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1. Introduction 
Superparamagnetique ultrafine particles have received much attention since several decades due to the wide 
possibilities of their technological applications, and to fundamental questions on the basic of some observed 
phenomena [1-9]. 

The effect of an external constant magnetic field, H, on the longitudinal relaxation time, τ, of the 
ferromagnetic nanoparticales having simple uniaxial anisotropy may be studied by calculating the smallest 
nonvanishing eigenvalue λ1 (the escape rate) of the Fokker-Planck equation (FPE). 

Relaxation time of ultrafine particles with uniaxial symmetry has been evaluated, from Brown’s model, 
by Aharoni and Eisenstien [10, 11], Jones and Srivastava [12] and Bessais et al. [13], with the hypothesis that the 
external magnetic field is zero or parallel to the magnetization easy direction axis (e3). Later, these calculations 
were done by Coffey et al. and Mørup et al. in the case where the external magnetic field was supposed to be 
oblique H(ψ) [14-16]. Recently, we have extended calculations to the case of an aleatory magnetic field H(ψ,φ) 
[17]. 

In this work, we used the mathematical method of discretisation to solve the asymptotic analytical formula 
of the superparamagnetic relaxation time under the effect of a randomly oriented magnetic field for weakly 
interacting ultrafine particles. 
 
2. Mathematical model and method 
2.1. Brown’s model 
Fokker-Planck equation governs the time evolution of the density of magnetic moment orientation W(θ,ϕ,t) on a 
sphere of radius Ms (the mean magnetization of a nonrelaxing particle), the orientation of the magnetic moment 
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M being specified by the spherical polar coordinates (θ,ϕ). For simple uniaxial anisotropy the ratio of the potential 
energy vV to the thermal energy KBT may be expressed by the following equation: 
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In this equation, β=v/KBT, v denoting the volume of the nanoparticule; α=Kv/KBT represents the 
anisotropy parameter, KBT is the thermal energy; K the anisotropy constant, ξ=vMSH/KBT is the external field 
parameter, r, e3 and eH are unit vectors in the direction of the magnetization vector M, the internal anisotropy (or 
easy) axis, and H respectively. 321H ecos esinsinecossinHHe ψ+φψ−φψ==  

The Néel equation time, which is the time required for the magnetization to surmount the potential barrier 
given by Eq (1), is related to λ1 by the following equation [18, 19]: 
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where λ1 is the smallest non-vanishing eigenvalue of the FPE and  τΝ is the diffusional relaxation time given by 
[19]. 
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In this equation a=ηγMs, with units such that ‘‘a’’ is a dimensionless damping parameter, in which η is 
the phenomenological damping constant from Gilbert’s equation [20], and γ denotes the gyromagnetic ratio. 

 
2.2. Numerical calculation of the smallest non-vanishing eigenvalue λ1of the FPE  
The probability density distribution, W(θ,ϕ,t), of an assembly of ultrafine ferromagnetic particles of volume v, 
with uniaxial anisotropy in the presence of an applied field H(ψ,φ) satisfies the FPE, and is given, in spherical 
coordinates, by [19] : 
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In this equation Δ is the Laplacian in spherical coordinates and b = a γ/(1+a2)Ms. 
In the case of uniaxial symmetry, the anisotropy energy (Eq (1)) may be written as : 

φψϕθξ+φψϕθξ−ψθξ−θα=β sinsinsinsincossincossin coscossinV 2    (6) 

The potential of Eq. (6) is non-axially symmetric unless if ψ=0, so the gyroscopic terms expressed in       
(a-1) in Eq. (5) will not vanish since (a) is of the order of 0.2 to 1. We will ignore these terms in a first 
approximation [15]. Eq. (4) takes then the following form : 
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where τΝ=β/2b denotes the diffusional relaxation time. 
λ1 is calculated by expanding the solution of Eq (7) as a series of spherical harmonics whence the calculation 
reduces to a matrix eigenvalue problem. This is described in detail in Ref [17]. 
 

