) [55] on all atoms of both forms are evaluated from 

Table 5 we observed practically the same variations for C1b and C1c, where the most negative values are observed 

on the O atoms, as expected because these atoms are the most electronegative than the other ones. Thus, the 

following tendency it is observed in the MEP values: O > N > C > H where clearly, the H31 atoms belong to OH 

groups of both forms present the less negative values and, for these reasons, they are the most labile than the other 

ones. Analyzing the MEP mapped surfaces of C1b and C1c in gas phase from Figure S3 we can easily observe 

the different colorations on these surfaces. Hence, the strong red colours are regions indicative of nucleophilic 

sites; the blue colours correspond to electrophilic sites while the green colours indicate clearly inert o neutral 

regions.  

Finally, from Table S1 the bond orders (BO) expressed as Wiberg indexes by using the NBO program [52] 

were analysed for both C1b and C1c forms of lupinine in the two media. Observing the values from Table S1 we 

can see only differences in the BO values for the O, N and H atoms while for all C atoms the values remain 

practically constants. As evidenced by MEP values, the H31 atoms belong to OH groups of C1b and C1c show 

the lower values (0.779-0.778 a.u.) and, obviously, they are the most labile. 

 

Natural Bond Orbital (NBO) study 

The main donor-acceptor energy interactions were calculated for the two forms of lupinine C1b and C1c in 

both media by using the B3LYP/6-31G* level of theory which are presented in Table 5.  

The results for both forms show only * and n* interactions. In the * interactions are involved 

transitions from bonding O-H and C-H orbitals toward different anti-bonding C-C, O-C, N-C, C-H orbitals while 

in the n* interactions the transitions go from lone pairs of O1 and N2 atoms toward anti-bonding C-C, C-H 

and O-H orbitals, as in Table 6 is detailed. Due to the different positions of OH groups in C1 and in C2, the 

following C4-H14*C12-H30, C7-H20*C9-H23, C12-H29*C4-C6 and LP(2)O1*C12-H29 

transitions are only observed in C1 while the transitions C4-H14*O1-C12, C12-H29*C3-C4, C12-

H30*C4-C6, LP(1)O1*C4-C12 and LP(1)N2 *O1-H31 only are observed in C1c. Therefore, the total 

energy values evidence clearly higher stabilities for C1c in both media than C1b. Besides, C1c present higher 

stability in solution than in gas phase. Evidently, the position of OH group for C1b in solution could probably 

change to that observed in C1c. 

 

Atoms in Molecules (AIM) studies 

With the Bader’s theory of Atoms in Molecules (AIM) it is possible to predict different inter or intra-

molecular, ionic, covalent or H bonds interactions calculating the topological properties in the bond critical point 

(BCPs) or ring critical points (RCPs) [53] with the AIM2000 program [54]. These parameters are: the electron 

density, (r), the Laplacian values, 2(r), the eigenvalues (1, 2, 3) of the Hessian matrix and, the |λ1|/λ3 

ratio by using the B3LYP/6-31G* method. Later, if 1/3< 1 and 2(r) >0, the interaction is clearly ionic or 

highly polar covalent (closed-shell interaction). Hence, in Table S2 are presented the topological properties for 

the C1b and C1c forms of (-)-lupinine in both media. Figure S4 shows the molecular graphics for C1b and C1c 

in gas phase with the geometry of all their BCPs and RCPs by using the B3LYP/6-31G* method. Thus, C1b 

presents a hydrogen H29---H15 bond interaction in both media and, as a consequence a new RCP it is observed 

(RCPN1). On the contrary, in C1c due to the particular position of OH group in this conformation, three new H 

bonds interactions are observed in gas phase (H23---O1, H31---N2 and H30---H15) while in solution the H30---

H15 bonds disappear. Analysing deeply the values from Table S2, the absence of the H30---H15 bonds interaction 

in solution is clearly justified by the low value of density in the BCP in gas phase. For C1c, the density of the 

H31---N2 interaction increases in solution because decreases the distance between both involved atoms from 

2.166 Å in gas phase to 1.931 Å in solution. This AIM analyses for both stable forms of (-)-lupinine show the 

higher stability of C1c due to the three and two new H bonds interactions, in gas phase and in aqueous solution, 

respectively, as compared with C1b. These results are in agreement with those observed by NBO studies. 

