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1. Introduction 
Staphylococcus aureus, known as “Golden Staphylococcus”, is a Gram-positive bacterium responsible 
for the contagion of so many types of infections in the human body. It is among the most commonly 
isolated pathogens of hospital and community infections [1]. 
 Staphylococci are commensal bacteria that colonize the nasal passages, vagina, pharynx, or damaged 
skin surfaces. Infections are triggered when a rupture of the skin or mucous barrier allows staphylococci 
to access adjacent tissues or blood circulation [2-3]. 

Abstract 
In this research, the antimicrobial activity of 5-( substituted benzaldehyde) thiazolidine-
2,4-dione derivatives against Staphylococcus Aureus has been submitted to a Two-
Dimensional Quantitative Structure-Activity Relationship analysis. This analysis has 
been performed with two statistical methods integrated in the XLSTAT software. These 
methods are the Principal Component Analysis (PCA) and the Multiple Linear 
Regression (MLR). The 14 molecular descriptors involved in this study have been 
calculated using Gaussian 09, MarvinSketch and ACD/ChemSketch software programs. 
In order to select the molecular descriptors that exhibit a strong interrelationship with the 
experimental activity and no correlation between them, the Principal Component 
Analysis has been applied. The Multiple Linear Regression (MLR) has been employed 
to make correlation between antimicrobial activity pMIC with selected molecular 
descriptors of the studied compounds. The dataset of 20 compounds was arbitrarily 
divided into a training set (of 16 compounds), which has been employed to generate the 
QSAR model, and a test set (of 4 compounds) that has been used to assess the external 
predictive ability of the QSAR model. In this study, numerous statistical coefficients 
were used to select the best model (R=0.981, %& = 0.963, %&-./ = 0.953, 123 =
5.97×10

78 and %
9:;9

&

= 0.997). The QSAR model proposed via the MLR was validated 
internally and externally by several criteria, namely Y-randomization test, r

=

&  and ∆?
@

&  
metrics and Golbraikh-Tropsha’s criteria. The domain of applicability of the proposed 
model has been applied using the Williams’ diagram to identify the compounds that are 
outside this domain. The established QSAR model can be utilized to help predict 
antimicrobial activity of the studied molecules. 
 

Received 22 Sept 2020, 

Revised 28 Nov 2020,  

 Accepted 01 Dec 2020 

 

Keywords 

! 2D-QSAR, 

! Antimicrobial activity, 

! S. aureus, 

! PCA, 

! MLR. 

 
 

 
 

h.maghat@umi.ac.ma 

Phone: +212662201441 



El Masaoudy et al., J. Mater. Environ. Sci., 2020, 11(11), pp. 1914-1927 1915 
!

S. aureus is perhaps one of the greatest concerns due to its intrinsic virulence. It is able to cause 
a wide range of life-threatening infections, and it can adapt to different environmental conditions [4]. 
This bacteria pathogen is the main cause of infections in the blood circulation [5-6], pneumonia, skin 
and soft-tissue infection [7]. 

Various factors interpret the severity of S. aureus infections such as the ubiquitous character of 
the bacterium and the multi-resistance of certain strains to antibiotics. Though the pathogenicity of S. 
aureus is associated to the expression of virulence factors, after invasion, it has the capacity to secrete 
adhesion factors, toxins or enzymes. Toxic compounds can be classified as super antigens, or "pore 
forming toxins". Among these toxins, some are responsible for specific syndromes. These toxins have 
the ability to destroy host defense cells by forming pores at cell membranes. S. aureus secretes many 
toxins to divert or neutralize the immune response of the infected host [1-2-8]. 

The treatment of S. aureus infections has become more difficult. This creates therapeutic 
problems mainly due to its resistance to antibiotics [3]. Currently, there are different research studies 
that are working on the development of new molecules characterized by antimicrobial activity against 
the S. aureus such as a series of 21 5- (substituted benzaldehyde) thiazolidine-2,4-dione derivatives that 
were synthesized by Sucheta et al [9]. 

