J. Mater. Environ. Sci., 2020, Volume 11, Issue 2, Page 196-219

Journal of Materials and Environmental Sciences ISSN : 2028-2508 CODEN : JMESCN

Copyright © 2020, University of Mohammed Premier Oujda Morocco

Received 20 Aug 2019,

Revised 27 Dec 2019,

Accepted 29 Dec 2019

✓ Gasoline-fueled,

✓ Engine Size,

 \checkmark Exhaust Emissions,

✓ Manufacturing Year.

<u>shamil.flamarz@garmian.edu.krd</u> Phone: +9647701244450

Keywords

http://www.jmaterenvironsci.com

Studying the Relation between the Engine Size and Manufacturing Year of Gasoline-Fueled Vehicles and Exhaust Emission Percentages and Concentrations

Shamil Ahmed Flamarz Al-Arkawazi¹

¹Building and Construction Engineering Department, University of Garmian, Kalar City, Sulaimaniya Province, Iraq.

Abstract

With rapid economic and social development, vehicle exhaust emissions have been identified as the main source of air pollution in urban areas in the Kurdistan Region in the north of Iraq. Therefore, studying the relation between the engine size and manufacturing year of gasoline-fueled vehicles and exhaust emission gas percentages and concentrations is both important and necessary to determine and suggest the best methods for controlling and reducing vehicle exhaust emissions. A sensitive and detailed analysis of the relation between the engine size and manufacturing year of gasoline-fueled vehicles and their exhaust emission percentages and concentrations was conducted. The results clearly indicated that there are direct relationships between a vehicle's engine size and manufacturing year and its exhaust emission percentages and concentrations. Based on the results of this study, it is critical to issue international legislation, policies, rules and regulations to mitigate vehicle exhaust emissions, which increase global warming, cause air pollution and are harmful to public health; such mitigation can be achieved by using advanced technologies to increase fuel efficiency, increasing the average fuel efficiency of new vehicles, improving fuel quality, using vehicles in an efficient way and improving traffic flow and capacity.

1. Introduction

Compared with the past two centuries, the concentration of greenhouse gases (GHGs) in the atmosphere has increased and caused significant global warming. The increase in greenhouse gas (GHG) concentrations has resulted from human activities related to the Industrial Revolution [1]. The increase in global temperatures has contributed to rising sea and ocean levels caused by the melting of ice at the North and South Poles, increasing the number of occurrences of natural disasters (droughts, floods, etc.) and changing the environment and ecosystem on earth, thereby threatening its prosperity and survival [2][3][4].

It has been observed by climate scientists that carbon dioxide (CO2) concentrations in the atmosphere have increased significantly over the past century compared to the preindustrial level of approximately 280 parts per million (ppm). In 2015, the average CO2 concentration (339 ppm) was nearly 40% higher than that in the mid-1800s, with 2 ppm/year average growth in the last ten years. Large increases in methane (CH4) and nitrous oxide (N2O) levels have also occurred [5].

With the rapid growth in vehicle populations in cities, vehicle exhaust pollution has become one of the major sources of air pollution. Atmospheric pollution is transferred from industrial areas to multiple regions, including urban areas. This new type of air pollution, derived mainly from vehicle exhaust, is becoming increasingly prevalent, and thus, vehicle emission measurements are important for producing cleaner exhaust gas. To study the production of emissions and the responsible technology, it is important to correctly measure the content of toxic emissions. The development of engine technology depends heavily on the development of tests and the measurement techniques used. As strict emission regulations increase in individual countries, emission testing technology is continuously improving [6][7].

In spite of the achieved technology advances and many policies, the transport sector continues to be a major source of air pollutants. The transportation sector is responsible for approximately 50% of all energy-related nitrogen oxide emissions (56 Mt in 2015) and is a significant source of primary particulate matter (approximately 10% of total energy-related primary pm2.5 emissions). Road transport is the largest source of the transportation sector's primary pm2.5 and NOX emissions (73% and 58% of the total), while navigation produces the largest share of SO2 emissions. Cars and vehicles are driven intensively in high-population regions, which cause the concentration of emissions in urban areas. Furthermore, vehicle exhaust pipes are close to the ground, and therefore, the exposure of residents to vehicle-generated pollutants is higher than the average exposure to other sources [8].

At the global scale, carbon dioxide (CO2), the largest source of greenhouse (GHG) emissions, accounted for 60% of total GHG emissions in 2004, while transportation-sector carbon dioxide (CO2) emissions represented 15% of total GHG emissions in 2010. Moreover, global CO2 emissions from the transportation sector increased by 45% from 1990 to 2007 and are expected to increase by approximately 40% from 2007 to 2030 [9] [10]. Hence, the transportation sector is a significant, large and steadily growing source of greenhouse gas (GHG) emissions [11].

In the US, CO2 emissions represent 82% of total GHG emissions, which is higher than the global average. Moreover, more than one-third of the total US CO2 emissions in 2012 were emitted by the US transportation sector. The second-largest amount of CO2 emissions in the world is emitted by the US, with a total of 1481 million metric tons (MMT) in 2010, which represents 19% of the CO2 emissions in the world; China emitted 2259 MMT (23%), which is the largest amount in the world [4]. On the other hand, since 2008, CO2 emissions have been reduced in the US transportation sector as a result of political support for more fuel-efficient vehicle standards and the development of cost-effective energy sources, in addition to changes in procedure and consumer priorities toward eco-friendly vehicles [2][12][13]. The actual productivity of the US transportation sector has been negatively affected by the increase in CO2 emissions from 2002 to 2007, but the actual productivity increased due to the reduction in CO2 emissions from 2008 to 2011[14].

Vehicle engines significantly contribute to air pollution by emitting several types of pollutants into the atmosphere. When petroleum fuels, such as gasoline or diesel, burn in a vehicle engine, the main toxic substances present in the exhaust gases are incompletely combusted oxides of hydrocarbons containing CO, HCs, NOX, and particulates. Carbon monoxide (CO), the most toxic substance found in exhaust emission gases, is tasteless, colorless and odorless. CO and HC emissions are primarily products of incomplete combustion [15].

Vehicle emissions have been identified as a main source of urban air pollution in China as a result of rapid economic and social development. The major vehicle exhaust emission gas pollutants are carbon monoxide (CO), hydrocarbons (HCs), nitrogen oxides (NOX) and particulate matter (PM). As the major contributor to air pollution, the transportation sector in Beijing contributed 85.9%, 25.1%, 56.9% and 22.2% of the city's total CO, HC, NOX and PM2.5 emissions in 2011, respectively. The transportation sector is facing a great challenge and substantial responsibility in emission mitigation because of its role in the worsening of global climate change due to the continued increase in vehicle pollution [16].

In the UK and much of Europe's urban areas, transportation is a major source of air pollution. Similarly, transportation has a significant role to play in solving air pollution problems and improving air quality and public health. It is estimated that road transport contributes 20-30% of the UK's national emissions of air pollutants [17]. However, transportation plays a substantial role in air pollution problems, as transport activities are concentrated on road networks in populated and residential areas in towns and cities [18].

CO, HC, NOX and particulate matter (PM) emissions cause serious air pollution, which is a very large concern due to chronic respiratory diseases, cancer, cardiovascular and toxicological effects [18]. The reduction in adverse environmental and health effects related to air quality has been the primary driving force for emphasizing exhaust emission limits in the transportation sector in recent decades. Despite the challenging targets for engine efficiency and struggles with emission regulations, engines equipped with dedicated emission-control technologies and ever-cleaner cars have been introduced. Simultaneously, concerns of global warming and energy security have led to the development of new alternatives for liquid and gaseous fuel. All new introduced technologies should achieve the "no harm to health and environment" principle [19].

An essential factor in technological development in all branches of industry is the need to minimize negative impacts on the natural environment. Transportation is one of the most dynamically changing fields of the economy, especially due to constantly changing exhaust emission levels. An increasing emphasis has been placed on exhaust emission measurements from vehicle and machine combustion engines [20]. Fossil fuel combustion in the transportation sector leads to the aggravation of air quality along city roads and highways. Today, urban air quality is a serious problem, as the number of vehicles increases on a yearly basis [21].

The main internal combustion engine pollutants are CO, NOX, HC and particulate emissions. Other sources of pollution, such as domestic fuel consumption and electrical power stations, also add pollutants, such as SO2, NOX and particulate matter. In addition to the emission of pollutant gases, all fuel combustion systems emit CO2 in large quantities, and CO2 is closely related to the greenhouse effect, which influences and will decide the health of the earth [22][23].

Although carbon dioxide (CO2) is not strictly considered a pollutant, as it already exists in the atmosphere as a trace gas, excessive or high levels of CO2 produced by vehicles are considered a major contributor to global climate change; this property is known as the "greenhouse effect". In spite of the fact that globally, the majority of CO2 in the atmosphere is generated from industrial processing and manufacturing plants, in urban areas, private cars are the greatest contributors to increased levels of CO2 and other gases, such as carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOX), present in the atmosphere. To improve air quality, the European Union (EU) has introduced a series of increasingly strict automotive emission legislation over approximately the past decade [24].

In China, vehicles have become one of the major and most important sources of air pollution, especially in large cities, such as Beijing, Guangzhou and Shanghai. In these cities, emissions of CO and NOX from vehicles account for over 80% and 40% of the total urban pollutant emissions, respectively [25]. Thus, evaluating vehicle emission levels and understanding the emission characteristics of vehicles in China are both important and necessary [26].