Frontier orbitals and quantum global descriptors studies 

The predictions of reactivities for the C1b and C1c conformations of (-)-lupinine in both media are very 

important taking into account that both species presents properties characteristics of alkaloids. Thus, the gap 

values were calculated from their frontier orbitals, as originally was proposed by Parr and Pearson [56]. After 

that, with the gap values and by using known equations the chemical potential (μ), electronegativity (χ), global 

hardness (η), global softness (S), global electrophilicity index (ω) and global nucleophilicity index (E) descriptors 

were computed by using the hybrid B3LYP/6-31G* level of theory in order to predict the behaviours of those two 

forms of (-)-lupinine in both media [3-9,41-45]. Thus, in Table S3 are presented the gap and descriptors values 

for both stable forms of (-)-lupinine in the two media together with the corresponding equations. 
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Table 5. Main delocalization energies (in kJ/mol) for the most stable forms C1b and C1c of (-)-lupinine in gas phase and in 

aqueous solution by using B3LYP/6-31G* calculations. 

Delocalization 

B3LYP/6-31G*a 

C1b C1c 

Gas Water Gas Water 

O1-H31 *C4-C12 11.95 11.62   

 C3-H13*C4-C12 14.71 15.97 13.59 13.63 

 C3-H13*C5-H15 12.00 12.21 11.24 11.20 

 C4-H14*O1-C12   18.89 19.10 

 C4-H14*N2-C3 17.31 19.10 17.39 17.72 

 C4-H14*C6-C9 13.17 13.04 13.50 13.63 

 C4-H14*C12-H30 11.41 12.67   

 C5-H15*C10-H26 11.66 11.41 11.62 11.54 

 C5-H16*N2-C3 16.85 16.85 17.64 17.89 

 C5-H16*C10-C11 11.66 11.79 11.75 11.83 

 C6-H17*C4-C12 14.46 14.09 14.17 14.30 

 C6-H17*C9-C23 11.91 12.16  11.33 

 C6-H18*C3-C4 12.58 12.37 12.83 12.92 

 C6-H18*C7-C9 12.33 12.29 12.29 12.25 

 C7-H19*N2-C3 14.67 14.13 14.34 13.88 

 C7-H19*C6-C9 12.46 12.58 12.46 12.54 

 C7-H20*C9-H23 11.45 11.70   

 C8-H21*C11-H28 11.66 11.87 11.45 11.54 

 C8-H22*N2-C3 14.84 14.00 14.88 14.13 

 C8-H22*C10-C11 12.67 12.79 12.58 12.58 

 C9-H23*C7-H20 11.29 11.41 11.58 11.58 

 C9-H24*N2-C7 17.22 17.39 17.89 18.14 

 C9-H24*C4-C6 13.00 13.13 13.08 13.25 

 C10-H25*C3-C5 13.38 13.21 13.67 13.63 

 C10-H25*C8-C11 12.04 12.16 12.21 12.25 

 C10-H26*C11-H28 11.33 11.29 11.33 11.37 

 C11-H27*N2-C8 17.01 17.64 17.68 18.18 

 C11-H27*C5-C10 11.70 11.83 11.70 11.83 

 C11-H28*C8-H21 11.41 11.24 11.54 11.54 

 C11-H28*C10-H26 11.37 11.62 11.29 11.20 

 C12-H29*C3-C4   15.30 15.13 

 C12-H29*C4-C6 13.08 15.97   

 C12-H30*C4-C6   13.71 13.75 

E* 392.58 399.53 381.59 393.84 

LP(1)O1*C4-C12   15.68 15.26 

LP(2)O1*C12-H29 24.83 24.49   

LP(2)O1 *C12-H30 22.61 19.06 35.74 32.48 

LP(1)N2 *O1-H31   48.99 58.23 

LP(1)N2 *C3-H13 30.22 28.38 25.67 23.83 

LP(1)N2 *C7-H20 30.76 29.71 26.46 25.29 

LP(1)N2 *C8-H21 31.22 29.42 27.80 25.92 

ELP* 139.64 131.06 180.33 180.99 

ETOTAL 532.22 530.59 561.92 574.83 
aThis work  

 