The objective of this analysis is to establish and evaluate the 2D-QSAR model for predicting 
antimicrobial activity of 5- (substituted benzaldehyde) thiazolidine-2,4-dione derivatives against 
Staphylococcus aureus. The model is developed using statistical methods, precisely the Principal 
Component Analysis (PCA) and the Multiple Linear Regression (MLR), and several molecular 
descriptors. The stability and the predictive power of the selected QSAR model are assessed using 
internal and external validation by Y-randomization test, A

B

&  and ∆C
D

&  metrics [20-21], parameter %
E

& [18] 
and by Golbraikh-Tropsha’s criteria [22- 23]. 

 

2. Material and Methods 
2.1. Data sources 
To build a Quantitative Structure – Activity Relationship, we choose 20 derivatives of 5- (substituted 
benzaldehyde) thiazolidine-2,4-dione exhibiting antimicrobial activity (MIC) against S. aureus reported 
by Sucheta et al [9], where (MIC) means the minimum concentration (µM / mL) that blocks the growth 
of the bacterial strain Staphylococcus aureus. Figure 1 represents the general structure of the compounds 
whereas the structure of each compound and associated experimental activity (MIC) are presented in 
Table 1. The studied series consists of 21 compounds with MIC values of experimental activity ranging 
from 4.2HI1 ⁄ KL to 5.65HI1 ⁄ KL, except that compound N°12 displays high MIC value (10.6HI1 ⁄

KL), which is excluded from the series as an outlier. 
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Figure 1: General chemical structure of the studied compounds.  
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Table 1: Antimicrobial activity values of the compounds. 
N° R

&
 R

Q
 R

R
 R

8
 R

S
 X MIC(= UM mL) 

1 H H NO
&
 H H - 4.90 

2 H H Cl H H - 5.21 
3 Cl H Cl H H - 4.50 
4 NO

&
 H H H H - 4.99 

5 H H OH H H - 5.65 
6 H H N CH

Q &
 H H - 5.00 

7 H NO
&
 H H H - 4.99 

8 H H N C
&
H
8 &

 H H - 4.50 
9 H H Br H H - 4.30 

10 H OCH
Q
 OCH

Q
 OCH

Q
 H - 4.20 

11 H OC
&
H
8
 OH H H - 4.70 

12 H H OCH
Q
 H H - 10.60 

13 Cl H H H H - 5.21 
14 H Cl H H H - 5.21 
15 OCH

Q
 H H H H - 5.31 

16 H OCH
Q
 H H H - 5.31 

17 OH H H H H - 5.65 
18 H OCH

Q
 OH H H - 4.90 

19 H OCH
Q
 OCH

Q
 H H - 4.70 

20 H H H H H 
 5.40 

21 H H CHO H H - 5.30 
 
2.2. Calculation of molecular descriptors 
In this stage of our study, we calculated 14 molecular descriptors for 20 compounds to establish the 2D-
QSAR model using ChemSketch [10], MarvinSketch [11] and Gaussian 09 [12] software programs. The 
molecular descriptors used in the QSAR analysis are exhibited in Table 2. The calculation of electronic 
descriptors was carried out with the Gaussian 09 package. The geometric optimizations of the 20 
compounds were performed by the Density Functional Theory (DFT) using Becke’s three-parameter 
hybrid functional (B3LYP) together with 6-31G (d) basis set [13]. 
Additionally, four other quantum chemical descriptors: Energy Gap (∆3), Hardness ([), 
Electronegativity (χ) and Electrophilicity index (ω) [14] were calculated by the following formulas: 

∆3 = 3
\]^_

− 3
a_^_

  

[ =

b
cdef

7b
gfef

&

  

h = −

b
cdef

ib
gfef

&

  

j =

k

l

&m
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Table 2: The molecular descriptors used in the QSAR study. 
Software Molecular descriptors 

ChemSketch Parachor (Pc), Polarizability (P), Density (d), Surface tension (S), and Index of refraction (n). 

MarvinSketch Partition coefficient (log P) 

Gaussian 09 Energy Gap (∆3), Total energy (3
n

), Lowest unoccupied molecular orbital energy (3
\]^_

), 

Highest occupied molecular orbital energy (3
a_^_

), Dipole moment (µ), Electrophilicity index 

(ω), Hardness ([) and Electronegativity (χ). 

