

Scanning electron microscopic studies on tricalcium aluminate hydrate pastes after hydration in presence of inorganic admixtures

M.A.Taher^a and A.I.AL-Sulami^b

^aChemistry Dept., Faculty of Science, Al Azhar University, Assiut, Egypt. ^bSciences Faculty for Girls, King Abdul Aziz University, Saudi Arabia

Received 13 Dec 2011, Revised 14 Aug 2012, Accepted 14 Aug 2012. *Corresponding author : M.A.Taher; E.mail: <u>mahmoudtaher51@hotmail.com</u> ; Tel:00201224816666

Abstract

Tricalcium aluminate is considered as one of the most important main inorganic compounds that constitute cement. It plays an important role in controlling hydraulic characteristics of cement and strength development of concrete. Although its percent do not exceed (7-12%), of the total essential compounds constituting cement, but it acquired special importance through its capability of reserving cement in a form of a paste, since can be handled easily during construction when water is added to cement. It is responsible of setting time in cement mixture so can be adjusted according to different whether conditions. To adjust setting time, organic or inorganic compounds must be added to cement mix in the presence of water to accelerate or retard hydration process according to the type of added admixture. The object of this work is to study the change in morphology and microstructure of tricalcium aluminate pastes after hydration in presence of different inorganic admixtures (Ca(OH)₂, Al(OH)₃, CaSO₄ hydrate and CaCl₂) at different periods of hydration (1 hr, 3 hr, 7 hr, 1 day, 7days, 14 days and 28 days) using scanning electron microscopy (SEM) measurements .

Abbreviations: C=CaO, S=SiO₂, A=Al₂O₃, H=H₂O, F=Fe₂O₃, *Keywords:* Calcium aluminate, Hydration, Admixtures.

1. Introduction:

Scanning electron microscopy is a powerful technique for analyzing cement-based materials [1], and has been applied successfully to cement clinkers [2], cement powders [3,4] and hydrated cement pastes and concretes[5]. The SEM provides high contrast images that can be segmented to identify the component phases comprising the complex microstructure. Tricalcium aluminate, $Ca_3Al_2O_6(C_3A)$ is one of the main crystalline phases of cements [1]. It plays a fundamental role in the early stages of hydration process of Ordinary Portland Cements and Calcium Aluminate Cements. The reaction of C₃A with water produces calcium aluminate hydrate, Afm-type phases according to the cement nomenclature, and the more thermodynamically stable hydrogarnet [1,6]. The hydration of C₃A is a strongly exothermic reaction and if the kinetics is not controlled, the so called "flash-setting" of cement may occur with undesirable effect on the rheological properties of the hydrating paste [1]. In order to prevent this reaction in cements, Ca-sulphate is usually added to the clinker [7]. When sulphates are present, ettringite is the phase crystallizing during the hydration of C_3A and the reaction is less exothermic. It is known from XRD analyses that crystalline ettringite is present since the early stages of hydration of the $C_{3}A$ paste [8]. Moreover observations performed by scanning electron microscopy show that at the beginning of the process ettringite appears with a gel-like morphology. The characteristics of the ettringite gel are thought to play a fundamental role in controlling both the dissolution kinetics of the clinker phases and the formation of hydrates. Ettringite, also called Aft-type phase, $C_3A \cdot 3CaSO_4 \cdot 32H_2O_1$, is triagonal and the crystal structure is composed of columns of alternately Ca-(O,OH) and Al-(O,OH) octahedra along the c direction [9]. The columns are connected by SO4 groups and water molecules, located in fairly large channels running parallel to the columns. The frequent morphology of synthetic and natural ettringite crystals

