New gadolinium(III) complexes with simple organic acids
(Oxalic, Glycolic and Malic Acid)

M. RIRI a*, M.Hor a, O. Kamal a, T. Eljaddi a, A. Benjjar a, M. Hlaibi a,b,*

a Laboratoire d’Interface Matériaux et Chimie de l’Environnement LIME, Université Hassan II Faculté des Sciences Ain Chock, B.P. 5366, Maârif, Casablanca, Maroc.
b Laboratoire des Polymères, Biopolymères, Surfaces, UMR 6270 du CNRS, Université de Rouen, Faculté des Sciences, F-76821 Mont-Saint-Aignan, France.

Received: 13 May 2011; revised version 12 June 2011; accepted: 13 June 2011

Corresponding author: E-mail: mohammedriri@yahoo.fr (M. RIRI), Tel: (212)667898763

Abstract

The formation of colorless gadolinium complexes (x, y, z), between x gadolinium ions, y ligands and z protons, of some organic acids, has been studied in aqueous solution. In this work we present the results of investigations on the interaction of the gadolinium ion (Gd(III)) with simple carboxylic acids such as oxalic acid, glycolic acid and malic acid, in dilute aqueous solution with pH values between 5.50 and 7.50. The obtained gadolinium complexes with oxalate, glycolate and malate ion are colorless and haven’t any absorption band in UV-visible, in this sense, the indirect photometry studies used to identify the major di-nuclear and tri-nuclear complexes. This technique allowed us to calculate the compositions and the stabilities constants of these major complexes in solution and the stability constant depends on acidity, the structures of the final complexes were determined by means of IR and Raman spectroscopies.

Keywords: Gadolinium complexes, oxalate, glycolate, malate, indirect photometry, apparent stability constant, chelation sites.

1- Introduction

Magnetic resonance imaging (MRI) is a medical diagnostic technique for several, recent and powerful diseases. It is based on nuclear magnetic resonance (NMR) of water protons in tissue and organs [1]. The detection or monitoring of certain diseases sometimes requires injection of contrast agent based gadolinium. Most of the contrast agents that used in MRI are complex amino acids and carboxylic acids with lanthanides [2]. Currently, most contrast agents used in MRI are complex types of gadolinium-DTPA, gadolinium-BOPTA, gadolinium-DOTA [3, 4] and its analogs modified to enhance the contrast effect on fabric [5-7]. In solution, some organic acids and acid derivatives of sugars form the colorless complexes with gadolinium ion and not possessing absorption UV-visible band, in this sense we have been able to determine the compositions and the stabilities of some colorless gadolinium complexes with carboxylic acids in dilute solution; using a new technique called Indirect Photometry detection (IPD). This technique is simple, used in
room temperature, reproducible, adaptable to other techniques of separation and determination such as liquid chromatography \cite{8,9}, capillary electrophoresis \cite{10} and continuous flow analysis (FIA) \cite{11,12}. It requires a judicious choice of auxiliary ligand and the metal ion, and based on displacement competitive reactions by ligand-ligand exchange:

\[\text{Gd-L}_n^+ + n'L' \rightleftharpoons \text{Gd-L'}_n^- + nL \]

Color reagent carboxylic acid Colorless Complex Auxiliary Ligand

2- Experimental methods and chemicals

Oxalic acid, Glycolic acid, Malic acid, Chrome Azurol S (H$_4$Ch), Gd(III) nitrate and other chemicals were commercial products (Aldrich, Prolabo, …) of the purest available and analytical grade, used as received. The complexes were synthesized by reaction of gadolinium(III) salts and the Oxalic, Glycolic and Malic acid (ligands), in amounts equal to metal: ligands molar ratio of 2:2, 2:2 and 3:2 respectively. The complexes were prepared by adding water solutions of Gd(III) salts to water solutions of the ligands. The absorption measurements have been performed at room temperature and at wavelength $\lambda_{\text{max}} = 545$ nm. Stock solutions of Gd(III) nitrate and Chrome Azurol S (H$_4$Ch) were prepared with concentrations of 10^{-2}M and 10^{-3}M respectively. For fixed pH environments, the apparent formation constants $\log K'_{xyz}$ was calculated using a laboratory made computer program. The absorption values for the undissociated (AF) and the totally dissociated (Al), sacrificial complex (Gd(III)-H$_4$Ch), are used as determined in experiments using pure Chrome Azurol S (H$_4$Ch), and an excess of Gadolinium(III). The complexes are precipitated at room temperature. The precipitates were filtered, washed several times with water, and dried in a desiccator to constant weight. The complexes were insoluble in water, methanol, and ethanol and well soluble in DMSO. IR Analyses were performed using an infrared spectrometer, Fourier transform (FT-IR), Perkin Elmer BX, equipped with a DTGS detector, a splitter and a cesium iodide window and the Raman spectra were performed using an Raman spectrometer Fourier transform (FT-Raman) VERTEX 70 with a range of measurement (4000-50) cm$^{-1}$, laser source NdYag (1.064μm), a nominal power of 500 MW, detecting Ge with high sensitivity and a resolution of 4cm$^{-1}$ (64 scan).