 
2.3. Statistical Methods 
The statistical data analysis methods are necessary to build the 2D-QSAR model between the dependent 
variable (biological activity) and the independent variables (molecular descriptors). In this research, we 
applied Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) implemented in 
the XLSTAT software [15]. 
The Principal Component Analysis (PCA) is a tool used to sum up all the information encoded in the 
structures of molecules and also to understand the distribution of these molecules [16]. In this work, it 
can be used for examining the correlations between the molecular descriptors and the experimental 
activity in order to select the best molecular descriptors to be involved in the QSAR model development.   
The multiple linear regression (MLR) is the most frequently applied tool in Two-Dimensional 
Quantitative Structure-Activity Relationship due to its simplicity and easy interpretability. This method 
is used to link between several independent variables o

p
 and a dependent variable Y, according to the 

following mathematical form [17]: 
q = r

s
+ ∑r

p
o
p
 

Where v is the experimental activity pMIC, r
w
 is the constant of the model and r

p
 are the coefficients 

of the descriptors o
p
. 

 
2.4. Methods of validation  
In general, the statistical parameters of the best selected QSAR model, internal and external validation 
must be performed to check its quality, stability and predictive ability. First, in order to test the quality 
and the reliability of the selected model, different statistical parameters are used: the squared correlation 
coefficient %&, the correlation coefficient R, the adjusted squared correlation coefficient %

xyz

& , the mean 
squared error MSE and the coefficient of Fischer F. They are calculated according to following formulas:  

%

&

= 1 −

∑ {
|};

− {
~C�Ä

&

∑ {
|};

− {
|};

&

 

% = 1 −

∑ {
|};

− {
~C�Ä

&

∑ {
|};

− {
|};

&

 

%
xyz

&

=

Å − 1 %

&

− Ç

Å − Ç − 1

 

MSE =

∑ {
|};

− {
~C�Ä

&

Å

 

F =

Å − Ç − 1

Ç
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With: 
 {
|};

 and {
~C�Ä

 are observed and predicted activity value, respectively. 
 {
|};

 and {
Eá:y

 are the average of the observed and predicted activity value, respectively. 
 p represents the number of descriptors used in the model development and N represents the number of 
molecules. 
Second, the internal predictive capacity of the model is tested on the set used to develop it (the training 
set) using the cross-validation (Leave-one out) by calculating the squared correlation coefficient à& 
according to the following expression: 

à

&

= 1 −

∑ {
~C�Ä(9áxâä)

− {
|};(9áxâä)

&

∑ {
|};(9áxâä)

− {
|};(9áxâä)

&

 

Where v
ãåç(éCrèp)

 and {
~C�Ä(9áxâä)

 indicate observed and predicted activity value respectively, and 
{
|};(9áxâä)

 is the average of the observed activity value [18]. 
Currently, the Y-randomization is a widely employed test to perform the internal validation of the QSAR 
model. This test aims to randomly shuffle the antimicrobial activity values of the molecules in the 
training set for building random models using the same molecular descriptors of the original model. The 
coefficients (%&, à&) of the original model should be better than those of the new models (%

á

&, à
á

&) for 
several random trials. In this case, the original model is considered robust [19]. We also used the 
parameter %

E

& which ensures if the model has been obtained by chance or not. This parameter is defined 
as follow: 

%
E

&

= %

&

× %
&

− %
á

& 
Where %& and %

á

& are the squared correlation coefficient of the non-randomized model and the average 
correlation coefficient of randomized models respectively [18]. 
A valid value of à& that meet the requirement of à& > 0.5 may not mean that the predicted activity data 
are close to the observed activity ones despite the existence of a high correlation among the values. To 
avoid this problem and to show the predictability model better, the metrics A

B

&  and ∆C
D

&  introduced by 
Roy et al [20-21] as shown in the equations bellow have been used:  