The calculated gap values for the two forms of (-)-lupinine were compared with values reported for free 

base species of alkaloids and antihistaminic species in Table S4 [5-7,9-14]. The high gap values for C1b and C1c 

of (-)-lupinine, as compared with the other species, suggest the low reactivities of both forms of lupinine than the 

other species. Evidently, the S(-)- form of promethazine is the most reactive in the two media. Thus, Table S4 

shows that all free base species have lower gap values than those observed for C1b and C1c of (-)-lupinine.  
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Vibrational study 

So far, the experimental infrared spectrum of lupinine is only available in the higher wavenumbers region, thus, 

Skolik et al [18] have studied and published this spectrum from 2840 to 2600 cm-1 while Omeje et al [27] have 

reported and asigned for lupinine only four bands located at 3419 (br, s OH), 3389 (CH2-NCH2), 2820 (NCH2 

stretching) and 1406 cm-1 (-CH2-). Here, Figures 3 and 4 show the comparisons between the predicted spectra for 

C1b and C1c of (-)-lupinine with the corresponding experimental taken from Skolik et al [18] in different regions 

while in Figures 5 and 6 are presented only the predicted IR and Raman spectra for C1b and C1c in the 4000-0 

cm-1 region. In this study, both C1b and C1c conformers were considered because the difference in energy between 

both forms in notably reduced from 20.20 kJ/mol in gas phase to 10.49 kJ/mol in solution. Both structures of (-)-

lupinine were optimized with C1 symmetries and are expected 87 normal vibration modes for each form. All 

modes are active in both spectra. The presence of various bands in the different regions observed in experimental 

IR spectra of Figures 3 and 4 suggests probably the presence of both forms of (-)-lupinine in the solid phase.  

 

 
 

Figure 3: Experimental infrared spectrum of lupinine in the solid phase taken from Ref [18] compared with the predicted for 

C1b and C1c structures of (-)-Lupinine in gas phase in the 3200-2600 cm-1 region by using the hybrid B3LYP/6-31G* method 

 

Figure 4: Experimental infrared spectrum of lupinine in the solid phase taken from Ref [27] compared with the predicted 

infrared spectrum for C1b and C1c structures of (-)-Lupinine in gas phase in the 3200-2600 cm-1 region by using the hybrid 

B3LYP/6-31G* method. 
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Figure 5: Predicted infrared spectrum for C1b and C1c structures of (-)-Lupinine in gas phase by using the hybrid 

B3LYP/6-31G* method. 

 

Figure 6: Predicted Raman spectrum for C1b and C1c structures of (-)-Lupinine in gas phase by using the hybrid 

B3LYP/6-31G* method. 
 

On the other hand, in Figure 5 it is observed differences between the intensities of two bands predicted by 

calculations for both forms and those observed from the experimental spectra. Obviously, such differences could 

be attributed to the calculations because in gas phase are not considered the crystalline packing forces observed 

in the solid state. The SQMFF methodology and the Molvib program were employed to calculate the harmonic 

force fields of C1b and C1c at the same level of theory by using transferable scale factors and the corresponding 

normal internal coordinates [38-40]. Hence, with the scaled force fields and potential energy distribution (PED) 

contributions higher or equal to 10% the complete vibrational assignments were performed for both forms of (-)-

lupinine. The observed and calculated wavenumbers and assignments for the two species of lupinine in gas phase 

and in aqueous solution are summarized in Table 6. Here, Table 6 shows clearly the differences in the assignments 

for both forms of (-)-lupinine and, also in the two media studied. Then, some most important assignments are 

discussed below. 

 
Table 6. Observed and calculated wavenumbers (cm-1) and assignments for the most stable forms C1b and C1c of (-)-lupinine in gas phase and in aqueous 

solution.  