In recent decades, in order to control vehicular emissions, the vehicle pollution issue has received much attention in China. The Chinese government has implemented many vehicle emission control policies and strategies since the mid-1990s, including adopting a succession of European emission standards for new light duty vehicles (LDVs) and new heavy duty vehicles (HDVs), enhancing and improving annual inspection and maintenance (I/M) programs, improving vehicle fuel quality and scrapping high-emitting vehicles [27].

Generally, the emission components of gasoline engines can be divided into two different kinds: the first kind includes components resulting from complete combustion, the basic components of which consist of water vapor, carbon dioxide, excess air, and residual nitrogen; such gases cause no direct harm to human beings or other creatures, but carbon dioxide is a greenhouse gas (GHG). The second kind includes harmful oxides and incompletely burned fuel, such as carbon monoxide (CO), unburned hydrocarbons (HCs), nitrogen oxides (NOX), sulfur dioxide (SO2), and particulates. The second kind of emissions causes harm to humans and other creatures to different degrees. The content of vehicle exhaust emissions is very important for environmental protection authorities and vehicle manufacturers and companies to understand actual emission levels as well as control pollution [6].

The carbon footprint humans place on the world has become a significant topic over the last decade. Internationally, new regulations are being imposed to regulate greenhouse gas emissions; such regulations have resulted from the need for better emission testing worldwide. The testing of exhaust emissions helps to determine how many harmful compounds are formed in an engine during combustion. When this is understood, the creation of these gases can be minimized, and better engines will be designed [28].

Every vehicle produces its own gas exhaust emissions, but problems occur when the exhaust emissions are beyond the standardized values. The primary reason for this violation of exhaust emission levels is the incomplete combustion of fuel supplied to the engine, which is caused by the improper maintenance of vehicles. These exhaust emissions from vehicles cannot be completely avoided but can be controlled [29].

Substantial efforts are underway to reduce and minimize the air pollution from gasoline and diesel engines, and for these purposes, regulations on vehicle exhaust emissions have been imposed in the USA and in a few cities in India. An extensive and comprehensive analysis of energy usage and air pollution has shown that alternative power systems are still far behind traditional or conventional systems. Additional developments in gasoline and diesel engines, combined with improvements in vehicles, will reduce fuel consumption by 40% or more in future cars. As a result of these developments, the emissions of carbon dioxide (CO2), a gas that is responsible for the greenhouse effect, will be reduced [22].

As the contribution of vehicle exhaust emissions to local air pollution and climate change has been recognized, considerable research efforts at the Ford Motor Company and elsewhere have focused on understanding the quantity and nature of vehicle exhaust emissions and developing control technologies to minimize and reduce these exhaust emissions [30].

Exhaust emissions from some vehicles were significantly reduced between the years 2001 and 2011 due to improvements and enhancements in vehicle and fuel technology and increasingly strict regulations for vehicles and fuels. At the same time, the number of vehicles, their average age and the amount they are driven have increased [31]. By improving vehicle efficiency, a significant CO2 reduction of approximately 30% of the current fleet average could be achieved carbon dioxide (CO2), the largest source of greenhouse (GHG) emissions,

accounted for 60% of total GHG emissions in 2004 at relatively low cost with established technologies, such as lightweighting, engine downsizing and selecting smaller vehicles [32].

Carbon dioxide (CO2) from the transportation sector has been reduced by an annual average of 0.2%, with improvements and enhancements in vehicle energy efficiency compensating for increased travel demand, growth in diesel consumption in freight trucks, and a consumer preference for less efficient, larger vehicles as a result of the lower fuel prices that have accompanied the large growth of domestic dry natural gas and oil production [33]. There are many potential ways to reduce emissions and conserve energy; these approaches are widely different in terms of their effectiveness (emissions reduced and amount of energy consumed) and financial impacts (total costs and benefits) [34]. Most of the comprehensive or inclusive studies indicate that both cleaner vehicles and mobility management strategies are required to achieve emission reduction and energy conversion targets [35][36].

In one model, the total transportation-related energy consumption will peak in 2018 and then decline through 2034 even as freight movement and total travel increase. Similarly, in spite of increases in light-duty travel, light-duty vehicle energy use will also peak in 2018 and then decline through 2040 as a result of higher fuel efficiency [37].

To achieve a significant reduction in carbon dioxide (CO2) emissions from global or international road transport, the Japan Manufacturers Association (JAMA) advocates the adoption of an integrated approach, requiring that initiatives be taken in four areas: increased vehicle fuel efficiency, diversified automotive fuel supply and more efficient and improved traffic flow. These initiatives involve cooperative efforts on the part of stakeholders throughout the road transport sector, including vehicle manufacturers, fuel or energy providers, governments, and vehicle users [38].

According to the Renewable Fuel Standards (RFS) (established by the Energy Independence and Security Act of 2007) requirements for renewable fuel consumption, carbon dioxide (CO2) emissions from vehicles are required to decrease, and fuel economy is required to increase dramatically. Vehicle manufacturers are investigating a wide range of technologies to reduce and minimize carbon dioxide (CO2) emissions, including engine technologies such as down-sped turbocharged and downsized engines, which could benefit from improved anti-knock properties of fuel [39].

2. Study Objectives

The objective of this study is to determine any possible relation between the engine size and manufacturing year of gasoline-fueled vehicles and exhaust emission percentages and concentrations.

The objective of this study can be achieved by the following:

- (1) Studying the relation between vehicle engine size and exhaust emission percentages and concentrations to determine whether any indication suggests or confirms such a relation.
- (2) Studying the relation between vehicle manufacturing year and exhaust emission percentages and concentrations to determine whether any possible indication suggests or confirms such a relation.

The results of this study can provide necessary and significant information that will help related decision and policy makers to issue the required legislation, policies and regulations regarding vehicle exhaust emission reduction.

3. Combustion in an Internal Combustion (I.C) Engine

Internal combustion (I.C) engines are engines in which fuel combustion takes place inside the engine cylinders. The distinctive feature of internal combustion (I.C) engines is that heat energy combustion and conversion into mechanical work occur inside a cylinder (see Figure 1). These engines are recognized for their high overall efficiency, low operating cost, compactness, light weight and quick start properties. Exhaust emissions from internal combustion (I.C) engines are the main source of air pollution. Combustion stoichiometry is the relation between the composition of the reactants, which consist of a combustible mixture of fuel and air, and the composition of the products. These relations, or combustion stoichiometry, depend on only the mass conversion of each chemical element in the reactants (fuel and air) [40].

4. Composition of Gasoline Engine Exhaust Gas

The complete combustion of hydrocarbon (fuel) produces only CO2 and water, while constituents traditionally called emissions represent only a small percent of the total exhaust gas, less than 0.5% of the total volume (volume to volume (V/V)) (see Figure 2). The major constituents of diesel exhaust are CO2, water, O2, and NOX. Exhaust gas from gasoline-fueled vehicles does not contain oxygen (O2) because spark-ignited Otto engines (gasoline engines) typically or ideally operate close to the stoichiometric air-to-fuel ratio (AFR \approx 1), and as a result, oxygen

(O2) is consumed in combustion. Alternative fuels can be used in Otto engines (gasoline engines). In contrast, some alternative fuels can assist the performance of existing exhaust emission control systems, while others may need adjustment or the development of a posttreatment [19].

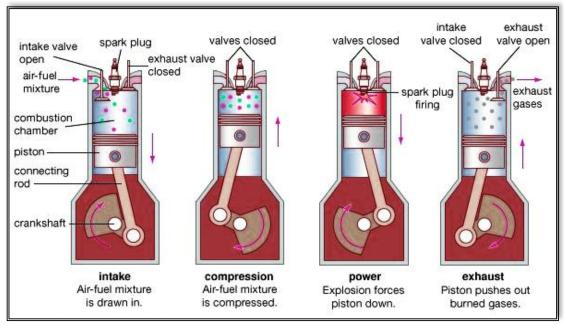


Figure 1: Internal combustion (IC) four-stroke cycle in a typical gasoline engine [41]

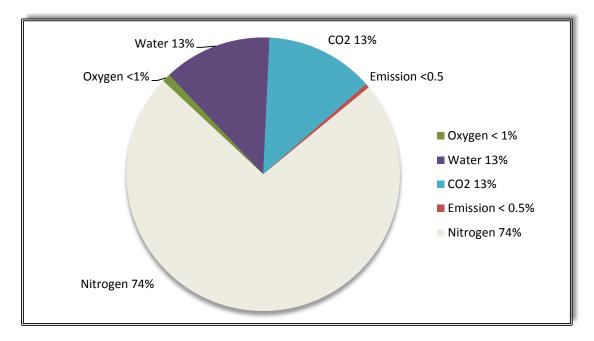


Figure 2: Gasoline engine exhaust gas composition from a stoichiometric spark-ignited example. Concentrations are shown as % volume to volume (V/V %) [19]

5. Pollutants from Internal Gasoline Combustion Engines

Exhaust emissions from vehicles contribute significantly to two-thirds of air pollution in urban areas. Below are the main pollutants emitted from gasoline-fueled vehicles [40]:

- (1) Carbon monoxide (CO), a colorless and odorless gas, which is slightly denser than air and very harmful to the environment.
- (2) Hydrocarbon compounds (HCs), which consist of carbon and hydrogen and include a variety of other volatile organic compounds (VOCs).
- (3) Nitrogen oxides (NOX), which include nitric oxide (NO), nitrous oxide (N2O), nitrogen dioxide (NO2), dinitrogen trioxide (N2O3) and nitrogen pentoxide (N2O5).