A
B

&

=

A
B

&

+ A
B

ë&

2

 
∆A
B

&

= A
B

&

− A
B

ë&  
Where: A

B

&

= %

&

× 1 − %
&

− %
w

&  and  A′
B

&

= %

&

× 1 − %
&

− %
w

ë&  

%

& and %
w

& are the squared correlation coefficient between the observed and  predicted values of the 
molecules with and without intercept, respectively. 
%
w

ë& bears the same meaning, but uses the reversed axes. 
A
B

&  is the average value of A
B

&   and A
B

ë& . 
∆A
B

&  is the absolute difference between A
B

&   and A
B

ë& . 
The metrics  A

B(9áxâä)

&  and  ∆A
B(9áxâä)

&  are used in the case of internal validation. 
The metrics  A

B(9:;9)

&  and  ∆A
B(9:;9)

&  are used in the case of external validation. 
Third, according to Golbraikh and Tropsha [22-23], the developed model is regarded satisfactory and 
predictive once the following criteria are met: 

à

&

> 0.5 and  %
9:;9

&

> 0.6 
0.85 ≤ ï′ ≤ 1.15 and 0.85 ≤ ï ≤ 1.15 

%

&

− %
w

&

%
&

< 0.1 
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%

&

− %
w

ë&

%
&

< 0.1 
%
w

&

− %
w

ë&

< 0.3 
where à& is calculated for the training set, but %

9:;9

& , ï,Hï′, %
w

& and %′
w

& are calculated for the test set as 
follows: 

%
9:;9

&

= 1 −

∑ {
Eá:y(9:;9)

− {
|};(9:;9)

&

∑ {
|};(9:;9)

− {
|};(9áxâä)

&

 

ï =

∑ {
|};
×{

Eá:y

∑{
Eá:y

&

 

ï′ =

∑ {
|};
×{

Eá:y

∑{
|};

&

 

%
w

&

= 1 −

∑ {
Eá:y

− ï×{
Eá:y

&

∑ {
Eá:y

− {
Eá:y

&

H 

%′
w

&

= 1 −

∑ {
|};

− ï′×{
|};

&

∑ {
|};

− {
|};

&

H 

ï and ï′ are the slopes of the regression lines through the origin. 

3. Results and discussion 
3.1.  Dataset and descriptors 
The antimicrobial activity (1óò) values were converted into Ç1óò in (1 L) (Ç1óòH = H−ôöõ

úw
H1óò) 

which were employed for the QSAR study using 14 molecular descriptors (Table 3). 
The dataset comprising 20 compounds was randomly divided into two sets: a training set consisting of 
16 molecules was employed to establish the QSAR model, and a test set consisting of 4 molecules was 
employed to test the predictive ability of the proposed model. 
 

Table 3: Values of experimental activity Ç1óò and descriptors calculated. 
ù° ~ü†° ¢£ p § Ä ¢ •ã¶¢ ß

®
 ß

©™ü™
 ´ ß

¨≠ü™
 Æß Ø ∞ ± 

1 2.310 466.30 1.732 78.10 1.595 24.9 1.79 -1193.19 -0.251 2.842 -0.119 0.132 0.066 0.185 0.259 
2 2.283 446.40 1.707 65.40 1.527 24.2 1.79 -1448.29 -0.234 1.524 -0.095 0.139 0.070 0.165 0.195 
3 2.347 483.50 1.710 67.10 1.622 26.2 3.06 -1907.89 -0.242 1.198 -0.097 0.145 0.073 0.170 0.198 
4 2.302 466.30 1.732 78.10 1.595 24.9 1.79 -1193.19 -0.249 4.544 -0.107 0.142 0.071 0.178 0.223 
5 2.248 424.40 1.744 76.70 1.542 23 1.55 -1063.92 -0.217 4.007 -0.082 0.135 0.068 0.150 0.166 
6 2.301 513.90 1.697 62.20 1.356 28 1.96 -1122.68 -0.194 7.637 -0.071 0.123 0.062 0.133 0.143 
7 2.302 466.30 1.732 78.10 1.595 24.9 1.79 -1193.19 -0.247 4.492 -0.105 0.142 0.071 0.176 0.218 
8 2.347 594.00 1.660 57.20 1.279 31.6 2.67 -1201.03 -0.196 8.583 -0.078 0.118 0.059 0.137 0.159 
9 2.367 460.30 1.724 66.50 1.762 25.3 2.62 -3559.80 -0.233 1.631 -0.095 0.138 0.069 0.164 0.195 