 

 B3LYP/6-31G* Methoda 

Exp. GasC1b GasC1c WaterC1b WaterC1c 

IRc SQMb Assignmentsa SQMb Assignmentsa SQMb Assignmentsa SQMb Assignmentsa 

3419 3602 O1-H31 3367 O1-H31 3591 O1-H31 3262 O1-H31 

 2993 aCH2(C6) 2993 aCH2(C9) 2970 aCH2(C6) 2979 aCH2(C9) 

 2964 aCH2(C5) 2969 aCH2(C5) 2963 aCH2(C5) 2965 aCH2(C5) 

 2961 aCH2(C9) 2959 aCH2(C11) 2959 aCH2(C9) 2959 aCH2(C11) 

 2956 aCH2(C11) 2952 aCH2(C10) 2956 aCH2(C11) 2958 aCH2(C8) 

 2947 aCH2(C10) 2949 aCH2(C8) 2951 aCH2(C8) 2955 aCH2(C7) 

 2940 aCH2(C8) 2945 aCH2(C6) 2950 aCH2(C12) 2952 aCH2(C10) 
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 2935 aCH2(C7) 2944 aCH2(C7) 2947 aCH2(C10) 2946 aCH2(C6) 

 2930 aCH2(C12) 2930 sCH2(C9) 2945 aCH2(C7) 2934 sCH2(C12) 

 2922 sCH2(C9) 2925 aCH2(C12) 2924 sCH2(C9) 2932 sCH2(C9) 

 2917 sCH2(C5) 2924 sCH2(C5) 2921 sCH2(C5) 2925 sCH2(C5) 

 2914 sCH2(C11) 2917 sCH2(C11) 2916 sCH2(C6) 2918 C4-H14 

 2911 sCH2(C6) 2903 sCH2(C10) 2915 sCH2(C11) 2917 sCH2(C11) 

 2902 sCH2(C10) 2903 C4-H14 2915 sCH2(C12) 2907 sCH2(C10) 

 2899 C4-H14 2890 sCH2(C6) 2904 sCH2(C10) 2903 sCH2(C6) 

 2889 sCH2(C12) 2861 sCH2(C12) 2900 C4-H14 2892 sCH2(C12) 

2820 2781 sCH2(C8) 2806 sCH2(C8) 2800 sCH2(C8) 2827 sCH2(C8) 

 2770 sCH2(C7) 2797 sCH2(C7) 2796 sCH2(C7) 2824 sCH2(C7) 

 2745 C3-H13 2769 C3-H13 2767 C3-H13 2801 C3-H13 

 1493 δCH2(C12) 1490 δCH2(C12) 1479 δCH2(C12) 1480 δCH2(C12) 

 
1475 

δCH2(C8) 

δCH2(C7) 1474 δCH2(C7) 1466 δCH2(C7) 1462 

δCH2(C8) 

 
1463 

δCH2(C6) 

δCH2(C7) 1464 δCH2(C6) 1453 δCH2(C8) 1454 

wagCH2(C12) 

O1-H31 

 
1459 

δCH2(C10)  

δCH2(C6) 1461 

δCH2(C10) 

1450 

wagCH2(C12) 

1449 

δCH2(C11) 

 
1452 

δCH2(C8)  

δCH2(C5) 1452 δCH2(C8) 1444 δCH2(C8) 1445 

δCH2(C7) 

 1448 δCH2(C10) 1450 δCH2(C11) 1438 δCH2(C6) 1439 δCH2(C6) 

 
1446 

δCH2(C9)  
δCH2(C6) 1446 δCH2(C9) 1436 

δCH2(C10) 
δCH2(C11) 1437 

δCH2(C10) 

 
1439 

δCH2(C11) 

δCH2(C5) 1445 wagCH2(C12) 1433 δCH2(C9) 1431 

δCH2(C5) 

 1435 wagCH2(C12) 1440 δCH2(C5) 1430 δCH2(C5) 1430 δCH2(C9) 

 
1424 

wagCH2(C7)  

wagCH2(C8) 1424 wagCH2(C8) 1421 wagCH2(C7) 1417 

wagCH2(C7) 

 1395 wagCH2(C5) 1397 wagCH2(C5) 1393 wagCH2(C5) 1393 wagCH2(C5) 

 
1386 

wagCH2(C7)  

wagCH2(C6) 1392 wagCH2(C9) 1385 wagCH2(C8) 1384 

wagCH2(C9) 

ρ'C4-H14 

 
1379 

wagCH2(C8) 

wagCH2(C7) 1383 

wagCH2(C7) 

1380 

wagCH2(C9) 

1381 

wagCH2(C8) 

