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1. Introduction 

 

         Atmospheric particulate pollution requires particular attention in areas with extreme temperatures and that 

are subject to annual fluctuations in weather conditions, for several reasons. For instance, atmospheric stagnation 

(lower dispersion) and slow chemical transformations during colder months increase mass concentrations of 

particles and levels of Volatile Organic Compounds (VOCs) [1, 2]. High relative humidity (RH) increases aerosol 

mass levels through absorption of water vapor by inorganic species/precursors and their subsequent oxidation to 

form secondary aerosols [3-5]. Large-scale burning of agricultural wastes and combustion of large amounts of 

coal for winter heating release a wide spectrum of semi volatile and nonvolatile components, such as Polycyclic 

Aromatic Hydrocarbons (PAHs), elemental carbon (EC), and organic carbon (OC), to air [6].  Rapid temperature 

inversions during spring and winter trap pollutants in the lower layer of the atmosphere, leading to high pollution 

levels [4, 7]. Specific weather conditions, such as high solar radiation in summer, favor formation of secondary 

aerosols from chemical reactions such as oxidation of NO2, NOx, and VOCs (precursors of secondary organic 

aerosols (SOAs)) to semi volatile and nonvolatile components, leading to an increase in particle mass 

concentrations [3, 8, 9].   

          Exposure to particulate matter, especially to fine particles (PM2.5), has been associated with several 

potentially-deleterious health effects, such as bronchitis and pneumonia in children [10], increase in respiratory 

mortality [11], cardiovascular effects [12-14], and pulmonary inflammation  [15, 16], and DNA damage or 

cytotoxicity [17, 18].  
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        Broadly speaking, the fine particles found indoors are results of outdoor-infiltrated and indoor- generated 

particles as well as the secondary formation/ chemical transformations occurring indoors [19, 20]. The 

relationships between the indoor and outdoor PM2.5 mass concentrations and its associated contents are rather 

complex[21], which are investigated through different approaches. One of the widely used and easily 

understandable methods of addressing this relationship is the estimation of indoor/outdoor (I/O) ratios [22-24]. 

Values of I/O well below one, indicates the insignificant influence/absence of indoor sources, while values greater 

than 1, may suggests existence of indoor sources[25].  The second commonly applied method is the calculations 

of infiltration factors(FINF), through estimating the FINF from a regression analysis [26-29],  or using the I/O ratio 

of (SO4
2-) under the assumption that there are no indoor sources of sulfate in the studied sampling sites[30, 31].  . 

        PLS regression is superior to PCA [32]and multiple linear regression (MLR)[33], and may provide useful 

information about the apportioning and I/O relationships of PM2.5.    Briefly, take   I × K as a matrix denoted Y, 

where I observations and K dependent variables, while I × J matrix denoted X, where I observations and J 

independent variables. The aim of PLS regression is predicting Y from X and describing their common structure. 

PLS regression detects components from X, which are also relevant for Y. It searches for a set of components 

(known as latent vectors) that performs a simultaneous/concurrent decomposition of Y and X with a constraint 

that these components explain as much as possible of the covariance between Y and X. Computing these latent 

vectors has another advantage of  solving  the problem of Multicollinearity[34].  

         On the other hand, NMDS analysis  is presumed to give better description of  indoor-outdoor connections 

between inorganic contents of PM2.5 since it relies on certain data matrices such as Pearson’s correlation matrix 

[35, 36].  NMDS perform reduction in the dimensionality of data through reconstructing a low-dimensional 

coordinate set. That is, NMDS tries to represent pairwise dissimilarity between objects in a low dimensional space. 

The distance between objects and their locations on the x axes or y axes is very meaningful.  In addition, the 

NMDS plots visually illustrate sub clusters, therefore support results obtained by other multivariate techniques 

[37, 38]. Last but not least, there are other potentially valuable methods for studying the influence of outdoor 

pollution on indoor air quality including Generic programming[39], and multivariate prediction through principal 

component regression (PCR)[40]. 

           To our knowledge, few studies have investigated and apportioned sources of PM2.5 in complex situations 

and severe cold zones [41]. Harbin city is one such case; the city is surrounded by agricultural land where large-

scale biomass burning takes place during late summer and at the beginning of winter. The area is also characterized 

by extremely low temperatures. Such low temperatures, coupled with continuous high vehicle emissions, are 

expected to result in high particulate air pollution in the lower layer of the atmosphere. There are also several 

additional factories (such as pharmaceutical plants).   