(4) Lead (Pb), which is also emitted from vehicles and very harmful to human health. Vehicles produce various harmful air emissions, as summarized in Table 1. Some emission impacts are localized, so the location where emissions occur affects their costs; however, other impacts are regional or global, and therefore, location is less important. Emission control technologies have reduced the emission rates of some but not all pollutants, such as particulates [42].

Emission Type			Harmful Effects	Scale of Impact
Carbon dioxide (CO2)	Combustion product.	Tailpipes and fuel production.	Climate change	Global
Carbon monoxide (CO)	A toxic gas caused by incomplete combustion.	Tailpipes	Human health, climate change	Very local
CFCs and HCFCs	A class of durable chemicals.	Air conditioners and industrial activities.	Ozone depletion, climate change	Global
Fine particulates (PM10; PM2.5)	Inhalable particles.	Tailpipes, road dust, brake lining, etc.	Human health, aesthetics	Local and regional
Road dust (nontailpipe particulates)	Dust particles created by vehicle movement.	Vehicle use, tire wear and brake linings.	Human health, aesthetics	Local
Lead (Pb)	Element used in older fuel additives.	Fuel additives and batteries.	Human health, ecological damages	Local
Methane (CH4)	A flammable gas.	Tailpipes and fuel production.	Climate change	Global
Nitrogen oxides (NOX) and nitrous oxide (N2O).	Various compounds; some are toxic, all contribute to ozone.	Tailpipes.	Human health, ozone precursor, ecological damage.	Local and regional
Ozone (O2)	Major urban air pollutant caused by the combination of NOX and VOCs in sunlight.	NOX and VOC	Human health, plants, aesthetics.	Regional
Sulfur oxides (SOX)	Lung irritant and acid rain.	Diesel vehicle tailpipes.	Human health and ecological damage	Local and regional
VOC (volatile organic hydrocarbons)	Various hydrocarbon (HC) gases.	Tailpipes and fuel production and storage.	Human health, ozone precursor.	Local and regional
Toxic compounds (e.g., benzene)	Carcinogenic VOCs and toxic compounds.	Tailpipes and fuel production.	Human health risks	Very local

Table 1: A summary of various types of motor vehicle pollution emissions and their impacts [43] [44]

6. Exhaust Emission Measurement Tool (Exhaust Gas Analyzer)

For the purpose of exhaust emission measurements in this study, the E instrument model F5000-5GAS was selected (see Figure 3). The F5000-5GAS is an extremely versatile and portable emissions measurement system designed to measure and analyze exhaust gases from vehicles, trucks, buses and forklifts. It has been designed as a modular system, permitting installation in the field of most of the various available options. The E INSTRUMENTS model F5000-5GAS is a portable state-of-the-art exhaust gas analyzer designed to measure, record, and remotely transmit combustion parameters used for the following tasks [45]:

- (1) To accurately measure O2, CO2, CO, HC, and NO/NOx from the engine exhaust pipes of automobiles, forklifts, trucks, buses, and other vehicles running on fuels such as gasoline, diesel, LPG, CNG, and propane.
- (2) To perform routine engine tuning and maintenance and to help diagnose potential engine problems.
- (3) To assist in servicing a vehicle to the manufacturer's emission specifications and in performing precompliance verification testing.
- (4) To assist the operator of a vehicle with the task of optimizing engine efficiency, performance, and fuel savings.
- (5) To be used as a management tool to assist the operator with keeping records and controlling costs.

The E INSTRUMENTS F5000-5GAS uses sophisticated electronics and programming design for increased accuracy and flexibility. This device measures five different exhaust gases and calculates AFR and lambda. It stores, prints and graphs data. It communicates with a variety of other computers, tablets, and other Windows-compatible devices located nearby using Bluetooth wireless technology and/or a USB cable. It has a library of six fuels, and the operator can add more fuels if needed. It is designed to operate on its internal rechargeable battery pack as well as AC power [45]. The technical specifications of the E INSTRUMENTS Model F5000-5GAS analyzer are summarized in Table 2.

Figure 3: The exhaust emissions measurement device: E instruments model F5000-5GAS [46]

Parameter	Sensor	Range	Resolution	Accuracy
CO2	NDIR	0-20%	0.1%	0.1%±3% rdg.
СО	NDIR	0-15%	0.01%	0.02%±3% rdg.
нс	NDIR	0 - 10,000 ppm	1 ppm	±3% rdg. (301-4,000 ppm) ±8 ppm (0-300 ppm) ±5% rdg. (4,001-10,000 ppm)
O 2	Electrochemical	0-25%	0.1%	±0.1% vol
NO/NOx	Electrochemical	0-5,000 ppm	1 ppm	<125 ppm±5 ppm up to 5,000 ppm±4%

7. Results and Discussion

As a requirement of this study, data were collected and exhaust emission measurements were conducted for 151 vehicles at a checkpoint located on a major highway in the south of the Sulaimaniya Governorate in the Kurdistan Region in the north of Iraq (see Figures 4 and 5). The collected data for each vehicle included the engine size, manufacturing year, and exhaust emission percentages and concentrations.

Figure 4: Map of Iraq with the location of the city of Kalar (Google Maps)

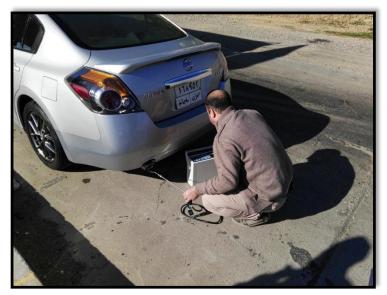


Figure 5: Data collection and exhaust emission measurement

The exhaust emission measurements included 16 sizes of gasoline-fueled-engine vehicles with different manufacturing years. The measured exhaust emission gases for each vehicle included oxygen (O2), carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxide (NO), and hydrocarbons (CxHy).

To separately determine the relation between the vehicle's engine size (gasoline-fueled) and manufacturing year and its exhaust emission percentages and concentrations, the collected data and emission measurements were classified, studied and discussed below:

7.1. Relation between vehicle engine size (gasoline-fueled) and exhaust emission percentages and concentrations. To determine the possible relation between vehicle engine size and exhaust emission percentages and concentrations, the average exhaust emission gas percentages and concentrations for each engine size were calculated and are summarized in Table 3.

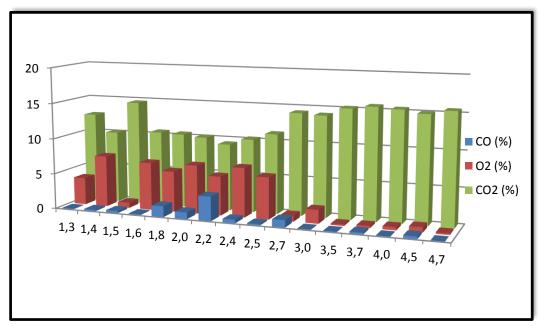

Engine Size	Ave	rage Exhaust E	mission Values f	or Each Engine	Size
(Liters)	O2 (%)	CO (%)	CO2 (%)	CxHy (ppm)	NO (ppm)
1.3	3.833333	0.063333	12.6	171.3333	34.66667
1.4	7.2	0.186667	10.13333	114.6667	29.66667
1.5	0.733333	0.296667	14.63333	216.6667	58.33333
1.6	6.686207	0.105172	10.51379	100.5517	37.27586
1.8	5.682353	1.508824	10.40588	222.5294	35.52941
2.0	6.771429	0.934286	10.15	217.3571	45.85714
2.2	5.45	3.385	9.35	319	30.5
2.4	6.89375	0.484375	10.225	78.5	91.8125
2.5	5.846429	0.173929	11.175	153	29.28571
2.7	0.836364	1.007273	14.26818	110.8182	48.40909
3.0	1.9	0.045	14.1	231	53.5
3.5	0.2	0.05	15.2	34	0
3.7	0.3	0.23	15.6	81	0
4.0	0.42	0.05	15.38	38.4	23.4
4.5	0.725	0.355	14.95	75.75	50.75
4.7	0.2	0.01	15.5	31	6

Table 3: Average exhaust emission gas percentages and concentrations for each engine size

The results indicated an important and significant relationship between vehicle engine size and exhaust emission gas percentages and concentrations. The average percentages and concentrations of each exhaust emission gas except nitrogen oxide (NO) were directly affected by the vehicle's engine size; the effects of each exhaust emission gas are discussed below:

(1) Oxygen (O2): large engines emitted or produced lower percentages of oxygen (O2), which clearly indicate better gasoline fuel combustion. In ideal combustion, all the oxygen is consumed, which indicates better engine quality and performance (see Table 3 and Figure 6).