 
1372 wagCH2(C11) 1378 

O1-H31 
wagCH2(C6) 1371 wagCH2(C11) 1373 

wagCH2(C6) 

 
1370 

wagCH2(C10) 

wagCH2(C9) 1375 wagCH2(C11) 1366 

wagCH2(C9) 

ρ'C3-H13 1372 

wagCH2(C11) 

 

1361 wagCH2(C6) 1368 

wagCH2(C10) 

wagCH2(C9) 

ρ'C3-H13 1358 wagCH2(C6) 1361 

wagCH2(C9) 

 

 1356 ρ'C3-H13 1361 wagCH2(C10) 1356 wagCH2(C10) 1357 wagCH2(C10) 

 1347 ρ'C4-H14 1354 ρ'C3-H13 1341 ρ'C4-H14 1350 ρC3-H13 

 

1325 

ρC4-H14 

C3-C4 1338 

ρC3-H13  
ρC4-H14 

C3-C4 1321 

ρC4-H14 

C3-C4 1332 

ρC4-H14 

 1312 ρC3-H13 1331 ρCH2(C6) 1307 ρC3-H13 1327 ρ'C3-H13 

 1291 ρCH2(C7) 1297 ρCH2(C8) 1288 ρCH2(C7) 1291 ρCH2(C8) 

 

1282 

ρCH2(C5)  

ρCH2(C11)  

ρCH2(C8) 1286 ρCH2(C5) 1277 ρCH2(C8) 1278 

ρCH2(C5) 

ρCH2(C7) 

 
1261 

ρCH2(C8)  

ρCH2(C7) 1271 ρ'C4-H14 1258 ρCH2(C5) 1266 

ρ'C4-H14 

 
1258 

ρCH2(C10) 
ρCH2(C6) 1263 ρCH2(C8) 1249 ρCH2(C6) 1258 

ρCH2(C8) 
ρCH2(C11) 

 1237 ρCH2(C12) 1253 ρCH2(C6) 1238 ρCH2(C12) 1246 ρCH2(C6) 

 1200 O1-H31 1217 ρCH2(C12) 1197 O1-H31 1218 ρCH2(C12) 

 
1187 ρCH2(C9) 1199 ρCH2(C9) 1181 

ρCH2(C9) 

ρCH2(C11) 1184 

ρCH2(C9) 

 
1176 ρCH2(C6) 1178 

ρCH2(C11) 
ρCH2(C7) 1172 ρCH2(C6) 1173 

ρCH2(C11) 

 1173 ρCH2(C10) 1174 ρCH2(C10) 1168 ρCH2(C10) 1168 ρCH2(C10) 

 1111 N2-C7 1109 N2-C7 1105 N2-C7 1101 C4C3C5 

 1104 N2-C8 1105 N2-C8 1099 N2-C7 1096 N2-C7 

 
1089 N2-C8 1089 N2-C8 1085 N2-C8 1080 

N2-C8 

C8-C11 

 1071 C4-C6 1070 C4-C6 1070 C3-C5 1067 C3-C4 
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1063 

C5-C10 

C3-C5 1067 

C3-C5 

1058 

C5-C10 

1059 

C3-C5 

 1053 C3-N2 1048 C3-N2 1043 C3-N2 1035 C3-N2 

 1039 O1-C12 1035 O1-C12 1025 C9-C7 1027 O1-C12 

 1021 O1-C12 1017 C9-C7 1014 C4-C12 1016 C9-C7 

 1009 C9-C7 994 O1-C12 1001 O1-C12 983 C5-C10 

 987 R1(A1) 984 R1(A1) 982 wCH2(C7) 979 O1-C12 

 972 C3-C5 964 wCH2(C9) 966 C3-C5 958 wCH2(C9) 

 
939 

wCH2(C9) 

wCH2(C7) 918 

wCH2(C12) 

C5-C10 936 

wCH2(C9) 

916 

wCH2(C12) 

 
923 

wCH2(C12)  

C8-C11 903 wCH2(C12) 921 

wCH2(C12) 

C8-C11 902 

wCH2(C12) 

 873 C6-C9 891 wCH2(C8) 871 C6-C9 885 wCH2(C8) 

 
855 wCH2(C5) 859 

C10-C11 

C6-C9 851 

wCH2(C5) 