J. Mater. Environ. Sci. 4 (1) (2013) 17-22 ISSN : 2028-2508 CODEN: JMESCN

is that of a prismatic fine needles elongated along c. Ettringite is present in the first hours of OPC hydration indicating that C₃A and C₄AF (Ca₂AlFeO₅) are the most reactive phases in the early stages of the hydration process [1]. Ettringite is also the main hydrate phase (at least in the first hours) in many other cementitious materials, such as shrinkage compensating OPC/CAC based formulates, expansive cements, sulphoaluminate cements, etc. There is a close relationship between ettringite characteristics (i.e. morphology) and the physical properties (rheology, mechanical strengths) of the hydrating cement paste. In our opinion the knowledge of the crystallographic details of ettringite and of the kinetics of its formation in cementitious system is crucial to understand the physical behavior of cement materials [10]. Calcium chloride (CaCl₂) is one of the most effective accelerators of hydration and setting in tricalcium silicate (C_3S) and portland cement pastes. The accelerative power of this salt increases with increasing concentration, with a practical dosage being 1-2% by weight of cement. It has often been observed that CaCl₂ increases the rate of formation of hydration products, thereby increasing the rate of heat evolution during hydration. This acceleration is thought to occur by direct acceleration of the growth rate of calcium silicate hydrate (C-S-H), but the mechanism is not understood at the molecular level [11]. It is to be expected that accelerating the hydration reaction would affect the microstructure of the hydration products. Calcium chloride is known to increase the nitrogen surface area and pore volume of Portland cement and C_3S pastes [12–14]. The investigated using a variety of microscopy effects of CaCl₂ on microstructure have been techniques. Early work using transmission electron microscopy (TEM) for samples less than 1 day old showed fibrous growths in the presence of $CaCl_2$ [15], forming in a cross-linked network in one case [16]. In contrast, further electron microscope work on samples with ages of 10-30 days described C₃S hydration products as small needles in the absence of CaCl₂, and "crumpled foils" or plates in its presence [12,17]. The use of scanning electron microscopy (SEM) allows a greater depth of focus; using this technique, researchers saw "honeycomblike" morphologies of hydration products in the presence of CaCl₂ at ages of 3 h to 7 days [18–20], agreeing with the previous cross-linked observations. Ramachandran and Feldman [21] noticed that the morphology of hydration products (older than 1 day) varied depending on the amount of CaCl₂ added to cement pastes. In the absence of CaCl₂, needles of C-S-H and ettringite were the primary morphology observed. At a dosage of 1% CaCl₂, thin sheets of C-S-H appeared. Increasing the dosage to 2% consolidated the structure, and plates were observed. Addition of 3.5% CaCl₂ resulted in a "spongy mass." TEM on pastes older than 1 year showed similar results to the SEM studiesless fibrillar hydration products when CaCl₂ was present [22].

2. Materials and methods

Tricalcium aluminate hydrate (C₃AH₆) was prepared according to the following equation :

 $3Ca(OH)_2 + 2Al(OH)_3 \rightarrow 3CaO.Al_2O_3.6H_2O$

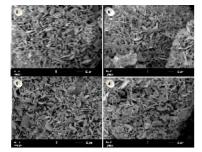
 C_3AH_6 was prepared using the following procedure [23]: Starting powder of $Ca(OH)_2(99\% + Merck, Darmstadt)$ was weighed in appropriate amount(3moles) and then dissolved in distilled water with continuous stirring in water bath at 30°C to produce a suspension solution of $Ca(OH)_2$. Also, appropriate amount of $Al(OH)_3(2moles)$ (99% + Merck, Darmstadt, Germany) was weighed and dissolved in distilled water with continuous stirring in water bath at 30°C to produce a suspension solution of $Al(OH)_3$. $Ca(OH)_2$ suspension solution was added carefully to $Al(OH)_3$ suspension solution with continuous stirring in water bath at 30°C to produce a suspension solution of $Al(OH)_3$. $Ca(OH)_2$ suspension solution was added carefully to $Al(OH)_3$ suspension solution with continuous stirring in water bath at 30°C , then the produced suspension solution left one hour in water bath and measuring the pH value. Finally, the produced suspension solution left for 24 hours up to the pH value equal 13, where as there is complete formation of C_3AH_6 . The suspension was filtrated with suction through a Schott 1G4 sintered glass filter directly from the suspension vessel. The produced precipitate (C_3AH_6) was washed with ether to get red of excess water. In our study, we prepared C_3AH_6 as mention before but with different cases as follows:

i- C_3AH_6 in excess $Ca(OH)_2$ (4 moles $Ca(OH)_2$ + 2moles $Al(OH)_3$).