2. Material and Methods 
2.1. Study area and sampling 

Harbin city, the capital of Heilongjiang province, is located in the northeast part of mainland China at 125º42ʹ–

130º10ʹ E and 44º04ʹ– 46º40ʹ N[42]. Weather conditions are characterized by extremely cold winter temperatures 

(average winter temp.~ [-14)]) that last for six months (mid-October to mid-April) [43]. Spring usually occurs 

between April and May and is a transitional period between winter and summer.   Annual temperatures range 

from -30 °C to +30 °C [42, 44] and intermittent rainy days occur almost every week during summer, with annual 

mean rainfall of 520 mm [42]. Winter heating is usually used from October 20 to April 20. 

  Samples were collected using Laoying, 2030 intelligent flow sampler (qingdao laoshan, Applied Technology 

Research Institute, peoples’ republic of China). Samples were collected on 12-hour basis, firstly, to estimate 

daytime and nighttime variations then to calculate the 24-h concentrations of PM2.5.  Four sampling sites were 

selected (three residential houses and one office). For the outdoor measurements, samplers were placed on top 

roofs, while for indoor measurements, samples placed in living rooms and an office.  All the selected sampling 

sites include no smokers and non-cooking activities during the period of the study.  A total of 176 sample collected 

on quartz filters on basis of 22 sample from each site, each season (88 sample during winter and 88 sample in 

summer). Samples were first thermally treated in oven for 6-8 hours at 450 ºC degree.   Before conducting 

gravimetric analysis, samples were subjected to neutralization in desiccators for 24-48h under controlled 

laboratory conditions (35 ± 5 relative humidity and (25 ± 5 °C). Eighteen blank samples were treated the same as 

the real samples for the purposes of quality control.  

 

2.2 Chemical analysis 

Carbonaceous content (OC, EC) of PM2.5 was analyzed using a Thermal/Optical Carbon Analyzer (Model 2001, 

Desert Research Institute, Atmoslytic Inc., Calabasas, CA, U.S.A) using IMPROVE_A protocol (Interagency 
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Monitoring of Protected Visual Environments) [45, 46]; this provided concentrations of OC and EC based on the 

thermal optical reflectance (TOR) method.  A 0.53 cm2 circular punch from each sample was analyzed [47, 48]. 

The temperature program of the IMPROVE_A protocol used for analysis is explained in detail in the literature 

[47-49]. Trace metals were first digested by closed vessel microwave-assisted acid digestion using nitric acid 

(HNO3), aided by aqueous hydrogen peroxide (H2O2-30% (w/w)[50], before being analyzed with a quadrupole 

inductively coupled plasma-mass spectrometer [ICP-MS, X series 2, ThermoFisher, Inc.US]. 

For water-soluble ion analysis, one quarter of each sample was ultrasonically extracted. Each piece of filter was 

extracted twice. Each time, 20 ml of ultrapure water were added to the sample in a glass tube, with this then 

transported to an ultrasonic water bath (at 30 ºC for one h). The water for extraction was purified using NANOpure 

Diamond, Model D111911, Barnstead International, USA. All extracts were filtered through 0.45 μ filters. 

Samples were then analyzed using an ion chromatography system (ICS-90; from Dionex, Therom scientific, 

Inc.U.S), following an approach described in the literature [51].  

 

2.3 Non-metric Multi-Dimensional scaling 

      As a prerequisite to non-metric multi-dimensional scaling (NMDS) analysis, a data matrix with the same 

number of rows and columns (squared matrix) is required. There are three common types of matrices for NMDS 

analysis including,  a dissimilarity matrix using for example Bray-Curtis distances[52], similarity matrix and 

Pearson’s correlation matrix where the latter type is used for NMDS analysis in this study[35, 36].  The starting 

configuration was Standard Guttman-Lingoes, with minimum and maximum iteration of 6 and 100, respectively. 