10 2.377 585.10 1.620 52.80 1.360 30.2 1.38 -1332.26 -0.211 2.655 -0.085 0.126 0.063 0.148 0.174 
11 2.328 523.10 1.679 65.40 1.442 27.5 1.75 -1217.77 -0.209 3.528 -0.082 0.127 0.064 0.146 0.167 
13 2.283 446.40 1.707 65.40 1.527 24.2 2.45 -1448.29 -0.239 3.040 -0.090 0.149 0.075 0.165 0.182 
14 2.283 446.40 1.707 65.40 1.527 24.2 2.45 -1448.29 -0.238 3.014 -0.096 0.142 0.071 0.167 0.196 
15 2.275 467.80 1.667 58.70 1.391 24.9 1.69 -1103.23 -0.219 5.010 -0.079 0.140 0.070 0.149 0.159 
16 2.275 467.80 1.667 58.70 1.391 24.9 1.69 -1103.22 -0.223 2.363 -0.089 0.134 0.067 0.156 0.182 
17 2.248 424.40 1.744 76.70 1.542 23 1.55 -1063.92 -0.228 1.804 -0.088 0.140 0.070 0.158 0.178 
18 2.310 483.10 1.701 69.30 1.500 25.7 1.39 -1178.45 -0.210 3.502 -0.082 0.128 0.064 0.146 0.167 
19 2.328 526.50 1.640 55.30 1.374 27.6 1.53 -1217.74 -0.213 3.394 -0.084 0.129 0.065 0.149 0.171 
20 2.268 477.00 1.761 72.80 1.416 26.7 2.38 -1066.11 -0.216 4.010 -0.092 0.124 0.062 0.154 0.191 
21 2.276 456.40 1.737 72.00 1.488 25 1.56 -1102.02 -0.242 2.570 -0.108 0.134 0.067 0.175 0.229 
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3.2. Principal Component Analysis (PCA) 
In this step, we studied the correlations between the 14 molecular descriptors in order to select the best 
among them to be included in the development of the QSAR model using the Principal Component 
Analysis tool. The correlation circle in Figure 2 and the correlation matrix in Table 4 examine the 
correlations between the molecular descriptors. 

 
Figure 2: Correlation circle of the descriptors and antimicrobial activity. 

 
Table 4: Correlation matrix of molecular descriptors. 

Var ~ü†° p § Ä ¢ •ã¶¢ ¢£ ß
®

 ß
©™ü™

 ´ ß
¨≠ü™

 Æß Ø ∞ ± 

~ü†° 1               

p -0.539 1              

§ -0.466 0.912 1             

Ä 0.016 0.633 0.646 1            

¢ 0.706 -0.654 -0.638 -0.639 1           

•ã¶¢ 0.291 0.167 -0.066 0.246 0.,160 1          

¢£ 0.726 -0.741 -0.663 -0.647 0.984 0.048 1         

ß
®

 -0.531 -0.071 0.082 -0.623 0.033 -0.523 0.081 1        

ß
©™ü™

 0.169 -0.522 -0.590 -0.755 0.645 -0.138 0.624 0.214 1       

´ 0.034 -0.193 -0.182 -0.586 0.534 0.058 0.494 0.367 0.577 1      

ß
¨≠ü™

 0.044 -0.512 -0.609 -0.624 0.413 -0.067 0.406 0.132 0.902 0.456 1     

Æß -0.288 0.351 0.354 0.675 -0.750 0.191 -0.715 -0.257 -0.787 -0.547 -0.444 1    

Ø -0.288 0.351 0.354 0.675 -0.750 0.191 -0.715 -0.257 -0.787 -0.547 -0.444 1.000 1   

∞ -0.120 0.530 0.613 0.719 -0.564 0.112 -0.548 -0.185 -0.984 -0.541 -0.965 0.663 0.663 1  