 $ii\text{-}C_3AH_6$ in presence of $CaSO_4.2H_2O$ and excess $Ca(OH)_2$ ($4moles\ Ca(OH)_2$ + $2moles\ Al(OH)_3$ + $1\ moles\ CaSO_4.2H_2O)$) .

iii- C_3AH_6 in presence of $CaSO_4.2H_2O$ and excess $Ca(OH)_2$ and $Al(OH)_3$ (4moles $Ca(OH)_2 + 3$ moles $Al(OH)_3 + 1$ mole $CaSO_4.2H_2O$).

iv- C_3AH_6 in presence of $CaCl_2$ and excess $Ca(OH)_2$ (4 moles $Ca(OH)_2 + 2$ moles $Al(OH)_3 + 1$ mole $CaCl_2$).


v- C_3AH_6 in presence of $CaCl_2$ and excess $Al(OH)_3$ (3moles $Ca(OH)_2 + 3moles Al(OH)_3 + 1$ mole $CaCl_2$).

For each case, first there is preparation of C_3AH_6 as mentioned before then addition of admixtures (CaSO₄.2H₂O or CaCl₂) to the prepared C₃AH₆ for studying the hydration process after different periods (1hr,3hr,7 hr, 1day, 7days, 14 days and 28 days) and the produced precipitate was washed with mixture of ethyl alcohol and ether to stopping the reaction and the precipitate was kept in desiccators to study the change in morphology and microstructure of C₃AH₆ at different conditions using SEM technique.

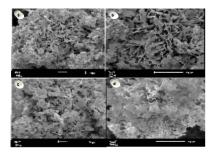
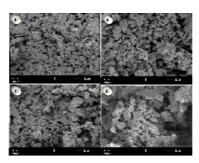

3. Results and discussion:

Figure 1(a,b,c,d), Figure 2(a,b,c,d) and Figure 3(a,b,c,d) show the SEM micrographs of. C_3AH_6 pastes after 3hrs, 7days and 14 days hydration, respectively, in presence of excess $Ca(OH)_2$. It is clear that, there is no formation of amorphous or crystalline products after after 3 hrs hydration (Figure 1), but irregular shapes of ettringite. After 7days and 14 days hydration (Fig.2 and 3), the structure was closed, but still with formation of poor gel- like crystal structure which means low hydraulic properties of C_3AH_6 pastes[24]. Accordingly, presence of excess $Ca(OH)_2$ retards the hydraulic properties of of C_3AH_6 due to the increasing in formation of ettringite.


The SEM micrographs of C_3AH_6 pastes after 7hrs, 1 day and 14 days hydration in presence of $CaSO_4.2H_2O$ and excess $Ca(OH)_2$ was illustrated in Figure 4(a,b,c,d), Figure 5(a,b,c,d) and Figure 6(a,b,c,d), respectively. It is clear that there formation of ill crystalline and amorphous layer after 7 hours due to initial hydraulic activation and formation of ettringite as monosulphate phase (3CaO.Al₂O₃.CaSO₄.12H₂O) AFm in presence of low concentration of CaSO₄.2H₂O which disappear after 1 day forming poor amorphous phase with increasing the crystalline phase after 14 days due to the formation of ettringite as trisulphate phase (3CaO.Al₂O₃.3CaSO₄.32H₂O) AFt which causes deceasing in the hydraulic properties of C_3AH_6 [25].

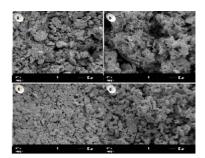

Figure 1: SEM micrographs of C_3AH_6 pastes after 3 hrs hydration in presence of excess $Ca(OH)_2$.

Figure 4: SEM micrographs of C₃AH₆ pastes after 7 hrs hydration in presence of CaSO₄.2H₂O and excess. Ca(OH)₂

Figure 2: SEM micrographs of C_3AH_6 pastes after 7 days hydration in presence of excess Ca(OH)₂.

Figure 3: SEM micrographs of C_3AH_6 pastes after 14 days hydration in presence of Excess Ca(OH)₂.