The task of Kruskal's NMDS which was set to one, is to attempt minimizing what is known as "stress".  As stated 

by De Blast, et al.2010, the parameter “stress” indicates the extent of the distortion of distances’ monotony in the 

MDS plot. In this study, the NMDS ordinations were performed for concentrations of  inorganic chemical species 

of all sampling sites and times using STATISTICA software version10 (StatSoft Inc., Dell Software, Tulsa, OK, 

74104 USA).   

 

2.4 Partial least square (PLS) regression 

        Partial least square (PLS) regression was done based on NIPALS algorithm (nonlinear iterative partial least 

squares) using STATISTICA software. The validation was done with leave-one-out approach of cross-validation 

to estimate prediction errors. This is done by fitting a PLS model into n − 1 samples and making a prediction of 

the y(dependent variable)value for the omitted sample (yˆ) (i.e. one sample is removed at a time while model is 

formed on remaining samples). When this is performed for every sample in the dataset, a predicted residual error 

sum of squares (PRESS) is then estimated for that model as in Eq. (2-3)[53]. PLS algorithm searches for a model 

with lowest PRESS value to be chosen. That is, if the obtained results showed low value of PRESS this indicates 

accuracy and validity of the results. It is therefore presumed that cross-validation, optimize the number of PLS 

components [54].  

                                        PRESS      =    ∑ (𝑦𝑖 − ŷ𝑖)2𝑛
𝑖=1                             Eq. (2-3) 

The underlying principles of PLS are also discussed elsewhere in the literature [55-57]. 

 

2.5Calculations of I/O ratios and FINF 

        In this study, prior to application of NMDS and PLS, the indoor-outdoor relations of PM2.5 were first 

investigated through estimation of PM2.5 I/O ratios and calculating the infiltration factors(FINF), which in turn 

estimated via two approaches: through  calculating the FINF from a regression analysis using Eq.(4-1) below, with 

more details given elsewhere [26-29]. Secondly, using sulfate (SO4
2-) as a reference marker under the assumption 

that there are no indoor sources of sulfate in the studied sampling sites. More details on using sulfate for FINF 

estimation ( Eq. (4-2)) which is simply the I/O ratio of (SO4
2-) is provided elsewhere [30, 31].   

                                            Ci  =  FINFCa+Cig  =  Cog+Cig                                               Eq. (4-1) 

𝐹𝐼𝑁𝐹             = 
𝑆𝑢𝑙𝑓                  𝑪𝒊

𝑺𝒖𝒍𝒇

𝑪𝒂
𝑺𝒖𝒍𝒇Eq. (4-2) 

Where: Ci indoor PM2.5 concentration; Ca ambient PM2.5 concentration Cig indoor-generated PM2.5; Cog outdoor-

generated PM2.5. Ci
sulf is indoor sulfate concentration; Ca

sulf is ambient sulfate concentration.    
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3. Results and discussion 

3.1 Estimation of indoor/outdoor ratios of PM2.5 and FINF 

In this study, indoor and outdoor PM2.5 contents showed fair resemblance in the distributions (Fig.3.1), which are 

likely driven by infiltration of outdoor air and absence of indoor chemical transformations that may alter the 

compositional profile of PM2.5. This claim is also supported by a fact that, photolysis (reactions via the action of 

light) is expected to be low indoors[20]. In reality, I/O ratios of PM2.5 are affected by several factors such as 

meteorological parameter (ambient temperature, RH, wind etc.) and building structure [58-60]. The  I/O ratios 

calculated in the present study were almost similar to those estimated in different parts of the world (see Table 

3.1). our findings agreed also with results of a relatively recent large-scale review, where I/O ratios were reported 

to be around the unity (1) for European cities and ranged between 1.2-2.5 for US cities, with the higher I/O ratios 

in the latter case are attributed to indoor sources mainly to indoor smoking[61]. The I/O relations and calculations 

are well discussed elsewhere[62, 63].   I/O ratios of individual chemical species showed that, Cr, Co, Mn, Ba, and 

Pb are the species with higher I/O ratios, in partial agreement with findings of previous studies [64-67].           

 

 

mass and associated contents2.5 . 3.1 I/O ratios of PMFigure 

According to regression analysis (Fig 3.2), slightly higher mean  FINF (0.35) in summer  than winter  (0.27) was 

reported and the average indoor-generated PM2.5 equal to 27.7 and 17.1 for summer and winter respectively. It is 

also indicated that, the correlation between indoor and outdoor PM2.5 was moderate during summer (R2=46%) 

compared to low (R2=27%) in winter. The regression analysis has therefore, confirmed the slightly higher 

infiltration during summer compared to winter, that estimated by indoor/outdoor ratios.  On the contrary, the FINF 

estimated by the I/O ratio of  SO4
2- was suggested to be invalid since its values were inconsistently high and 

disagree with the results of regression analysis (mean I/O SO4
2- = 0.6 for summer and 0.5 for winter).  