± -0.033 0.502 0.605 0.587 -0.375 0.046 -0.369 -0.105 -0.869 -0.419 -0.997 0.379 0.379 0.943 1 

 

On the one hand, the circle shows that the ≤
≥
 axis is the first dimension of the PCA and the ≤

¥
 axis is 

the second dimension of the PCA representing 53.18% and 16.99% respectively of the total variance, 
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and both represent 70.17% of the total information. The circle also shows three types of angles among 
the descriptors: an acute angle reflects a positive correlation between the molecular descriptors, a right 
angle separates two uncorrelated descriptors and an obtuse angle represents a negative correlation. 
On the other hand, the matrix displays information on the strong and weak correlation between the 
molecular descriptors. If two descriptors are highly correlated (R> ±0.9 ), the one which provides the 
greatest information is retained. According to the correlation coefficients, it turns out that the high 
correlation is observed between the Hardness (Ø) and the Energy Gap (∆ß) (R = 1.000), and the low 
correlation is observed between the total energy (ß

®
) and the polarizability (P) (R=0.033). 

Based on the results of the matrix and the correlation circle, we selected three molecular descriptors that 
exhibit a high interrelationship with the experimental activity Ç1óò and no correlation between them: 
Parachor (Pc), Total energy (ß

®
) and Highest occupied molecular orbital energy (ß

©™ü™
). 

 

3.3. Multiple Linear Regression (MLR)  
The best QSAR model obtained by the Multiple Linear Regression links the selected molecular 
descriptors Pc, 3

n
 and 3

a_^_
 to the antimicrobial activity Ç1óò of the molecules as shown in the 

following mathematical formula: 
 

~ü†°H = ≥. ∂s∑ + ∂. ∏π∑×≥s

7∫

×¢£ − ∫. ª∂π×≥s

7∏

×ß
®
− s. ∂∫s×ß

©™ü™
 

 

The high values of %, %&, %&-./ and º, and the low value of 123 confirm that this model is statistically 
significant, so we can conclude that it is robust and possesses good quality. Table 5 gives the values of 
the statistical parameters of the best QSAR model using the RLM. 
 

Table 5: Values of statistical parameters obtained by the RLM model. 
Statistical parameter Value 

Å
9áxâä

 16 
% 0.981 
%

& 0.963 
%

&

-./ 0.953 
123 5.97×10

78 
º 103.004 

 
The multicollinearity among the molecular descriptors Parachor Ωæ, Total energy ß

®
 and Highest 

occupied molecular orbital energy ß
©™ü™

 is verified by the variance inflation factor VIF. The VIF 
values of these descriptors model are less than 2.000 (øóº < 2), which indicates that there is no 
collinearity among them. The VIF value of Ωæ, 3

n
 and 3

a_^_
 involved in MLR model is shown in Table 

6. The importance of the molecular descriptors Ωæ, 3
n
 and 3

a_^_
 included in this QSAR model on 

antimicrobial activity Ç1óò is assessed by the absolute value of the t-test as displayed in Table 6. From 
the t-test values, it is clear that the molecular descriptors contribute to the explanation of antimicrobial 
activity as to the following order:        
 

¢£ > ß
®
> ß

©™ü™
 

 
Table 6: VIF and t-test value of descriptors involved in MLR model. 

Descriptors Pc 3
n

 3
a_^_

 

t-test 13.964 -4.848 -4.748 

VIF 1.758 1.275 1.959 



El Masaoudy et al., J. Mater. Environ. Sci., 2020, 11(11), pp. 1914-1927 1922 
!

The linear relationship between the observed Ç1óò
|};

 and predicted Ç1óò
Eá:y

 antimicrobial 
activities of the two sets (the test set is represented in red and the training set in blue) established by 
RLM is shown in Figure 3. 
 
 

 
Figure 3: Graphical representation of observed and predicted activities. 

 
 

The observed and predicted activity Ç1óò values for the training set and test set compounds obtained 
by the Multiple Linear Regression tool are presented in Table 7. 
 