- (2) Carbon dioxide (CO2): large engines emitted or produced larger percentages of carbon dioxide (CO2), which clearly indicate better gasoline fuel combustion. The complete combustion of gasoline fuel produces only carbon dioxide (CO2) and water, which indicates better engine quality and performance (see Table 3 and Figure 6).
- (3) Carbon monoxide (CO): large engines emitted or produced lower percentages of carbon monoxide (CO), which clearly indicate better gasoline fuel combustion. Carbon monoxide (CO) is produced from the incomplete combustion of fuel, and thus, the results indicate that large engines provide better quality and performance than mid-size engines (see Table 3 and Figure 6).
- (4) Hydrocarbons (CxHy): large engines emitted or produced lower concentrations of hydrocarbons (CxHy), which clearly indicate better gasoline fuel combustion. Hydrocarbons (CxHy) are uncombusted fuel produced from the incomplete combustion of fuel, and thus, the results indicate that large engines provide better quality and performance than small and mid-size engines (see Table 3 and Figure 7).
- (5) Nitrogen oxide (NO): the emitted or produced nitrogen oxide (NO) values cannot be related to engine quality and performance, as nitrogen comes primarily from the air that mixes with gasoline inside the engine or from the fuel itself (nitrogen-enriched gasoline). The average nitrogen oxide (NO) content for each engine size is illustrated in Table 3 and Figure 7.

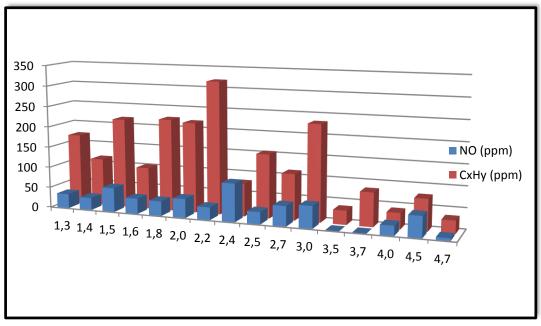


Figure 6: The relation between vehicle engine size and the emission of CO2, O2 and CO exhaust gases

Figure 7: The relation between vehicle engine size and the emission of NO and CxHy in the exhaust

The good performance of large engines in terms of exhaust emission gas percentages and concentrations can be justified in the following two points:

- (1) Vehicles with large engines are accused of consuming large amounts of fuels, which produce larger volumes, percentages and concentrations of exhaust emissions. Therefore, vehicle manufacturing companies pay more attention to the quality of large engines to reduce the percentages and concentrations of undesirable gases in exhaust emissions and thus balance the large volumes of exhaust emissions resulting from the consumption of large amounts of fuel.
- (2) Vehicles with larger engines are more expensive than those with small and mid-size engines; therefore, larger-engine vehicles are manufactured with better engine quality and equipped with advanced technology related to the fuel combustion process.

7.2. Relation between the manufacturing year of gasoline-fueled vehicles and the exhaust emission percentages and concentrations

To study the possible relation between vehicle manufacturing year and exhaust emission values, the average emission gas percentages and concentrations for the most common vehicle engine sizes (1.6, 1.8, 2.0, 2.4, 2.5, and 2.7 liters) were calculated for the last 10 manufacturing years (see Tables 4, 5, 6, 7, 8 and 9).

engine size							
Engine	Manufacturing	Average Exhaust Emission Values for Each Manufacturing Year					
Size (Liters)	Year	O2 (%)	CO (%)	CO2 (%)	CxHy (ppm)	NO (ppm)	
	2007	5.1	0.02	11.45	78.5	46	
	2008	9.2	0.025	8.85	71.5	68	
	2009	3.183333333	0.205	13.06667	101	86.33333	
	2010	7.4	0.015	10.35	43	4.5	
16	2011	7.183333333	0.206667	9.85	177.6667	30.66667	
1.6	2012	16.2	0.05	3.6	15	20	
	2013	7.175	0.0225	10.475	154.75	8.5	
	2014	11.9	0.115	6.45	29.5	40.5	
	2015	0.2	0.07	15.3	101	0	
	2016	6.466666667	0.006667	10.8	21.33333	2.333333	

 Table 4: The average emission gas percentages and concentrations for each manufacturing year of vehicles with a 1.6 liter engine size

Table 5: The average emission gas percentages and concentrations for each manufacturing year of vehicles with a 1.8 liter	
engine size	

Engine	Manufacturing Year	Average Exhaust Emission Values for Each Manufacturing Year					
Size (Liters)		O2 (%)	CO (%)	CO2 (%)	CxHy (ppm)	NO (ppm)	
1.8	2008	6.65	0.005	10.6	65.5	26	
	2009	2.93333333	3.323333	11.36667	430.6667	28.33333	
	2010	0.1	0.01	15.9	13	8	
	2011	0.4	0.96	14.4	365	110	
	2013	7.375	1.72	9.0125	198.5	30.25	
	2014	7.5	0.47	9.6	197	53.5	

 Table 6: The average emission gas percentages and concentrations for each manufacturing year of vehicles with a 2.0 liter engine size

Engine	Manufacturing	Average Exhaust Emission Values for Each Manufacturing Year					
Size (Liters)	Year	O2 (%)	CO (%)	CO2 (%)	CxHy (ppm)	NO (ppm)	
	2009	4.5	4.84	9	735	17	
	2010	3.36666667	0.316667	13.16667	70	80	
	2011	5.925	1.7025	10.175	300.5	80.75	
2.0	2013	14.2	0.01	5	29	0	
	2014	10.1	0.2	7.95	51.5	24	
	2015	2.8	0	13.8	0	0	
	2018	3.5	0	13.9	113	3	

Engine	Monufacturing	Average Exhaust Emission Values for Each Manufacturing Year					
Size (Liters)	Manufacturing Year	O2 (%)	CO (%)	CO2 (%)	CxHy (ppm)	NO (ppm)	
	2009	1.1	3.94	12.4	375	150	
	2010	6.35	0.1	11.05	34.5	266.5	
	2011	8.85	0.005	9	56	4.5	
2.4	2012	2.8	0.41	13.25	84	176	
	2013	9.2	0.04	8.9	25	2	
	2014	1.15	0.075	14.6	76	186	
	2015	16.9	0.09	2.8	59	3	
	2016	4.85	0.005	12.15	9	0	

 Table 7: The average emission gas percentages and concentrations for each manufacturing year of vehicles with a 2.4 liter engine size

Table 8: The average emission gas percentages and concentrations for each manufacturing year of vehicles with a 2.5 liter
engine size

Engine	Manufacturing	Average Exhaust Emission Values for Each Manufacturing Year					
Size (Liters)	Year	O2 (%)	CO (%)	CO2 (%)	CxHy (ppm)	NO (ppm)	
	2008	7.075	0.0425	10.275	84.75	25.5	
	2009	7.58333333	0.493333	9.716667	438.6667	28.5	
	2010	4	0.155	12.65	122.75	69	
2.5	2011	2.4	0.34	13.8	116	49	
	2012	4.9	0.016	11.84	57.8	24.2	
	2013	6.86666667	0	10.56667	37	0	
	2016	7.2	0.006667	10.2	24.66667	1	

Table 9: The average emission gas percentages and concentrations for each manufacturing year of vehicles with a 2.7 liter
engine size

Engine Size	Manufacturing	Average Exhaust Emission Values for Each Manufacturing Year				Average Exhaust Emission Values	
(Liters)	Year	O2 (%)	CO (%)	CO2 (%)	CxHy (ppm)	NO (ppm)	
	2008	1.2	0.79	13.9	141	58	
	2009	1.3	1.01	13.8	59	69	
	2010	0.86666667	0.496667	14.63333	92.33333	50	
2.7	2011	0.43333333	1.326667	14.3	146.6667	77.33333	
2.1	2012	0.4	0.52	14.9	101	35	
	2013	0.4	0.866	14.74	118	41.4	
	2014	1.1	0	14.8	0	22	
	2015	0.6	0.12	15.1	47	40.5	

The results indicated a significant relationship between the vehicles' manufacturing years and their exhaust emission gas percentages and concentrations. The results are studied and discussed in detail in the following sections:

Vehicles with 1.6 liter gasoline-fueled engines

The average exhaust emission gas percentages and concentrations for each manufacturing year were calculated and are summarized in Table 4. The results are discussed below:

- (1) Carbon monoxide (CO): the vehicles with manufacturing years of 2009 and 2010 had the highest percentages of carbon monoxide (CO) exhaust emission. Carbon monoxide (CO) is produced from the incomplete combustion of fuel, and thus, the results indicate inefficient engine performance in the vehicles manufactured in 2009 and 2010. The lowest carbon monoxide (CO) exhaust emission percentages were produced from the vehicles with manufacturing years of 2016, 2010, 2007, 2013 and 2008, which indicates good manufacturing of the vehicles and their engines (see Table 4 and Figure 8).
- (2) Carbon dioxide (CO2): the vehicles with manufacturing years of 2015, 2009, 2007 and 2016 emitted or produced larger percentages of carbon dioxide (CO2), which clearly indicate better gasoline fuel combustion; the complete combustion of fuel produces only carbon dioxide (CO2) and water. Good combustion of fuel indicates the good quality and performance of the vehicle and its engine (see Table 4 and Figure 9).