         Based on the FINF estimation also, PM2.5 mass levels spatial homogeneity has been reported across the four 

sampling sites, in an agreement with evidence from the literature [21, 68]. This homogeneity in patterns of PM2.5 

distributions is principally due to absence of cooking and indoor smoking as stated earlier. It is also partially 

explained by a fact that, all the selected sampling sites are naturally ventilated and no any sort of artificial air 

conditioning is used that may affect the particles’ deposition or resuspension in the indoors, with more details on 

this matter is mentioned elsewhere [69-71]. However, a precaution has to be taken that; considerable spatial 

variability could be expected in urban areas where some parts of the cities are significantly impacted upon by 

PM2.5 point sources or uneven blown of wind from multiple directions [72, 73]. 
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2.5. 3.2 Regression of indoor vs. outdoor PMFigure 

Table 3.1 comparison of I/O ratios of different studies 

PM2.5  I/O ratios  Types of microenvironments Places reference 

0.7 (average) Urban residential houses Harbin, China This study 

Ranged  0.76 - 1.13 Urban residential houses Agra, India  [70] 

0.94 (average) Urban residential houses Guangzhou, China [71] 

Ranged 0.2-4.7 Urban residential houses Greater Cincinnati, USA [72] 

0.74 (average) Urban residential houses Bologna, Italy [73] 

1.01 (average) Urban residential houses Agra, India [74] 

1.02 (average) Urban residential houses and schools Stockholm, Sweden [75] 

1.2 (average) Suburban residential houses Melbourne, Australia  [76] 

Ranged 0.9-1.32 Classrooms Chennai, India [77] 

0.81   (average) Office buildings and classrooms  Beijing, China  [78] 

0.69 (average) Office buildings  Milan, Italy [79] 

Ranged 0.36-1.08 Public facilities (restaurants, libraries, etc.) Beijing, China [22] 

Ranged 0.8.-2 Confined school building  Wroclaw, Poland [80] 
 

3.2 Evaluation of infiltration and similarity between indoor and outdoor PM2.5 using NMDS 

         Non-metric multidimensional scaling (NMDS) analysis based on correlation matrix was performed, first, to 

confirm the estimated I/O ratio results. Secondly, to test whether patterns of PM2.5 and associated inorganic 

contents are changed due to factors such as secondary formation, weather conditions, and possible intermittent 

emission sources during winter and summer. Finally, to visualize the similarity between indoors and outdoors in 

terms of distributions of individual inorganic species.  The parameters for the NMDS 2-dimensional solution, 

were similar to those mentioned in the literature[37]. Briefly, maximum number of iterations = 20, the  number 

of runs with real data = 100 (there were no runs with randomized data), stability criterion  set to 0.00001 (over 

the last 15 iterations) , and initial step length  was 0.20.    

          NMDS plots generated for inorganic contents of PM2.5 for the indoors and outdoors are showed in Fig.3.3. 

During winter, the first observable trend is that, the total indoor PM2.5 mass was associated with traffic related 

markers (Cd, Zn, EC, and Pb) while the total outdoor PM2.5 mass linked to these traffic markers and to OC, Cl, 

where the latter two species together indicates biomass burning, with the Cl is considered an excellent indicator 

of biomass. It was obvious that, during winter, the outdoor distribution of the inorganic contents of the fine 

particles was separated from that of the indoor, with clear clustering of source markers. Six clusters were identified 
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for both indoors and outdoors with no overlapping. Traffic source with the above mentioned tracers, coal 

combustion indicated by Cr, Co, Sr, Ba, and Ni, was placed towards the negative corner of axis 1 for the outdoor 

PM2.5 while laid on the positive site of axis 2 for the indoor PM2.5. Biomass burning identified by Cl, OC, along 

with SO4
2-, and NO3

-, while the latter two species were laid near each other indicating secondary formation as 

well.  The distance between indoor Mn and outdoor Mn was the longest among all species, with this marker 

showed no clear connection with the other markers, implying that it has been affected by unique factors that stated 

earlier in chapter three.  Unexpectedly, the typical soil tracer, Ti neighbored V for the data of indoor and outdoor 

PM2.5. 