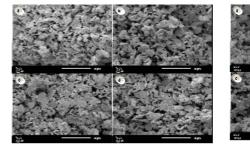
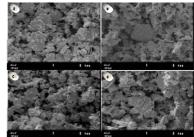
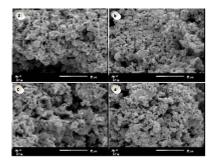
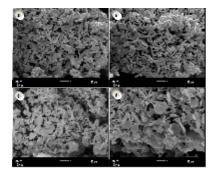


Figure 5: SEM micrographs of C_3AH_6 pastes after 1 day hydration in presence of $CaSO_4.2H_2O$ and excess $Ca(OH)_2$

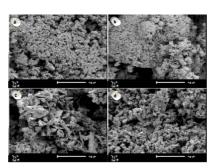


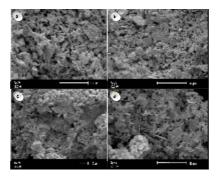

Figure 6: SEM micrographs of C_3AH_6 pastes after 7 days hydration in presence of $CaSO_4.2H_2O$ and excess $Ca(OH)_2$.

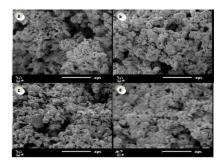
The SEM micrographs of C_3AH_6 pates after 1hr, 7 hrs and 1 day hydration in presence of $CaSO_4.2H_2O$ and excess of $Ca(OH)_2$ and $Al(OH)_3$ are shown in Figure 7(a,b,c,d), Figure 8(a,b,c,d) and Figure 9 (a,b,c,d),


J. Mater. Environ. Sci. 4 (1) (2013) 17-22 ISSN : 2028-2508 CODEN: JMESCN

respectively. There is formation of mix of amorphous and ill-crystalline phase after 1 hr and formation of closed texture after 1 day hydration due to presence of excess $Al(OH)_3$ which causes increasing in the hydraulic properties of C_3AH_6 pastes. Accordingly, presence of excess $Al(OH)_3$ decease the formation ettringite which has high crystalline properties.


Figure 10(a,b,c,d), Figure 11(a,b,c,d), Figure 12(a,b,c,d) and Figure 12(a,b,c,d) show the SEM micrographs of C_3AH_6 pastes after 1hr, 7hrs and 1 day hydration in presence of $CaCl_2$ and excess $Ca(OH)_2$, respectively. The micrographs indicated formation of uncombined particles after 1 hr with high crystalline properties producing low hydraulic properties [26]. After 7 hours of hydration there is decreasing in the porosity and formation of amorphous and ill-crystalline phase indicated high hydraulic properties of the pastes. After 1 day hydration, there is increasing in the amorphous and ill-crystalline phase with formation of closed texture phase indicating increasing in the hydraulic properties of C_3AH_6 pastes. Accordingly, addition of $CaCl_2$ in presence of $Ca(OH)_2$ accelerate the hydration of C_3AH_6 and increase the hardening process.


Figure 7: SEM micrographs of C_3AH_6 pastes after 1 hr hydration in presence of CaSO₄.2H₂O and excess Ca(OH)₂ and Al(OH)₃


Figure 10: SEM micrographs of C_3AH_6 pastes after 1 hr hydration in presence of $CaCl_2$ and excess $Ca(OH)_2$

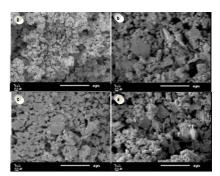

Figure 8: SEM micrographs of C_3AH_6 pastes after 7 hrs hydration in presence of CaSO₄.2H₂O and excess Ca(OH)₂ and Al(OH)₃

Figure 11: SEM micrographs of C_3AH_6 pastes after 7 hrs hydration in presence of $CaCl_2$ and excess $Ca(OH)_2$

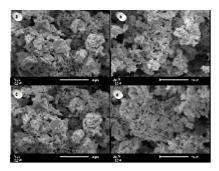


Figure 9: SEM micrographs of C_3AH_6 pastes after 1 day hydration in presence of $CaSO_4.2H_2O$ and excess $Ca(OH)_2$ and $Al(OH)_3$.