Table 7: Values of observed and predicted antimicrobial activity Ç1óò. 
 N° Ç1óò

|};
 Ç1óò

Eá:y
 Residual 

Training set 1 2.310 2.302 0.008 
 2 2.283 2.286 -0.003 
 3 2.347 2.343 0.004 
 4 2.302 2.300 0.002 
 5 2.248 2.238 0.009 
 6 2.301 2.292 0.009 
 7 2.302 2.299 0.003 
 8 2.347 2.357 -0.011 
 10 2.377 2.368 0.009 
 13 2.283 2.290 -0.007 
 14 2.283 2.289 -0.006 
 15 2.275 2.275 0.000 
 16 2.275 2.278 -0.003 
 17 2.248 2.247 0.001 
 20 2.268 2.277 -0.010 
 21 2.276 2.283 -0.007 
Test set 9 2.367 2.399 -0.032 
 11 2.328 2.314 0.013 
 18 2.310 2.283 0.027 
 19 2.328 2.320 0.008 
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3.4. Y-randomization test 
We applied a Y-randomization test on a set of 16 compounds to ensure the robustness of the QSAR 
model. The %

á

&  and à
á

& values for 50 random trials are lower than those (%& and à&)  of the model 
proposed by the MLR, and the average values of %

á

& and à
á

& of 50 randomized models are 0.170 and -
0.575 respectively. Hence, the established QSAR model is not due to chance and is considered robust. 
The values of the statistical parameters %

á

& and à
á

& of the randomized models obtained by the Y-
randomization test are given in Table 8. 
 

Table 8: Results of randomized models. 
Random model %

á

& Q
á

& Random model %
á

& Q
á

& 
Rand 1 0.139 -0.394 Rand 26 0.115 -0.615 
Rand 2 0.133 -1.166 Rand 27 0.216 -0.159 
Rand 3 0.286 -0.353 Rand 28 0.023 -0.758 
Rand4 0.329 -0.025 Rand 29 0.270 -0.195 
Rand 5 0.281 -0.435 Rand 30 0.075 -0.738 
Rand 6 0.023 -0.465 Rand 31 0.232 -0.508 
Rand 7 0.055 -0.905 Rand 32 0.079 -0.786 
Rand 8 0.183 -0.782 Rand 33 0.227 -0.389 
Rand 9 0.253 -0.387 Rand 34 0.003 -0.590 

Rand 10 0.046 -0.973 Rand 35 0.206 -0.436 
Rand 11 0.116 -0.381 Rand 36 0.006 -0.919 
Rand 12 0.225 -0.518 Rand 37 0.221 -0.656 
Rand 13 0.039 -0.681 Rand 38 0.160 -0.510 
Rand 14 0.040 -0.575 Rand 39 0.243 -0.125 
Rand 15 0.012 -0.806 Rand 40 0.063 -0.865 
Rand 16 0.320 -0.739 Rand 41 0.047 -0.771 
Rand 17 0.235 -0.336 Rand 42 0.335 -0.978 
Rand 18 0.130 -0.457 Rand 43 0.023 -0.880 
Rand 19 0.240 -0.393 Rand 44 0.083 -0.471 
Rand 20 0.240 -0.455 Rand 45 0.235 -0.325 
Rand 21 0.200 -0.758 Rand 46 0.130 -1.047 
Rand 22 0.642 0.276 Rand 47 0.414 -0.124 
Rand 23 0.058 -0.939 Rand 48 0.068 -1.607 
Rand 24 0.252 -0.294 Rand 49 0.161 -0.917 
Rand 25 0.257 -0.159 Rand 50 0.122 -0.274 

  %

&  à

&  
Average  0.170  -0.575  
Original   0.963  0.916  

 
3.5. Model validation results 
The best QSAR model obtained was internally validated by the squared correlation coefficient à&, Y-
randomization parameters (R

¡

& and à
á

&), parameter %
E

&, and A
B(éCrèp)

&  and ∆A
B(éCrèp)

&  metrics, and 
externally validated by Golbraikh–Tropsha criteria and  A

B(é�çé)