         

 

 
Note: The sign “*” indicates outdoor measured species. 

 

Figure. 3.3   NMDS 2-dimensional solutions for winter and summer 

On the contrary, during summer, the compositional profiles showed heterogeneous patterns and were substantially 

different from that of winter. With the exception of traffic-related markers which showed two clear clusters, all 
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other tracers revealed different patterns.  Overall, the distances between the same species of outdoors and indoors 

were closer, for instance, indoor SO4
2- placed not far from outdoor SO4

2-, and the indoor NO3
- laid on a side close 

to outdoor NO3
-,  suggesting that, SO4

2- and NO3
- were not influenced by the same factors. The distance between 

indoor Mn and outdoor Mn become shorter, while Cl, OC of outdoor and indoor were overlapped/closer compared 

to winter time. The coal combustion tracers were split up into two subclusters. One cluster showed Sr neighboring 

Ba and the second sub cluster included Cr, Co and Ni.  Last but not least, indoor Cu loaded on the negative end of 

axis 1, relatively far from outdoor Cu on the positive end of axis 2. These results suggest existence of more 

industrial activities in summer affecting trends of Cr, Co, Ni and Cu where these species are also simultaneously 

emitted from industrial plants[85]. It is possible that, the obvious association between indoor and outdoor fine 

particles, was partly due to a fact that,  the studied buildings are naturally ventilated that results in more exchange 

of air, unlike in  mechanically ventilated buildings as indicated by Gupta and Cheong, (2007) [58]and Riain, et al. 

(2003)[60],  in agreement with finding of another related study[86]. 

3.3 Confirmatory analysis and source apportionment with Partial Least Square regression 

   PLS regression was conducted to support NMDS results, to apportion the emission sources and most 

importantly, to detect the “variables of importance” (VIPs).  PLS was done based on NIPALS algorithm 

(nonlinear iterative partial least squares) and  leave-one-out method of cross-validation, at 95% confidence level. 

The underlying principles of PLS are discussed elsewhere in the literature [55-57].  Fig.3.4 illustrates the PLS 

findings, including the loading plots and VIPs.  

          To begin with, for winter, the PLS showed interesting results by confirming existence of traffic, biomass 

burning, and coal combustion as the major pollution sources, explaining approximately 30%, 22%, and 13% of 

the variance in outdoor PM2.5 and   25%, 18%, and 11% for indoor PM2.5, respectively. Major ions (SO4
2- and NO3

-

) formed two clusters that in turn, attached to another two clusters classified as biomass burning sources (see 

Fig.3.4), implying that these two ions resulted from both secondary aerosol formation and biomass burning as 

well. It has to be noted also that, PLS revealed more overlapping of the PM2.5 outdoor sources with the sources of 

indoor PM2.5, unlike NMDS that showed distinct clusters of sources. For instance, coal combustion source of  

PM2.5 measured outdoor, overlapped with coal combustion of indoor measured PM2.5, with a similar trend for 

traffic source. In addition, outdoor Mn source (metallurgical sources) neighbored indoor Mn.  Therefore, the 

overall results of NMDS and PLS indicated fair link between the indoor and outdoor PM2.5.  In fact, this link is 

explained by absence of cooking, and indoor smoking, the most powerful determinants of indoor particles’ levels 

[21, 87-90], although there are other factors such as cleaning activities [91] and the occupancy (living in or using 

a building), that accelerate resuspension of particles [92]. 

         For summer, with the exception of traffic-related markers that gathered to form two distinct clusters for the 

indoor PM2.5 and outdoor PM2.5, all other emission sources revealed overlapping. The biomass burning source for 

outdoor PM2.5 is suggested to be the same biomass burning source of indoor fine particles, as indicated in Fig3.4. 

interestingly, the major ions (SO4
2-, NO3

-) assumed to be influenced by different factors since NO3
- placed far 

from SO4
2- in the PLS loading plot. This may imply some sort of chemical transformation during summer having 

more impact on PM2.5 compared to winter.  Last yet importantly, coal related species were dispersed over a wider 

range and positively linked to axis 1 and negatively to axis 2, confirming also that  coal- related tracers (Co, Cr, 

Sr, Ba and Ni) are emitted from similar sources. 

         As part of PLS algorithm, variable importance plots are generated which show the variables significantly 

influenced trends of fine particles. Variables with VIP values greater than the unity are classified significant.  