- (3) Oxygen (O2): the vehicles with manufacturing years of 2015, 2009, and 2007 emitted lower percentages of oxygen (O2), which clearly indicate better gasoline fuel combustion. In ideal combustion, all the oxygen (O2) will be consumed, and the results are an indication of good manufacturing of the vehicles and their engines. The highest percentages of oxygen were emitted from the vehicles with manufacturing years of 2012 and 2014 (see Table 4 and Figure 9).
- (4) Hydrocarbons (CxHy): the vehicles with manufacturing years of 2012, 2016, 2014 and 2010 emitted fewer hydrocarbons (CxHy), which indicate better gasoline fuel combustion due to good and efficient engine performance, given that hydrocarbons (CxHy) are uncombusted fuel produced from the incomplete combustion of fuel. The vehicles with manufacturing years of 2011, 2013, 2015 and 2009 emitted the highest amount of hydrocarbons (CxHy) (see Table 4 and Figure 10).
- (5) Nitrogen oxide (NO): the emitted nitrogen oxide cannot be considered an indicator of the quality and performance of vehicles and their engines, as nitrogen is primarily derived from the air that mixes with gasoline inside the engine or from the fuel itself (nitrogen-enriched gasoline). The emitted nitrogen oxide (NO) values will not be considered in the following discussions related to the study, as (NO) content cannot be a related indicator. The average values of emitted nitrogen oxide (NO) for each manufacturing year are illustrated in Table 4 and Figure 10.

Ideal gasoline fuel combustion consumes all the oxygen and fuel and produces only carbon dioxide (CO2) and water. High percentages of carbon monoxide (CO) indicate incomplete fuel combustion. Accordingly, as the oxygen (O2), carbon monoxide (CO) and hydrocarbon (CxHy) exhaust emission percentages and concentrations decrease and the percentage of carbon dioxide (CO2) exhaust emissions increases, better gasoline combustion is achieved, which indicates good vehicle quality and performance. The combined results indicate engine problems in some vehicles with specific manufacturing years according to their average percentages and concentrations of exhaust emission gases (see Table 10).

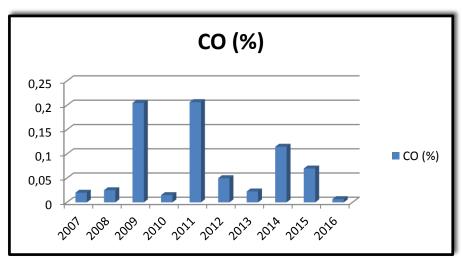
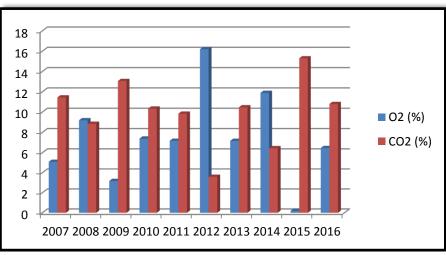
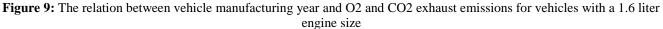




Figure 8: The relation between vehicle manufacturing year and CO exhaust emissions for vehicles with a 1.6 liter engine size

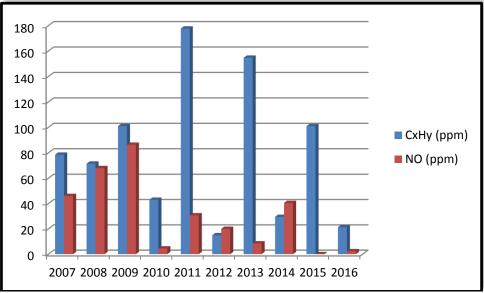


Figure 10: The relation between vehicle manufacturing year and NO and CxHy exhaust emissions for vehicles with a 1.6 liter engine size

 Table 10: The combined results of exhaust emission gases for some vehicles with specific manufacturing years (1.6 liter engine size)

Exhaust Emission Gas	Manufacturing Year (1.6 liter engine size)			
Exhaust Emission Gas	2009	2011	2013	
Carbon monoxide (CO)	High	High	Low	
Carbon dioxide (CO2)	High	Medium	Medium	
Oxygen (O2)	Low	Medium	Medium	
Hydrocarbons (CxHy)	High	High	High	

Vehicles with 1.8 liter gasoline-fueled engines

The average exhaust emission gas percentages and concentrations for each manufacturing year were calculated and are summarized in Table 5. The results are discussed below:

- (1) Carbon monoxide (CO): the vehicles with manufacturing years of 2009, 2013 and 2011 had the highest percentages of carbon monoxide (CO) exhaust emissions. Carbon monoxide (CO) is produced from the incomplete combustion of fuel, and thus, the results indicate inefficient engine performance in the vehicles manufactured in 2009, 2013 and 2011. The lowest carbon monoxide (CO) exhaust emission percentages were produced from the vehicles with manufacturing years of 2008, 2010 and 2014, which indicate good manufacturing of the vehicles and their engines (see Table 5 and Figure 11).
- (2) Carbon dioxide (CO2): the vehicles with manufacturing years of 2010, 2011, 2009 and 2008 emitted or produced larger percentages of carbon dioxide (CO2), which clearly indicate better gasoline fuel combustion; the complete combustion of fuel produces only carbon dioxide (CO2) and water. Good combustion of fuel indicates the good quality and performance of the vehicle and its engine (see Table 5 and Figure 12).
- (3) Oxygen (O2): the vehicles with manufacturing years of 2010, 2011, and 2009 emitted lower percentages of oxygen (O2), which clearly indicate better gasoline fuel combustion; in ideal combustion, all the oxygen (O2) will be consumed, and the results are an indication of good manufacturing of the vehicles and their engines. The highest percentages of oxygen were emitted from the vehicles with manufacturing years of 2014, 2013 and 2008 (see Table 5 and Figure 12).
- (4) Hydrocarbons (CxHy): the vehicles with manufacturing years of 2010 and 2008 emitted lower values of hydrocarbons (CxHy), which indicate better gasoline fuel combustion due to good and efficient engine performance; hydrocarbons (CxHy) are uncombusted fuel produced from the incomplete combustion of fuel. The vehicles with manufacturing years of 2009, 2011, 2013 and 2014 emitted the highest values of hydrocarbons (CxHy) (see Table 5 and Figure 13).

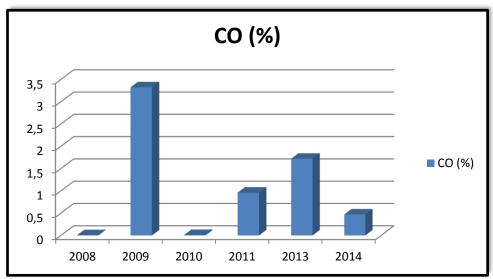


Figure 11: The relation between vehicle manufacturing year and CO exhaust emissions for vehicles with a 1.8 liter engine size

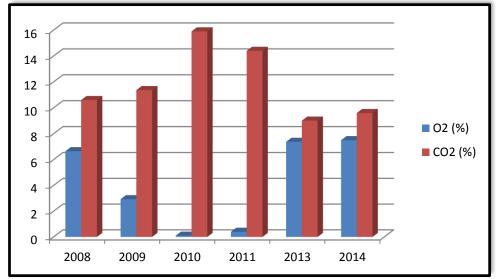


Figure 12: The relation between vehicle manufacturing year and O2 and CO2 exhaust emissions for vehicles with a 1.8 liter engine size

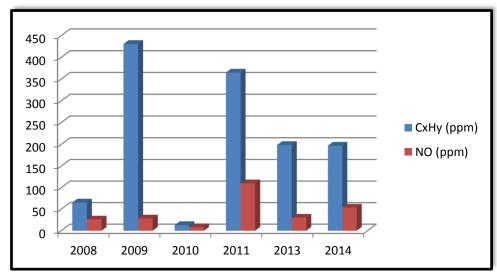


Figure 13: The relation between vehicle manufacturing year and NO and CxHy exhaust emissions for vehicles with a 1.8 liter engine size

The combined results indicated engine problems in some vehicles with specific manufacturing years according to the average percentages and concentrations of exhaust emission gases (see Table 11).

 Table 11: The combined results of exhaust emission gases for some vehicles with specific manufacturing years (1.8 liter engine size)

Exhaust Emission Gas	Manufacturing Year (1.8 liter engine size)				
	2009 2011 2013				
Carbon monoxide (CO)	High	High	High		
Carbon dioxide (CO2)	High	High	Medium		
Oxygen (O2)	Medium	Low	High		
Hydrocarbons (CxHy)	High	High	High		

Vehicles with 2.0 liter gasoline-fueled engines

The average exhaust emission gas percentages and concentrations for each manufacturing year were calculated and are summarized in Table 6. The results are discussed below:

- (1) Carbon monoxide (CO): the vehicles with manufacturing years of 2009 and 2011 had the highest percentages of carbon monoxide (CO) exhaust emissions. Carbon monoxide (CO) is produced from the incomplete combustion of fuel, and thus, the results indicate inefficient engine performance in the vehicles manufactured in 2009 and 2011. The lowest carbon monoxide (CO) exhaust emission percentages were produced from the vehicles with manufacturing years of 2013, 2014 and 2010, which indicate good manufacturing of the vehicles and their engines (see Table 6 and Figure 14).
- (2) Carbon dioxide (CO2): the vehicles with manufacturing years of 2010, 2011, 2009 and 2014 emitted or produced larger percentages of carbon dioxide (CO2), which clearly indicate better gasoline fuel combustion; the complete combustion of fuel produces only carbon dioxide (CO2) and water. Good combustion of fuel indicates the good quality and performance of the vehicle and its engine (see Table 6 and Figure 15).
- (3) Oxygen (O2): the vehicles with manufacturing years of 2010, 2009, and 2011 emitted lower percentages of oxygen (O2), which clearly indicate better gasoline fuel combustion; in ideal combustion, all the oxygen (O2) will be consumed, and the results are an indication of good manufacturing of the vehicles and their engines. The highest percentages of oxygen were emitted from the vehicles with manufacturing years of 2013 and 2014 (see Table 6 and Figure 15).
- (4) Hydrocarbons (CxHy): the vehicles with manufacturing years of 2013, 2014 and 2010 emitted lower values of hydrocarbons (CxHy), which indicate better gasoline fuel combustion due to good and efficient engine performance; hydrocarbons (CxHy) are uncombusted fuel produced from the incomplete combustion of fuel. The vehicles with manufacturing years of 2009 and 2011 emitted the highest values of hydrocarbons (CxHy) (see Table 6 and Figure 16).