3- Results and discussion

3-1. Formation of the colored sacrificial complex:
The complexation reaction of x gadolinium ions (Gd$^{3+}$) with y carboxylate ions and z protons is given by expression (I):

\[x\text{Gd}^{3+} + y\text{L}^n^- + z\text{H}^+ \rightleftharpoons (x, y, z) + n\text{H}_2\text{O} \]

Thus $\log K'_{xyz} = \log K_{xyz} + z\cdot\text{pH}$

A series of experiments were conducted to determine, the composition, the stability of the colored sacrificial complex (Gd-HCh3) and its formation reaction. The evolution of UV-visible spectra for the formation of this sacrificial complex is represented by the diagram in figure 1. The UV-visible spectra show clearly that the maximum absorbance of the sacrificial complex is located at $\lambda_{\text{max}} = 545$ nm. So, we have studied the formation of this sacrificial complex at this maximum wavelength, depending on the ratio q=(metal/ligand) = $[\text{Gd}^{3+}] / [\text{HCh}^3]$ total as shown in the figure 2.

![Figure 1](image-url): UV-visible spectra for the formation of sacrificial complex (Gd-HCh3), pH = 5.90
The curve in figure 2 indicates that the value of the ratio \(q \), relative to the complete formation of this sacrificial complex is the intersection of the linear (positive slope), with the final segment (slope = 0) of the curve, this value of \(q \) is close to 1.50. For all studied solutions at known values of pH, the apparent constants \(K'_{32z} \) were calculated and the obtained results are summarized in the table 1. These results show that the stability of the sacrificial complex depends on the acidity of the medium.

Table 1: Evolution of the sacrificial complex stability, depending on the acidity of the medium

<table>
<thead>
<tr>
<th>pH</th>
<th>5.50</th>
<th>5.70</th>
<th>5.90</th>
<th>6.12</th>
<th>6.30</th>
<th>6.50</th>
<th>6.70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(K'_{32z}) ±0.05</td>
<td>8.02</td>
<td>7.72</td>
<td>7.40</td>
<td>7.11</td>
<td>6.81</td>
<td>6.53</td>
<td>6.22</td>
</tr>
<tr>
<td>(A_1)</td>
<td>0.358</td>
<td>0.253</td>
<td>0.301</td>
<td>0.225</td>
<td>0.295</td>
<td>0.285</td>
<td>0.265</td>
</tr>
<tr>
<td>(A_F)</td>
<td>1.060</td>
<td>1.178</td>
<td>1.315</td>
<td>1.616</td>
<td>1.665</td>
<td>2.704</td>
<td>2.826</td>
</tr>
</tbody>
</table>

\(\lambda_{max} = 545\text{nm}, l = 1\text{cm}; [\text{HCh}^3^-]_{total} = 10^{-4}\text{M}, [\text{Gd}^{3+}]_{init} = 10^{-2}\text{M}\).

3-2. The composition and stability of Gd(III)–Carboxylic acids systems

If the studied ligands (oxalic acid, glycolic acid and malic acid), are added to a colored solution of the sacrificial complex (3, 2, 3), this chrome azurol S (HCh\(^3^-\)) complex will dissociate. The dissociation of this complex sacrificial by carboxylic acids studied is obtained by reaction (II):

\[x\text{Gd}^{3+} + 2\text{L}^n^- + z\text{H}^+ \leftrightarrow (x, 2, z) + n\text{H}_2\text{O} \quad (II)\]

where \(n=2\) : Oxalate ions, \(n=1\): Glycolate ions, \(n=2\): Malate ions.

The formation constant \(K_{32z}\) on the complexes are given by the relation (1)

\[K_{32z}=[(3, 2, z)][\text{Gd}^{3+}]^x[\text{C}_z]^{2+z}[\text{H}^+]^z=K'_{32z}[\text{H}^+]^z \quad (1)\]

Thus \(\text{Log}K'_{32z} = \text{Log}K_{32z} - z\cdot\text{pH} \quad (2)\)

We plot the curves \(\text{Log}K'_{32z}\) depending on the medium pH (figure 4).

The evolutions of \(\text{Log}K'_{32z}\) of different complexes detected in solution at different pH are linear and the slope of the straight lines are equal to - 2. The value \((z = 2)\) represents the number of protons
involved in the formation reaction of these new nuclear complexes \((2, 2, 2), (2, 2, 2), (3, 2, 2)\) for Gd(III)-Oxalate, Gd(III)-Glycolate and Gd(III)-Malate respectively). The equation (2) allowed us to calculate the stability constants of complexing reaction of acids studied with gadolinium ion, the experimental results obtained by the IPD are summarized in table 2.