3. Asymptotic expression for λ1 

Consider a monodomain particle (i) of uniaxial symmetry, with magnetic moment µι . The other particles of the 
system act on (i) via a dipolar field Bi oriented at an angle ψ with e3 considered as the easy magnetization axis 
(figure 1) : 
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Figure 1 : The field and magnetization orientations in terms of spherical polar coordinates. 

 
The anisotropy energy can be expressed as: 

ii
2 BsinvKE

!!
µ−θ=       (8) 

With the following variables change ξ = µι Bi/KB T, this energy may be written in the following form: 
[ ]φψϕθ−φψϕθ+ψθξ−θα=β sinsinsinsincossincossincoscossinE 2   (9) 

We can express the global minimum energy and the local maximum energy in the limit of weak 
interactions in which ξ <<1. In this limit, minimum and maximum values are obtained for θ ≈0 and 90 
respectively. 

When θ is near to zero, sin θ ≈ tg θ  
Expressing the derivative of Eq. 9 with respect to θ, (∂βΕ/∂θ)=0, gives: 

Sinθ ≅ h [(sinψ cosф)/(1+h cosψ)], where h=ξ/2α. h<<1, so sinθ ≈h sinψ cosφ ,  
Consequently the minimum value of energy when θ is near to zero, is : 
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When θ is near to 90ο, a similar approximation to that used above leads to cosθ ≈−h cosψ, and then: 
[ ]φψϕ+φψϕ−ψ+α=β sinsinsinh2cossincosh2cosh1E 22

max    (11) 

The energy barrier ΔE=Emax–Emin can be written as: 
( )[ ]φψϕ+φψϕ−ψ+φψ−+α=Δβ sinsinsinh2cossincosh2cosh2sinsin1h1E 222   (12) 

The transition probability to overcome the energy barrier is given by : 
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Integration of f (ψ,φ,ϕ) with respect to ϕ,  gives: 
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And the relaxation time is given by: 
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An integration first with respect to ψ gives: 
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and then with respect to φ leads to: 
 

!
"

#
$
%

&
'
(

)
*
+

, −α−α
'
(
)*

+
,α

τ
=τ

2
1h

3
41exp

2
hI

2
2

0

0      (17) 

where I0 is the Bessel’s function such as: ( )( ) ( )
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Finally τ can be expressed as: 
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Where the parameter τ0  may be considered as approximately independent of the magnetic field [13]: 
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The smallest nonvamling eigenvalue of the FPE may be expressed as a function of the relaxation time : 
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The asymptotic expression  λΑ, of λ1, may be derived from Eq (20) with the help of Eqs (19) and (3), such as: 
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Eigenvalues were also calculated using the Linalg instruction and Maple library. The smallest non 
vanishing eigenvalue was determined using the min (c, X [j]) instruction. The matrix order was 230*230. 

 
Figures 2, give a comparison between the variation, as a function of α and for different values of h, of the 

asymptotic expression, λA, of λ1 (Eq.(22)) and the numerical simulation. The corresponding curves show a very 
good concordance in the case of weak fields. 

 
Symptotic formula proposed by Coffey et al. is given by [16] : 
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Our asymptotic formula matches with that of Coffey et al. for α>5 as shown on figures 3 : 
 



Labzour et al., J. Mater. Environ. Sci., 2019, 10(5), pp. 478-484 482 
!

 

 

 

 
 

Figure 2: Variation of!λ1!as a function of!α, for!ψ=!90 and!φ=90, and for: A- h=0, B- h=0.1, C- h=0.15, D- h=0.2 
AS: asymptotic formula, E: numerical simulation 
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Figure 3: Variation of!λ1!as a function of!α,!for!ψ=!90 and!φ=90, and for: A- h=0.1; B- h=0.15; C- h=0.2. 
AS: asymptotic formula, E: numerical simulation, ASC: asymptotic formula (Coffey et al.) 

 
Conclusion 
An asymptotic analytical formula of the relaxation time of an assembly of ultrafine particles with uniaxial 
anisotropy experiencing a random oriented magnetic field has been derived. Results obtained are in good 
concordance with those previously derived from a numerical approach, and published elsewhere [17]. Moreover, 
our results disagree with those of Coffey et al. for anisotropy parameter (α) values inferior approximately to 6. 
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