These variables are not necessarily the species of high influence on the particles’ total mass; rather these are the 

most important determinants of the spatiotemporal variations in the fine particles. For winter, these variables 

included OC, EC, NO3
-, SO4

2-, Zn, Cd, Pb, Mn, and Bi, while for summer the same variables in addition to Ni, 

Cu, Cl, and Sr were detected (see Fig.3.5). This finding suggest four things; first, traffic as indicated by Cd, Zn, 

Pb, and EC is a serious pollution source throughout the entire sampling period. Second, since coal burning-related 

tracers are showed low VIPs in winter, hence, heating systems, the major sector contributing to coal-related 

emissions, are assumed to emit almost the same levels of emissions throughout the different months during winter, 

i.e. less influence on PM2.5 variability in winter. Third, since Cl, a typical marker of biomass burning, has high 

VIP value of 1.4 for summer compared to winter, it suggests intermittent emissions from biomass during the 

former period. Fourth, nitrate and sulfate are both less abundant indoors, in agreement with an evidence from the 

literature which related this to the absence of reactive species such as ozone and free radical reactions indoors 

[93]. 
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Note: The sign “*” indicates outdoor measured species. 
 

Figure. 3.4 PLS loading plots for (a) winter and (b) summer 

 

The consistently high contribution from traffic that detected by both PLS and NMDS, is therefore, important for 

some reasons. Firstly, the combustion related emissions particularly from vehicle exhaust are more potent in 

causing adverse health effects compared to those from non-combustion process, because they contain host of 

inorganic and organic materials [20, 90]. Secondly, traffic is generally considered the most significant outdoor 

source of aerosols in countries with higher industrial activities, accounting for more than 50% of the total source 

contributions[20]. Traffic-related atmospheric pollution remained a crucial target issue for the public health 

officials[91], because it affects not only the physical and chemical aspects of the particles, but also their 

toxicological characteristics [92]. 
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(a) wintertime  

 
(b) Summertime         

Note: The sign “*” indicates outdoor measured species. 

Figure. 3.5 Values of variable of importance (VIPs) for (a) winter and (b) summer 

Conclusion  

  This study was intended to determine the chemical characteristics of PM2.5 and to investigate its spatial and 

temporal trends and to identify the possible emission sources of PM2.5 in Harbin city, China. Different 

conventional (FINF and I/O ratios) and advanced analytical methods (NMDS and PLS regression) were applied.  

The relationships between indoor and outdoor PM2.5 and its contents are investigated through  NMDS, and PLS 

regression simultaneously. These two methods together, provided better explanation of the negative and positive 

relationships between indoor and outdoor PM2.5 and possible effects of factors such as type of sources, existence 

of significant indoor emissions, and effects of house characteristics.  

During winter, distinct clusters of inorganic tracers are identified, however, coal combustion related species 

and traffic markers were overlapped between indoor and outdoor. This implies that, in winter outdoor sources 

were different from indoor ones with the exception of traffic and coal combustion sources. During summer, 

chemical transformation in the air could be a reason behind the heterogeneity of distribution of inorganic contents 

and that, SO4
2- and NO3

- were not influenced by the same factors.  

Traffic, coal combustion, biomass burning, and industrial emissions are major emission sources of inorganic 

contents of PM2.5 in general, with the secondary aerosols,  metallurgical processes and Ca-enriched source (from 

building construction) being principal sources during summer.  It is suggested that, secondary aerosol formation 

and resuspension of soil dust have high impact on PM2.5 mass  in summer while coal combustion and biomass 

buringing cause more pollution during early winter. 
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Concurrently, three methods for investigating infiltration of fine particles and its inorganic contents into indoors 

are performed to give a valid estimation of the amount of indoor-generated PM2.5. These methods are the I/O 

ratios, FINF calculation using SO4
2- and FINF estimated through regression analysis. The compositional profiles of 

PM2.5 of indoors resembled that of outdoors, with   the infiltration of outdoor PM2.5 being slightly high (FINF = 

0.35) in summer than winter (FINF = 0.27). in addition, homogeneity in patterns of PM2.5 distributions was 

suggested and attributed to absence of cooking and indoor smoking.  

  Generally, concentrations of   levels of PM2.5 are exceeded both the national and international air quality 

standards which need a permanent solution. It is presumed also that, air pollution is affected by local sources 

rather than by long-range transport of air masses.  
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