857 

C6-C9 
 

 
840 

C10-C11 

wCH2(C8) 834 C8-C11 841 

C10-C11 

wCH2(C8) 835 

C10-C11 

 
812 

wCH2(C6) 

wCH2(C7) 817 

wCH2(C6) 

wCH2(C7) 811 

wCH2(C6) 

wCH2(C7) 814 

wCH2(C6) 

wCH2(C7) 

 
800 

wCH2(C10) 

C4-C6 805 wCH2(C10) 801 wCH2(C10) 805 

wCH2(C10) 

 
778 wCH2(C11) 771 

wCH2(C11) 

wCH2(C9) 777 wCH2(C11) 770 

wCH2(C11) 

 
767 

wCH2(C5)  

C4-C12 756 C4-C12 767 C4-C6 756 

C4-C12 C4-C6 

 
714 

C3-N2 

wCH2(C5) 745 

wCH2(C5) 

718 

C3-N2 

745 

C3C4C12 

wCH2(C5) 

 639 C3C4C12 705 C3-N2 656 C3C4C12 701 C3-N2 

 
562 

wCH2(C9)  

C6C4C12 598 O1-H31 551 R1(A1) 579 

O1-H31 

 528 R1(A2) 538 R1(A1) 539 R1(A2) 530 R1(A1) 

 487 R3(A2) 527 R1(A2) 480 C6C4C12 526 R1(A2) 

 468 R2(A2) 482 R2(A2) 472 R2(A2) 480 R2(A2) R2(A2) 

 
421 R2(A1) 453 

R2(A2) 

C6C4C12 421 R3(A2) 453 

R2(A2) 

 
382 R3(A1) 424 

R3(A2) 

R3(A1) 380 R2(A1) 425 

R3(A1) 

 
350 R1(A1) 408 

R2(A1) 

353 

R1(A1) 

408 

R2(A1) 

C4C12O1 

 
346 R1(A2) 368 R1(A1) 347 R1(A2) 370 

R1(A1) 

C6C4C12 

 
311 

C4C3C5 

C4C12O1 353 R2(A1) 316 R3(A1) 348 

R3(A2) 

 
308 R2(A1) 329 R1(A2) 302 

C4C12O1 

C4C3C5 335 

R1(A2) 

 267 R3(A1) 307 R3(A1) 272 R3(A1) 307 R3(A1) 

 241 O1-H31 274 C4C3C5 240 O1-H31 269 R1(A1) 

 
207 

C3C4C12 

R2(A2) 240 

C3C4C12 

C4C12O1 214 C3C4C12 235 

R3(A2) 

 185 R3(A2) 180 R3(A2) 185 R3(A2) 187 R3(A2) 

 
124 

R2(A1)  

R3(A2) 148 wO1-C12 140 R2(A1) 148 

R2(A1) 

 89 R2(A2) 105 R2(A2) 84 wO1-C12 105 R2(A2) 

 56 wO1-C12 92 O1-H31 78 R2(A2) 99 wO1-C12 

 

Abbreviations: , stretching;  deformation in the plane;  deformation out of plane; wag, wagging; torsion; R, deformation ring R, torsion ring; , 

rocking; w, twisting; , deformation; a, antisymmetric; s, symmetric; (A1), Ring 1; (A2), Ring 2. aThis work, bFrom scaled quantum mechanics force field, 
cFrom Ref [27], dFrom Ref [13]. 

 

Assignments. 

4000-2500 cm-1 region. This region is typical of stretching modes corresponding to the OH, C-H and CH2 groups 

of C1b and C1c, as assigned in other species with similar groups [3-9,41-45,61-63]. All these modes are assigned 

as predicted the theoretical calculations and, as reported in the literature for compound with similar groups [3-

9,41-45,61-63]. For C1b and C1c, there is two aliphatic C3-H13 and C4-H14 groups where, this latter group 

belong to chiral C4 atom which is predicted in gas phase C1b at 2899 cm-1 and, in C1c, at 2900 cm-1. In solution, 

these modes for C1b and C1c are shifted at 2903 and 2918 cm-1, respectively. The other C3-H13 stretching mode 
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are predicted 2801 and 2747 cm-1, hence, these can be assigned to the broad IR band at 2820 cm-1. The two 

antisymmetrical and symmetric stretching modes expected for C1b and C1c are predicted by SQM calculations 

between 2993 and 2770 cm-1, therefore, the broad IR band at 2820 cm-1 can be also assigned to these vibration 

modes. The symmetry of these modes cannot be defined because the experimental Raman was not published yet 

but, we know that the most intense bands in this spectrum should be assigned to symmetric modes.  