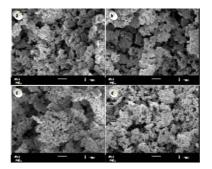


Figure 12: SEM micrographs C₃AH₆ pastes after 1 day hydration in presence of CaCl₂ and excess Ca(OH)₂

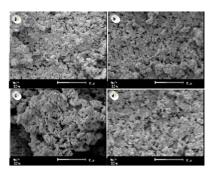

The change in morphology and microstructure of C_3AH_6 pastes after 7 hrs, 7days and 14 days hydration in presence of CaCl₂ and excess Al(OH)₃ are shown in SEM micrographs of Figure 13(a,b,c,d), Figure 14(a,b,c,d) and Figure 15(a,b,c,d), respectively. It is clear that, presence of Al(OH)₃ increase the amorphous layers of the pastes which causes increasing in the bonding between crystalline layers and formation of amorphous and ill-crystalline phase after 7 hrs of hydration . After 7 days, there is increasing in the condensed structure of the amorphous and ill-crystalline phase with high coagulation of the layers which increase sharply after 14 days forming closed–textured structure having high hydraulic properties and high hardening process of C_3AH_6 [27].

Figure 13: SEM micrographs of C_3AH_6 pastes after 7 hrs hydration in presence of CaCl₂ and excess Al(OH)₃

Figure 14: SEM micrographs of C_3AH_6 pastes after 7 days hydration in presence of $CaCl_2$ and excess $Al(OH)_3$

Figure 15: SEM micrographs of C_3AH_6 pastes after 14 days hydration in presence of $CaCl_2$ and excess Al(OH)₃

Conclusion

From this investigation we concluded that:

- 1- Presence of excess $Ca(OH)_2$ retards the hydration of C_3AH_6 at the earlier ages of hydration, but this retardation disappeared at later ages (after 7 days).
- 2- Presence of excess Al(OH)₃ accelerates the hydration of C₃AH₆ at all ages of hydration.
- 3- Presence of excess $Ca(OH)_2$ in the hydration process of C_3AH_6 in presence of $CaSO_4.2H_2O$ causes an increasing in the formation of ettringite (AFt), accordingly, the hydraulic properties of C_3AH_6 will be decrease.
- 4- Presence of excess Al(OH)₃ in the hydration process of C_3AH_6 in presence of $CaSO_4.2H_2O$ and excess of $Ca(OH)_2$ causes a decreasing in the formation of ettringite , accordingly, the hydraulic properties of C_3AH_6 will be increased and the bad effect of formation of high amount of ettringite on the hydraulic properties of C_3AH_6 will be disappeared.
- 5- Presence of excess $Al(OH)_3$ in the hydration process of C_3AH_6 in presence of $CaCl_2$ accelerates the hydration process and increases the hydraulic properties of C_3AH_6 at all ages of hydration.

References

- 1. Taylor, H. F. W., Cement Chemistry (2nd ed.), Thomas Telford Publishing, London, 1997).
- 2. Stutzman, P. E. ,"Cement clinker characterization by scanning electron microscopy", *Cem.Concr.Aggregates*, 2 (1991) 109.
- 3- Bentz, D. P., Stuzman, P.E., "SEM analysis and computer modeling of hydration of Portland cement particles". In Petrography of Cementitious Materials Ed.S.M.Dehayes and D.Stark (American Society for Testing and Materials, Philadephia, 60 (1994)..
- 4- Scrivener, K. L., "The microstructure of anhydrous cement and its effect on hydration.", *Proc. Mat. Res. Soc. Symp.* 85 (1987) 39.
- 5- Scrivener, K. L., Scrvener, P. L., "The microstructure of concrete. In Materials Science of Concrete I ED.J.P.Skalny (American Ceramic Society, Westerville, OH., 127 (1987).
- 6- Gartner, E. M., Young , J. F., Damidot, D. A. , Jawed , I. , "Hydration of Portland Cement.", In: J. Bensted and P. Barnes, Editors, Structure and Performance of Cements, Spon Press, London (2002).
- 7- Bensted , J., Gypsum in Cements. In: J. Bensted and P. Barnes, Editors, "Structure and Performance of Cements", Spon Press, London (2002).
- 8- Barnes, P., et al.," The Use of Synchrotron Sources in the Study of Cement Materials". In: J. Bensted and P. Barnes, Editors, Structure and Performance of Cements, Spon Press, London (2002).
- 9- Moore, A. E., Taylor, H. F. W., "Crystal structure of ettringite", Acta Crystallogr. 26 (1970) 386.
- 10- Merlini, M., Artioli, G., Cerulli, T., Cella, F., Bravo, A., "Tricalcium aluminate hydration in additivated systems. A crystallographic study by SR-XRPD ", *Cem.Conc.Res.* 38 (2008) 477.
- 11- Gartner, E. M., Young, J. F., Damidot, D. A., Jawed, I., "Hydration of Portland cement", in: J. Bensted,