&  and ∆A
B(é�çé)

&  metrics. The threshold 
values for various statistical criteria of external and internal validation for the QSAR model are satisfied. 
The results obtained are shown in Table 9 indicate that the QSAR model proposed via the MLR method 
has good predictive ability. 
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Table 9: Internal and external validation results. 
 Parameter Value Threshold 

Internal validation 
 

à

& 0.916 > 0.5 

%
á

& 0.170 < %

& 

à
á

& -0.575 < à

& 

%
E

& 0.846 > 0.5 

A
B(9áxâä)

&  0.720 > 0.5 

∆A
B(9áxâä)

&  0.003 < 0.2 

External validation %
9:;9

&  0.997 > 0.5 

A
B(9:;9)

&  0.882 > 0.5 

∆A
B(9:;9)

&  0.110 < 0.2 

%
w

&

− %
w

ë&  0.026 < 0.3 

%

&

− %
w

&

%
&

 
0.004 < 0.1 

%

&

− %
w

ë&

%
&

 
0.029 < 0.1 

ï 1.002 0.85 ≤ ï ≤ 1.15 

ï’ 0.998 0.85 ≤ ï′ ≤ 1.15 
 
3.6. Applicability domain 
The last stage of our research is the domain of applicability; it was used to visualize all dataset molecules 
that exist inside and outside this area using the Williams’ diagram, which represents the variations of the 
standardized residual ±√   as a function of the leverage ℎ

â
 [24]. The prediction is considered reliable 

for each molecule that is within the domain of applicability. For this reason, the leverages values of all 
molecules in the data set are calculated as follows: 

ℎ
â
= ≈

â

n

∆

n

∆

7ú

≈
â
      (« = 1, 2, … , ï) 

Where ≈
â
 represents the descriptor row vector of the compound, ∆ is the ï ∗ Ç matrix of Ç model 

descriptor values for ï training set compounds and the superscript   refers to the transpose of the 
matrix/vector [25-26]. 
The warning leverage value ℎ∗ was defined as: 3Ç ï, with p and k are the number of model descriptors 
plus one and the number of training set compounds, respectively. The criteria for a response outlier in 
the QSAR model are given as follows: standardized residual greater than three standard deviation units 
> 3√ and ℎ

â
> ℎ

∗ [27]. 
The diagram of Williams for the training set and the test set of the model QSAR is presented in Figure 
4. In this graph the leverage threshold is 0.75 and the standardized residual is ±3. The standardized 
residual value of each training and test compound is between +3 and −3. Additionally, the leverage 
value of all compounds in the training set does not reach the warning value. In contrast, the leverage 
value of compound N°9 in the test set exceeds the warning value. Therefore, this compound falls outside 
the QSAR AD as outlier. 
Finally, the results obtained by the domain of applicability confirm the reliability of the QSAR model to 
predict the activity of the compounds with very high confidence. 
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Figure 4: Williams’ diagram for the MLR model (warningHleverageHHh∗ = 0.75H; residualHlimitH ± 3). 

 

 
Conclusion 

The 2D-QSAR study was used to construct a predictive model for the antimicrobial activity of a series 
of 5- (substituted benzaldehyde) thiazolidine-2,4-dione derivatives against S. aureus, using the selected 
descriptors: Highest occupied molecular orbital energy (3

a_^_
), Parachor (Pc) and Total energy (3

n
), 

which showed a strong interrelationship with the studied activity and there was no correlation between 
them. The internal and external validation criteria of the established model by the Multiple Linear 
Regression method were satisfied: (à&, %

9:;9

& , %
E

&, A
B(9áxâä)

& and A
B(9:;9)

& )> 0.5, (A
B(9áxâä)

&  and A
B(9:;9)

& ) 
< 0.2, Y-randomization parameters (R

¡

&

< %

& and à
á

&

< à

&) and Golbraikh-Tropsha’s parameters. 
Finally, the results obtained from the internal validation, the external validation and the domain of 
applicability affirm that the QSAR model proposed via the MLR method is very promising as it can be 
utilized to predict antimicrobial activity of the studied compounds.   
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