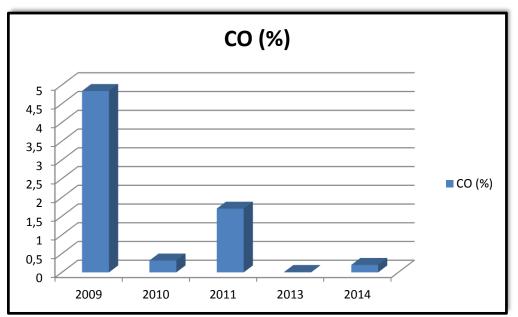


Figure 14: The relation between vehicle manufacturing year and CO exhaust emissions for vehicles with a 2.0 liter engine size

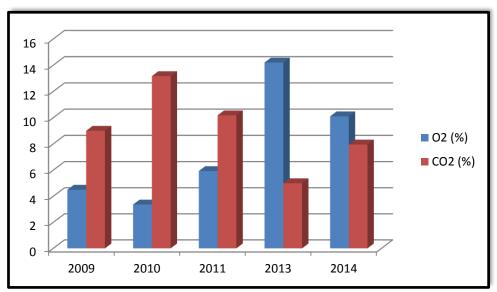


Figure 15: The relation between vehicle manufacturing year and O2 and CO2 exhaust emissions for vehicles with a 2.0 liter engine size

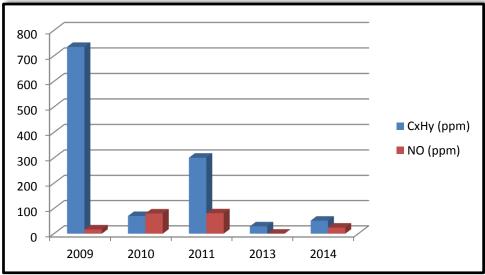


Figure 16: The relation between vehicle manufacturing year and NO and CxHy exhaust emissions for vehicles with a 2.0 liter engine size

The combined results indicated engine problems in some vehicles with specific manufacturing years according to their average percentages and concentrations of exhaust emission gases (see Table 12).

Exhaust Emission Gas	Manufacturing Year (2.0 liter engine size)				
Γ	2009 2011				
Carbon monoxide (CO)	High	High			
Carbon dioxide (CO2)	High	High			
Oxygen (O2)	Medium	Medium			
Hydrocarbons (CxHy)	High	High			

Table 12: The combined results of exhaust emission gases for some vehicles with specific manufacturing years (2.0 liter

Vehicles with 2.4 liter gasoline-fueled engines

The average exhaust emission gas percentages and concentrations for each manufacturing year were calculated and are summarized in Table 7. The results are discussed below:

(1) Carbon monoxide (CO): the vehicles with a manufacturing year of 2009 had the highest percentages of carbon monoxide (CO) exhaust emissions. Carbon monoxide (CO) is produced from the incomplete

combustion of fuel, and thus, the results indicated inefficient engine performance in the vehicles manufactured in 2009. The lowest carbon monoxide (CO) exhaust emission percentages were produced from the vehicles with manufacturing years of 2011, 2016, 2013, 2014, 2015 and 2010, which indicate good manufacturing of the vehicles and their engines (see Table 7 and Figure 17).

- (2) Carbon dioxide (CO2): the vehicles with manufacturing years of 2014, 2012, 2009 and 2016 and 2010 emitted or produced larger percentages of carbon dioxide (CO2), which clearly indicate better gasoline fuel combustion; the complete combustion of fuel produces only carbon dioxide (CO2) and water. Good combustion of fuel indicates the good quality and performance of the vehicle and its engine (see Table 7 and Figure 18).
- (3) Oxygen (O2): the vehicles with manufacturing years of 2009, 2014, 2012 and 2016 emitted lower percentages of oxygen (O2), which clearly indicate better gasoline fuel combustion; in ideal combustion, all the oxygen (O2) will be consumed, and the results are an indication of good manufacturing of the vehicles and their engines. The highest percentages of oxygen were emitted from the vehicles with manufacturing years of 2015, 2013 and 2011 (see Table 7 and Figure 18).
- (4) Hydrocarbons (CxHy): the vehicles with manufacturing years of 2016, 2013, 2010 and 2011 emitted lower concentrations of hydrocarbons (CxHy), which indicate better gasoline fuel combustion due to good and efficient engine performance; hydrocarbons (CxHy) are uncombusted fuel produced from the incomplete combustion of fuel. The vehicles with a manufacturing year of 2009 emitted the highest concentrations of hydrocarbons (CxHy) (see Table 7 and Figure 19).

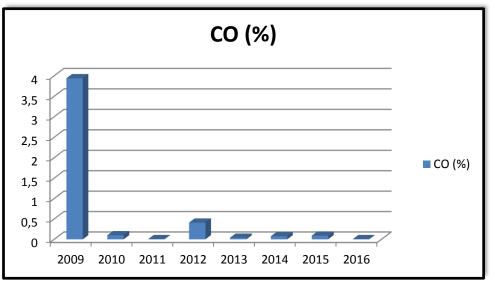
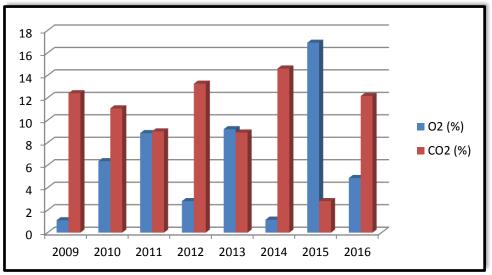
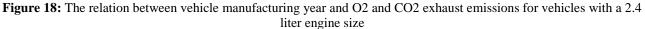




Figure 17: The relation between vehicle manufacturing year and CO exhaust emissions for vehicles with a 2.4 liter engine size

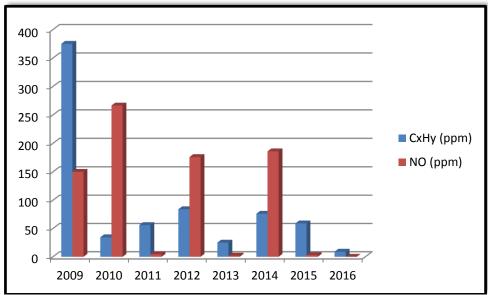


Figure 19: The relation between vehicle manufacturing year and NO and CxHy exhaust emissions for vehicles with a 2.4 liter engine size

The combined results indicated engine problems in vehicles with a manufacturing year of 2009 according to the average percentages and concentrations of exhaust emission gases (see Table 13).

Table 13: The combined results of exhaust emission	gases for some	vehicles with spe	ecific manufacturing	years (2.4 liter
	engine size)			

Exhaust Emission Gas	Manufacturing Year (2.4 liter engine size)		
	2009		
Carbon monoxide (CO)	High		
Carbon dioxide (CO2)	High		
Oxygen (O2)	Low		
Hydrocarbons (CxHy)	High		

Vehicles with 2.5 liter gasoline-fueled engines

The average exhaust emission gases percentages and concentrations for each manufacturing year were calculated and are summarized in Table 8. The results are discussed in the following:

- (1) Carbon monoxide (CO): the vehicles with manufacturing years of 2009, 2011 and 2010 had the highest percentages of carbon monoxide (CO) exhaust emissions. Carbon monoxide (CO) is produced from the incomplete combustion of fuel, and thus, the results indicate inefficient engine performance in the vehicles manufactured in the years 2009, 2011 and 2010. The lowest carbon monoxide (CO) exhaust emission percentages were produced from the vehicles with manufacturing years of 2013, 2016, 2012 and 2008, which indicate good manufacturing of the vehicles and their engines (see Table 8 and Figure 20).
- (2) Carbon dioxide (CO2): the vehicles with manufacturing years of 2011, 2010, 2012 and 2013 emitted or produced larger percentages of carbon dioxide (CO2), which clearly indicate better gasoline fuel combustion; the complete combustion of fuel produces only carbon dioxide (CO2) and water. Good combustion of fuel indicates the good quality and performance of the vehicle and its engine (see Table 8 and Figure 21).
- (3) Oxygen (O2): the vehicles with manufacturing years of 2011, 2010, and 2012 emitted lower percentages of oxygen (O2), which clearly indicate better gasoline fuel combustion; in ideal combustion, all the oxygen (O2) will be consumed, and the results are an indication of good manufacturing of the vehicles and their engines. The highest percentages of oxygen were emitted from the vehicles with manufacturing years of 2009, 2016, 2008 and 2013 (see Table 8 and Figure 21).
- (4) Hydrocarbons (CxHy): the vehicles with manufacturing years of 2016, 2013, 2012 and 2008 emitted lower concentrations of hydrocarbons (CxHy), which indicates better gasoline fuel combustion due to good and efficient engine performance; hydrocarbons (CxHy) are uncombusted fuel produced from the incomplete combustion of fuel. The vehicles with a manufacturing year of 2009 emitted the highest values of hydrocarbons (CxHy) (see Table 8 and Figure 22).