1500-1000 cm-1 region. In this region are expected the C-O, C-N and C-C stretching modes, deformation, rocking 

and waging modes of CH2 groups and, also the OH deformation and C-H rocking modes of both forms [3-9,41-

45,61-63]. Hence, from 1493 to 1430 cm-1 can be assigned to the CH2 deformation modes while IR bands in the 

1454/1356 and 1331/1168 cm-1 regions can be assigned to waging and rocking modes of these groups, 

respectively. The two C-H rocking modes are predicted between 1384 and 1266 cm-1 while the OH deformations 

in gas phase and in solution are predicted at 1200/1197 and 1454/1378 cm-1, respectively. On the other hand, the 

C-O, C-N and C-C stretching modes can be assigned from 1111 up to 701 cm-1.  

1000-56 cm-1 region. The CH2 twisting modes are predicted in this region together with the OH torsion modes, 

C-C-C, C-C-O deformations rocking, deformation and torsion modes of both rings and other skeletal modes 

detailed in Table 6. Hence, all these modes can be assigned as predicted by SQM calculations modes and, as 

reported for species containing similar groups [3-9,41-45,61-63]. 

 

Force Fields 

The harmonic force fields for C1b and C1c of (-)-lupinine in both media were employed to calculate the 

corresponding scaled force constants with the B3LYP/6-31G* method because these factors are useful to predict 

the features of different bonds. As detailed in section computational details, the harmonic force fields were 

computed with the SQMFF methodology [38] and the Molvib program [40]. Thus, in Table 7 are summarized 

the scaled force constants for C1b and C1c in both media. In general, in both conformations are observed the same 

force constants values, however, notable differences are observed in the force constants related to the C-OH 

groups, as expected because the positions of these groups are the differences between both conformers. Thus, both 

f(C-O) and f(O-H) force constants present different values in gas phase and in solution. The f(C-O) force 

constant for C1c is higher than the corresponding to C1b in gas phase while in this same medium the f(O-H) 

force constant of C1b is slightly higher than the corresponding to C1c. In solution, the same relation is obtained 

having the f(C-O) force constant of C1c higher value than the corresponding to C1b while the f(O-H) force 

constant of C1b is higher than the corresponding to C1c. On the other hand, the f(CH2) force constants for both 

species are different in a same medium but they have approximately the same values in solution, as observed in 

Table 7.  

 
Table 7. Scaled internal force constants for both C1b and C1c forms of (-)-lupinine in different media by using the 

B3LYP/6-31G* method. 

Force 

constant 

Lupinine 

Gas phase Aqueous solution 

C1b C1c C1b C1c 

f(C-H) 4.42 4.43 4.44 4.51 

f(C-O) 4.87 5.09 4.61 4.73 

f(O-H) 7.25 6.32 7.21 5.92 

f(C-C) 4.03 4.02 4.04 4.05 

f(C-N) 4.80 4.31 4.33 4.18 

f(CH2) 4.68 4.69 4.70 4.71 

f(CH2) 0.85 0.75 0.84 0.74 

 

Units are mdyn Å-1 for stretching and mdyn Å rad-2 for angle deformations 
aThis work  

 

NMR study 

The 1H and 13C NMR chemical shifts for all forms of (+) and (-)-lupinine were predicted in aqueous 

solution, benzene and CDCl3 by using the GIAO [41] and the B3LYP/6-31G* methods while the experimental 

available were taken from Ref [19-21,23,64,65]. Observed and calculated 1H chemical shifts can be seen from 