3-3) Vibrational analysis
IR spectroscopic studies are used to identify different groups of oxalic acid, glycolic acid and malic acid (ligands) involved in chelation sites to form gadolinium complexes detected in the solution. The table 3 present the bibliographic data \([13, 14]\), theory vibrations value of various groups: \(-\text{OH}, -\text{C}=\text{O}, -\text{COO}^-, \text{and } -\text{C}-\text{C}=\text{O}\), and the experimental vibration value of analyzed spectra of all free carboxylic acids and its complexes studied in this work.

![Figure 4: Evolution of log\(K'_{x2y}\) for di-nuclear and tri-nuclear Gd(III)-carboxylate complexes detected in solution at different pH values](image)

Table 2: Stability constants of complexing reaction of acids studied with gadolinium ion.

<table>
<thead>
<tr>
<th></th>
<th>Gd-Oxalate</th>
<th>Gd-Glycolate</th>
<th>Gd-Malate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log K'_{x2y})</td>
<td>26.99</td>
<td>22.97</td>
<td>31.52</td>
</tr>
<tr>
<td>(\log K'_{xyz})± 0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: The vibration frequencies for the studied spectra and bibliographic data

<table>
<thead>
<tr>
<th>Groups</th>
<th>Experimental spectra (\nu(\text{cm}^{-1}))</th>
<th>Reduction of the free acid bands after complexation %</th>
<th>Réf.[13]</th>
<th>Réf.[14]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-\text{O-H})</td>
<td>3600–3300</td>
<td>94</td>
<td>91</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3550–3500</td>
<td>3650–3590</td>
</tr>
<tr>
<td>(-\text{C}=\text{O})</td>
<td>1700–1650</td>
<td>89</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1800–1740</td>
<td>1750–1700</td>
</tr>
<tr>
<td>(-\text{COO}^-)</td>
<td>1050–400</td>
<td>98</td>
<td>98</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700–590</td>
<td>-</td>
</tr>
<tr>
<td>(-\text{C}=\text{O})</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The interval experimental measures for the two solutions free acids and complexes acids: \([4400 - 400\text{cm}^{-1}]\)

The experimental spectra obtained for the two analyzed samples for each carboxylic acid study, clearly indicate that the groups: \(-\text{OH}, -\text{C}=\text{O} \text{ and } -\text{COO}^- \text{ vibration frequency, have seriously reduced passing the free to complexed ligands (Table 3).}

So, for each of the two ligands involved in the formation of these detected di-nuclear and tri-nuclear complexes, the four oxygen atoms of the ionized carboxylic groups, participate in chelation sites, and the OH group in \(\alpha\) position of the ionized group \((-\text{COO}^-)\) of glycolic and malic acid. Moreover, the vibration, Infra red, of Gd(III)-O which is formed in the detectable complexes is located in 150-780\text{cm}^{-1} \text{ region with weak spectra \([15, 16]\).}

A detailed analysis of vibrations in Raman spectroscopy was performed on the basis of comparison of experimental vibrational spectra obtained of oxalic, glycolic and malic acid and its gadolinium complexes. One of these FT-Raman
spectra of free ligands and their complexes with Gd(III) are shown in Figure 5. The Raman spectra obtained show that the OH vibrations (3350 ± 100 cm\(^{-1}\)) [15, 16] and C=O (1720 ± 90 cm\(^{-1}\)) [16, 17] of the free acids was not detected in the spectra of the complexes, indicating that the deprotonated ligands form participates in the complexes. The vibration of O-C=O group is reduced from free ligand to complex. So all the oxygen atoms involved in the formation of these new gadolinium complexes.

4- Structures

We, therefore, determined the new complexes containing gadolinium by studies indirect photometry and spectroscopic (IR and Raman). These structures are:

\[
\text{Gd(III)}_2\text{Oxalate}_2(\text{NO}_3)_2 \cdot \text{nH}_2\text{O}
\]

\[
\text{Gd(III)}_2\text{Glycolate}_2(\text{NO}_3)_2 \cdot \text{nH}_2\text{O}
\]

\[
\text{Gd(III)}_3\text{-Malate}_2(\text{NO}_3)_3 \cdot \text{nH}_2\text{O}
\]

Conclusion

In this work, we used three techniques to study the interactions of the trivalent Gd(III) ions with different ionic forms of Oxalic, Glycolic and malic acid. The indirect photometry (IPD) was used successfully to determine the composition and the stability of these major gadolinium complexes and the spectroscopy FT-IR and FT-Raman are used for the identification of different chelation sites of the reactions of complexation formed in solution with pH values between 5.50 and 7.50. These techniques allowed us to propose the structures of the major colorless complexes.

References

18. HORIBA Jobin Yvon Inc., 3880 Park Avenue, Edison, NJ 08820-3012. USA