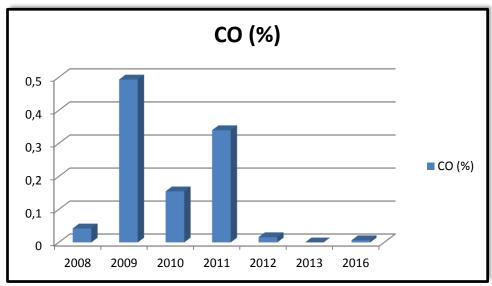


Figure 20: The relation between vehicle manufacturing year and CO exhaust emissions for vehicles with a 2.5 liter engine size

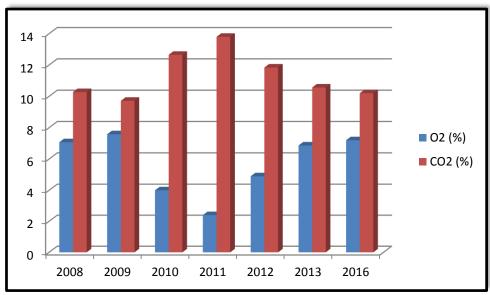


Figure 21: The relation between vehicle manufacturing year and O2 and CO2 exhaust emissions for vehicles with a 2.5 liter engine size

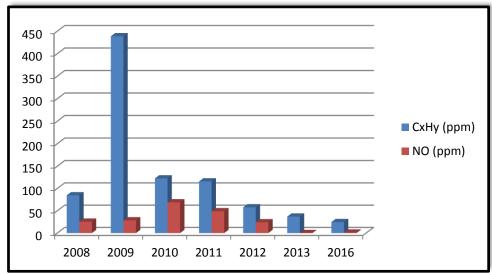


Figure 22: The relation between vehicle manufacturing year and NO and CxHy exhaust emissions for vehicles with a 2.5 liter engine size

The combined results indicated engine problems in some vehicles with specific manufacturing years according to their average percentages and concentrations of exhaust emission gases (see Table 14).

Exhaust Emission Gas	Manufacturing Year (2.5 liter engine size)				Manufacturing Year (2.5 liter engine size)		
I F	2009 2010 2011						
Carbon monoxide (CO)	High	Medium	High				
Carbon dioxide (CO2)	High	High	High				
Oxygen (O2)	High	Medium	Low				
Hydrocarbons (CxHy)	High	Medium	Medium				

Table 14: The combined results of exhaust emission gases for some vehicles with specific manufacturing years (2.5 liter angine size)

Vehicles with 2.7 liter gasoline-fueled engines

The average exhaust emission gas percentages and concentrations for each manufacturing year were calculated and are summarized in Table 9. The results are discussed below:

- (1) Carbon monoxide (CO): the vehicles with manufacturing years of 2011, 2009, 2013 and 2008 had the highest percentages of carbon monoxide (CO) exhaust emissions. Carbon monoxide (CO) is produced from the incomplete combustion of fuel, and thus, the results indicate inefficient engine performance in the vehicles manufactured in the years 2011, 2009, 2013 and 2008. The lowest carbon monoxide (CO) exhaust emission percentages were produced from the vehicles with manufacturing years of 2014 and 2015, which indicates good manufacturing of the vehicles and their engines (see Table 9 and Figure 23).
- (2) Carbon dioxide (CO2): the vehicles with all included manufacturing years emitted or produced larger percentages of carbon dioxide (CO2), which clearly indicate better gasoline fuel combustion; the complete combustion of fuel produces only carbon dioxide (CO2) and water. Good combustion of fuel indicates good quality and performance of the vehicle and its engine (see Table 9 and Figure 24).
- (3) Oxygen (O2): the vehicles with all included manufacturing years emitted small percentages of oxygen (O2), which clearly indicate better gasoline fuel combustion; in ideal combustion, all the oxygen (O2) will be consumed, and the results are an indication of good manufacturing of the vehicles and their engines (see Table 9 and Figure 24).
- (4) Hydrocarbons (CxHy): the vehicles with manufacturing years 2014, 2015, and 2009 emitted lower concentrations of hydrocarbons (CxHy), which indicate better gasoline fuel combustion due to good and efficient engine performance; hydrocarbons (CxHy) are uncombusted fuel produced from the incomplete combustion of fuel. The vehicles with manufacturing years of 2011, 2008, 2013, 2012, and 2010 emitted the highest concentrations of hydrocarbons (CxHy) (see Table 9 and Figure 25).

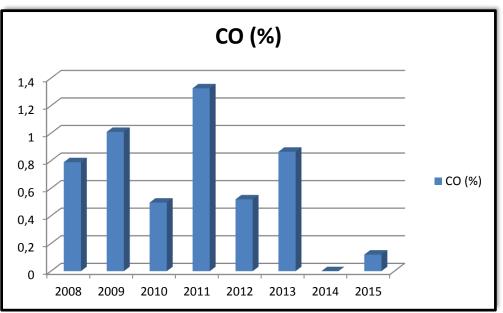


Figure 23: The relation between vehicle manufacturing year and CO exhaust emissions for vehicles with a 2.7 liter engine size

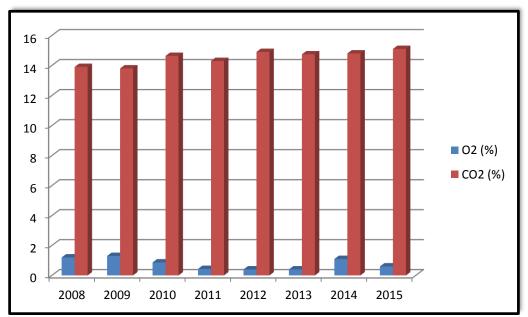


Figure 24: The relation between vehicle manufacturing year and O2 and CO2 exhaust emissions for vehicles with a 2.7 liter engine size

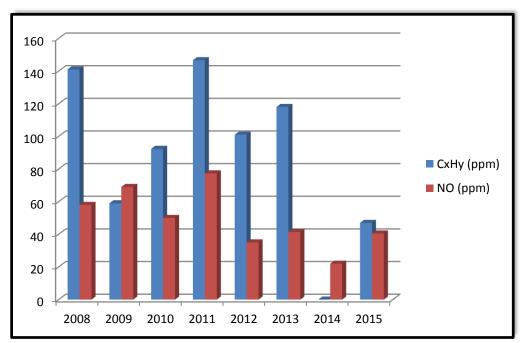


Figure 25. The relation between vehicle manufacturing year and NO and CxHy exhaust emissions for vehicles with a 2.7 liter engine size

The combined results indicated engine problems in some vehicles with specific manufacturing years according to their average percentages and concentrations of exhaust emission gases (see Table 15).

 Table 15: The combined results of exhaust emission gases for some vehicles with specific manufacturing years (2.7 liter engine size)

Exhaust Emission Gas	Manufacturing Year (2.7 liter engine size)				
	2008 2009 2011 2013				
Carbon monoxide (CO)	High	High	High	High	
Carbon dioxide (CO2)	High	High	High	High	
Oxygen (O2)	Low	Low	Low	Low	
Hydrocarbons (CxHy)	High	Medium	High	High	

Conclusion

Based on the results of this study, the following conclusions can be made:

- (1) The relation between vehicle engine size and exhaust emission percentages and concentrations: large engines have better performance in terms of exhaust emission gas percentages and concentrations. The good performance of large engines can be justified in the following two points:
 - Vehicles with large engines are accused of consuming large amounts of fuel, which produce larger volumes, percentages, and concentrations of exhaust emissions. Therefore, vehicle manufacturing companies pay more attention to the quality of large engines to reduce the percentages and concentrations of undesirable gases in exhaust emissions and to balance the large volumes of exhaust emissions resulting from consuming large amounts of fuel.
 - Vehicles with larger engines are more expensive than those with small and mid-size engines; therefore, large-engine vehicles are manufactured with better engine quality and equipped with advanced technology related to the fuel combustion process.
- (2) The relation between vehicle manufacturing year and exhaust emission percentages and concentrations: the study results clearly indicated that the worst vehicles are those with the manufacturing year 2009, followed by the vehicles with manufacturing years of 2011 and 2013, in terms of exhaust emission percentages and concentrations, which are indications of the low quality and performance of those vehicles' engines.

It is critical to impose international legislation, policies, rules and regulations to control, limit and reduce vehicle exhaust emission gases that increase global warming, such as carbon dioxide (CO2), or cause air pollution and are harmful to public health, such as toxic gases (carbon monoxide (CO), hydrocarbons (CxHy) and nitrogen oxide (NO)).