P. Barnes (Eds.), The Structure and Performance of Cements, 2nd ed., Spon Press, London, 2002. Chapter 3.

- 12- Collepardi, M., Marchese, B., "Morphology and surface properties of hydrated tricalcium silicate pastes ", *Cem. Concr. Res.* 2 (1972) 57.
- 13- Skalnym, J., Odler, I., Hagymassy, J., "Pore structure of hydrated calcium silicates: I. Influence of calcium chloride on the pore structure of hydrated tricalcium silicate", J. *Colloid Interface Sci.* 35 (1971) 434.
- 14- Juenger, M. C. G., Jennings, H. M., "The use of nitrogen adsorption to assess the microstructure of cement pastes", *Cem. Concr. Res.* 31 (2001) 883.
- 15- Rosenberg, A. M., "Study of the mechanism through which calcium chloride accelerates the set of Portland cement", J. Am. Concr. Inst. 61 (1964) 1261.
- 16- Murakami, K., Tanaka, H., "Contribution of calcium thiosulphate to the acceleration of the hydration of Portland cement and comparison with other soluble salts", Proceedings of the 5th International Congress on the Chemistry of Cement, Tokyo, vol. 2, The Cement Association of Japan, Tokyo, Japan, 1969, pp. 422–436.
- 17- Ramachandran, V. S., "Possible states of chloride in the hydration of tricalcium silicate in the presence of calcium chloride", *Mater. Constr.* 4 (1971) 3.
- 18- Young, J. F., Berger, R. L., Lawrence, F. V. Jr., "Studies on the hydration of tricalcium silicate pastes: III.Influence of admixtures on hydration and strength development", *Cem. Concr. Res.* 3 (1973) 689.
- 19- Berger, R. L., Kung, J. H., Young, J. F., "Influence of calcium chloride on the drying shrinkage of alite paste", *J. Test. Eval.* 4 (1976) 85.
- 20- LeSueur, P. J., Double, D. D., Groves, G. W., "Chemical and morphological studies of the hydration of tricalcium silicate", *Br. Ceram. Proc.* 35 (1984) 177.
- 21- Ramachandran, V. S., Feldman, R. F., "Time-dependent and intrinsic characteristics of Portland cement hydrated in the presence of calcium chloride", *Cemento* 3 (1978) 311.
- 22- Groves, G. W., LeSueur, P. J., Sinclair, W., "Transmission electron microscopy and micro analytical studies of ion-beam-thinned sections of tricalcium silicate paste", J. Am. Ceram. Soc. 69 (1986) 353.
- 23- Zhang, Q., Saito, F., "Sonochemical synthesis of ettringite from a powder mixture suspended in water ", *Powder Technology* 107 (2000) 43.
- 24- Garces, P., Alcocel, E. G., Chinchon, S., Andreu, C. G., Alcaide, J., "Effect of curing temperature in some hydration characteristics of calcium aluminate cement compared with those of Portland cement", *Cem. Concr.Res.* 27 (1997) 1343.
- 25- Cody, A. M., Lee, H., Cody, R. D., Spry, P. G., Cem.Concr.Res. 34 (2004) 869.
- 26- Meredith, P., Donald, A. M., Meller, N., Hall, C. ," The effects of chemical environment on the nucleation, growth, and stability of ettringite [Ca₃Al(OH)₆]₂(SO₄)₃·26H₂O", *J.Materials Science* 39 (2004) 997.
- 27- Taher, M. A., "Influence of thermally treated phosphogypsum on the properties of Portland slag cement", *Resources, Conservation and Recycling Journal* 52 (2007) 28.

(2013) www.jmaterenvironsci.com