Tables S5 to S8 together with the comparisons among experimental and theoretical values expressed by means 

of the RMSD values. Table S5 shows reasonable correlations for the hydrogen nucleus of both C0 and C1a forms, 

especially with values between 0.44 and 0.47 ppm while better correlations were found for the most stable C1b 

and C1c forms of (-)-lupinine from Table S6, with values between 0.54 and 0.22 ppm. On the other hand, when 
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the C nucleus for all (+) and (-)-lupinine forms are compared from Tables S7 and S8 the RMSD values increase 

to 8.8 and 7.0 ppm. Thus, the better concordances are observed for the C1c form in gas phase and in aqueous 

solution, as shown in Tables S7 and S8. Note that the chemical shifts for the H31 atoms belonging to OH groups 

of C1b and C1c were not included in Tables S5 and S6 because the values were predicted with negative signs 

indicating probably that these atoms are involved in H bonds interactions. Evidently, the slight differences in the 

results can be rapidly attributed to the 6-31G* basis set different from that recommended 6-311++G** basis set. 

Electronic spectra 

The ultraviolet-visible spectra for all (+) and (-)-lupinine forms of lupinine were predicted in methanol 

solution by using the B3LYP/6-31G* method and they are compared in Figure S5. In Table S9 are presented the 

positions and intensities of only two bands observed in each spectrum compared with the experimental bands 

reported for lupinine in methanol solution by Anderson and Steckler and Omeje et al from Ref [17,22]. The 

predicted UV-Vis spectra evidence the presence of all forms of lupinine including the most stable C1c form of 

(-)-lupinine despite in this latter form the amine is forming an intra-molecular H bond while the amine groups are 

free in the other ones. The two bands predicted by calculations and experimentally observed in the experimental 

spectrum, are associated to transitions *, n(O)* and n(N)*, as supported by NBO analysis.  

 

Electronic Circular Dichroism (ECD) 

The ECD spectra of all (+) and (-)-lupinine forms in methanol solution were predicted by using the 

B3LYP/6-31G* method and they are compared in Figure 7. The graphic representations were performed by using 

the software GaussSum [66]. four theoretical spectra show two bands in the 100-300 nm in different positions, 

hence, in C0 the two bands are observed in 197 and 208 nm where the first present a negative Cotton effect and 

the other one is positive, in C1b both present negative Cotton effect and are observed in 202 and 228 nm while in 

C1b is observed one band negative in 207 nm. In C1c, the two bands present negative Cotton effect in 200 and 

209 nm. Hence, only the C1b form presents in methanol solution similar to experimental ECD spectrum reported 

by Ishave et al [35]. Hence, in a methanol solution clearly is present the C1b form of (-)-lupinine probably due to 

that in C1c the OH group presents an intramolecular H bond.  

 

 
 

Figure 7: Comparisons between the predicted ECD spectrum for all (+) and (-) forms of lupinine in methanol solutions by 

using B3LYP/6-31G* level of theory. 
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Conclusions 
In this work, four (+) and (-)- molecular structures of quinolizidine alkaloid lupinine, named C0, C1a, C1b 

and C1c, were theoretically determined in gas phase and in aqueous solution by using hybrid B3LYP/6-31G* 

calculations. This way, the C0 structure correspond to the (+) form while the C1a, C1b and C1c structures 

correspond to the (-)-lupinine forms. The studied structural, electronic, topological and vibrational properties have 

evidenced that the most stable C1c form present the higher populations in both media while the predicted infrared, 

Raman, 1H-NMR and 13C-NMR and ultra-visible spectra suggest that other forms in lower proportion probably 

could be present in, water, chloroform and benzene solutions, as evidenced by the low RMSD values observed in 

the 1H- and 13C-NMR chemical shifts.  

The C1c form presents the lower corrected solvation energy in water while the NBO and AIM studies 

suggest for this form a high stability in both media.  

The frontier orbitals studies reveal higher gap values for C1c form of (-)-lupinine in both media, as 

compared with heroin, morphine, cocaine, scopolamine and tropane alkaloids, suggesting a lower reactivity for 

this alkaloid.  

The harmonic force fields, force constants and the complete vibrational assignments for the 87 normal 

vibration modes expected for the most stable C1b and C1c forms of (-)-lupinine are reported here for first time. 

In addition, the predicted ECD spectra of all (+) and (-)-lupinine forms in methanol solution evidence 

clearly that the C1b forms is present in the solution because its spectrum presents a negative Cotton effect as 

observed in the experimental one. 
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