To control, limit and reduce vehicle exhaust emission gases, the following important actions can be taken:

- (1) Carbon dioxide (CO2) emission reduction: the reduction of carbon dioxide (CO2) can be achieved through applying the following actions:
 - Using advanced technologies to increase fuel efficiency, such as powertrains and technologies that increase engine efficiency, reduce the weight of the vehicle, reduce aerodynamic drag and reduce rolling resistance.
 - Improving fuel efficiency by increasing the average fuel efficiency of new gasoline-fueled vehicles.
 - Using vehicles in more efficient way; drivers should be encouraged to practice eco-driving to help reduce carbon dioxide (CO2) emissions and fuel consumption.
 - Improving traffic flow and capacity by reducing the delays resulting from congestion in city traffic network systems.
- (2) Carbon monoxide (CO) emission reduction can be achieved by the following:
 - Using technologies to increase engine efficiency, which increases the quality of fuel combustion.
- Improving gasoline fuel quality, which increases the quality of fuel combustion inside the engine. (3) Hydrocarbon (CxHy) emission reduction can be achieved by the following:
 - Using technologies to increase engine efficiency, which increases the quality of fuel combustion.
 - Improving gasoline fuel quality, which increases the quality of fuel combustion inside the engine.
- (4) Nitrogen oxide (NO) emission reduction can be achieved by the following:
 - Using technologies to increase engine efficiency, which increases the quality of fuel combustion.
 - Using gasoline fuel with less or minimum nitrogen content.

References

- 1. World Meteorological Organization and the United Nations Environment Programme, "Intergovernmental Panel on Climate Change (2013) Climate Change 2013: The Physical Science Basis.," 2013.
- 2. M. Barth and K. Boriboonsomsin, "Real-World Carbon Dioxide Impacts of Traffic Congestion," *Transp. Res. Rec.*, 2008.
- 3. World Meteorological Organization and the United Nations Environment Programme, "Intergovernmental Panel on Climate Change (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability.," 2007.
- 4. The US Environmental Protection Agency, "Overview of Greenhouse Gases," 2014.
- 5. International Energy Agency, "Statistics CO2 Emissions from Fuel Combustion," 2016.
- 6. G. Dong, "Time Alignment of Engine EmissionMeasurements," 2015.
- 7. V. Franco, M. Kousoulidou, M. Muntean, L. Ntziachristos, S. Hausberger, and P. Dilara, "Road vehicle

emission factors development: A review," Atmos. Environ., 2013. doi: http://dx.doi.org/10.1016/j.atmosenv.2013.01.006.

- 8. INTERNATIONAL ENERGY AGENCY, "World Energy Outlook-Energy and Air Pollution," 2016.
- 9. Intergovernmental Panel on Climate Change (IPCC), "Intergovernmental Panel on Climate Change (2007) Climate Change 2007: Synthesis Report.," 2007.
- 10. The International Transport Forum, "Reducing Transport Greenhouse Gas Emissions: Trends and Data 2010," 2010.
- 11. H. Krautzberger, L. and Wetzel, "Transport and CO2: Productivity Growth and Carbon Dioxide Emissions in the European Commercial Transport Industry," *Env. Resour. Econ* 53435–454, 2012. doi: 10.1007/s10640-012-9569-z.
- 12. M. Wang, C. Saricks, and D. Santini, "Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions.," 2014.
- 13. V. Karplus and S. Paltsev, "Proposed Vehicle Fuel Economy Standards in the United States for 2017 to 2025," *Transp. Res. Rec.*, pp. 2287, 132-139., 2012.
- 14. J. Choi and D. Roberts, "How Does the Change of Carbon Dioxide Emissions Affect Transportation Productivity? A Case Study of the US Transportation Sector from 2002 to 2011," *Sci. Res. Publ.*, 2015. doi: http://doi.org/10.4236/jss.2015.320133
- 15. T. J. Pilusa, M. M. Mollagee, and E. Muzenda, "Reduction of Vehicle Exhaust Emissions from Diesel Engines Using the Whale Concept Filter," *Aerosol Air Qual. Res.*, 2012. doi: 10.4209/aaqr.2012.04.0100.
- 16. Y. Wu, G. Song, and L. Yu, "Sensitive analysis of emission rates in MOVES for developing site-specific emission database," *Transp. Res. Part D*, vol. 32, no. October 2014, pp. 193–206, 2014. doi: 10.1016/j.trd.2014.07.009.
- 17. National Atmospheric Emissions Inventory, "Air Quality Pollutant Inventories for England, Scotland, Wales and Northern Ireland: 1990-2013," 2015.
- 18. The Royal Automobile Club Foundation, "Air Quality and Road Transport- Impacts and Solutions," 2014.
- 19. VTT Technical Research Centre of Finland Ltd., "Development and validation of comprehensive emission measurement methods for alternative fuels at VTT," 2017.
- 20. J. Pielecha, J. Merkisz, J. Markowski, and R. Jasinski, "Analysis of Passenger Car Emission Factors in RDE Tests," *E3S Web Conf.*, 2016. doi: 10.1051/e3sconf/20161000073.
- 21. N. Hooftman, L. Oliveira, M. Messagie, T. Coosemans, and J. Mierlo, "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," *energies*, 2016. doi: 10.3390/en9020084.
- 22. J. Sharaf, "Exhaust Emissions and Its Control Technology for an Internal Combustion Engine," Int. J. Eng. Res. Appl., 2013.
- 23. R. Sims et al., "2014: Transport. In: Climate Change 2014: Mitigation of Climate Change.," 2014.
- 24. J. Clifford *et al.*, "On Board Measurement of Carbon Dioxide Exhaust Car Emissions Using A Mid-Infrared Optical Based Fibre," *IEEE SENSORS 2008 Conf.*, 2008.
- 25. L. Fu, J. Hao, D. He, K. He, and P. Li, "Assessment of Vehicular Pollution in China," *J. Air Waste Manage. Assoc.*, 2011. doi: https://doi.org/10.1080/10473289.2001.10464300.
- 26. K. He, Z. Yao, and Y. Zhang, "Characteristics of Vehicle Emissions in China Based on Portable Emission Measurement System," *United States Environ. Prot. Agency*, 2010.
- 27. Z. Yao, Q. Wang, K. He, H. Huo, Y. Ma, and Q. Zhang, "Characteristics of Real World Vehicular Emissions in Chinese Cities," *J. Air Waste Manage. Assoc.*, 2012.
- 28. NATIONAL INSTRUMENTS APPLICATION NOTES, "Testing Automotive Exhaust Emissions," 2013.
- 29. A. Kulkarni and T. Teja, "Automated System for Air Pollution Detection and Control in Vehicles," Int. J. Adv. Res. Electr. Electron. Instrum. Eng., 2014.
- T. J. Wallington, J. L. Sullivan, and M. D. Hyrley, "Emissions of CO2, CO, NOx, HC, PM, HFC-134a, N2O and CH4 from the global light duty vehicle fleet," *Meteorol. Zeitschrift*, 2008.
- 31. Auckland Council, "Trends in Light Duty Vehicle Emissions 2003 to 2011," 2012.
- 32. The King Review of low-carbon cars, "Part I: the potential for CO2 reduction," 2007.
- 33. Energy Information Administration, "Annual Energy Outlook 2015," Washington, DC, 2015.
- 34. Victoria Transport Policy Institute, "Smart Transportation Emission Reduction Strategies-Identifying Truly Optimal Ways To Conserve Energy And Reduce Emissions," 2015.
- 35. M. Robert and R. Jonsson, "Assessment of transport policies toward future emission targets-a backcasting approach for Stockholm2030," *J. Environ. Assess. Policy Manag.*, 2006.
- 36. J. Leather, "Rethinking Transport and Climate Change," ADB Sustain. Dev. Work. Pap. Ser., 2009.
- 37. Energy Information Administration, "Annual Energy Outlook 2017," Washington, DC, 2017.
- 38. JAPAN AUTOMOBILE MANUFACTURERS ASSOCIATION, "2016 Report on environmental protection

Efforts-Promoting Sustainability in Road Transport in Japan," 2016.

- 39. Oak Ridge National Laboratory, "Effects of High-Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle," 2015.
- 40. M. Hasan et al., "Analysis of Exhaust Emission of Vehicles in Dhaka City of Bangladesh," Glob. J. Sci. Front. Res. Environ. Earth Sci., 2013.
- 41. GOODNEWS-WORDPRESS NEWS THEME, "Four-Stroke-Cycle-Petrol-Engine." [Online]. Available: http://teachingera.com/mech/videos/four-stroke-petrol-engine/.
- 42. A. Winer, Y. Zhu, and S. Paulson, "Carmageddon or Carmaheaven? Air Quality Results of a Freeway Closure," *ACCESS*, 2014.
- 43. U.S. Environmental Protection Agency, "Indicator of the Environmental Impacts of Transportation," 1999.
- 44. Victoria Transport Policy Institute, "Transportation Cost and Benefit Analysis II Air Pollution Costs," 2017.
- 45. E Instruments International LLC, "F5000-5GAS INSTRUCTION & OPERATIONS MANUAL- Version 1.01." 2017.
- 46. E Instruments International, "F5000-5GAS Catalog." 2017.

(2020); <u>http://www.jmaterenvironsci.com</u>